
Highly Scalable Genome Assembly on Campus Grids

Christopher Moretti, Michael Olson, Scott Emrich, and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame

ABSTRACT
Bioinformatics researchers need efficient means to processlarge
collections of sequence data. One application of interest,genome
assembly, has great potential for parallelization, however most pre-
vious attempts at parallelization require uncommon high-end hard-
ware. This paper introduces a scalable modular genome assem-
bler that can achieve significant speedup using large numbers of
conventional desktop machines, such as those found in a campus
computing grid. The system is based on the Celera open-source
assembly toolkit, and replaces two independent sequentialmodules
with scalable replacements: a scalable candidate selectorexploits
the distributed memory capacity of a campus grid, while the scal-
able aligner exploits the distributed computing capacity.For large
problems, these modules provide robust task and data management
while also achieving speedup with high efficiency on severalscales
of resources. We show results for several datasets ranging from
738 thousand to over 121 million alignments using campus grid re-
sources ranging from a small cluster to more than a thousand nodes
spanning three institutions. Our largest run so far achieves a 927x
speedup with 71.3 percent efficiency.

1. INTRODUCTION
Scientists often are able to create applications that solvetheir

domain problems on one core, or even a small cluster. Unfor-
tunately, as they scale up their problem size these resources be-
come insufficient due to the scale of the problem’s CPU, memory,
disk, or network requirements. Traditionally scientists have had
to rework their solution into a custom high performance comput-
ing implementation that can overcome these requirements using
larger and more complicated hardware. As an alternative to this,
we consider the “many task computing” paradigm [18] as a way
to solve problems at this scale on commodity hardware by coor-
dinating thousands of sequential processes together into an atomic
workload. We focus on two types of problems typically solvedby
high performance solutions at this scale: naturally parallel prob-
lems with memory, network, and disk limitations; and traditionally
serial problems that have oppressive memory requirements.

Bioinformatics abounds with problems that fit these characteris-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MTAGS ’09November 16th, 2009, Portland, Oregon, USA
Copyright 2009 ACM 978-1-60558-714-1/09/11 ...$10.00.

tics. Given the recent explosive growth of the amount of genomic
data available, scientists are finding the need to perform genomic
analysis at unprecedented scales. Many such analyses take place
on sequences millions of bases long, but DNA sequencers are only
capable of producing many short sequences.

Genome assembly is the process by which the thousands or mil-
lions of reads from a sequencing run are combined to produce large,
contiguous sequences that represent actual chromosomes inthe cell.
This is generally done by trying to detect all the places where pairs
of reads overlap each other, then running algorithms that use that
overlap information to build larger sequences. Because thenumber
of sequences in a sequencing run is very large, this is computation-
ally intensive. Modern sequencers that produce a greater number
of shorter sequences [17] further increase the amount of overlaps
that need to be computed.

We demonstrate challenges and opportunities for many task com-
puting on a campus grid with a distributed implementation ofthe
memory-intensive candidate selection step and the computationally-
intensive alignment step of genome assembly, which are discussed
in detail in Section 2. Our implementations of these steps distribute
the memory and processing loads across a campus grid to alleviate
the specific limitations of the serial solutions.

The resulting products were run on several datasets whose sizes
ranged from 100 thousand to 8 million sequences. The memory
required for candidate selection was reduced from 18GB on a single
core to less than 2GB per core across the cluster throughout the
workload, ensuring consistent access to data without costly paging
to disk. For the naturally parallel alignment step we were able to
spread the computation of 121 million alignments across more than
1000 cores while maintaining 71.3% parallel efficiency.

In this paper, we provide an overview of genome assembly and
its parallelizable aspects in Section 2. Our pipeline is integrated
into a full genome assembly in Section 3. The distributed frame-
work, data and benchmarking environment are detailed in Section 4.
Sections 5 and 6 describe the design, implementation and perfor-
mance of the first two stages of the assembly pipeline. We discuss
our ability to scale to many cores at multiple institutions in Sec-
tion 7.

2. OVERVIEW OF GENOME ASSEMBLY
Genome sequencingis the laboratory process of determining an

organism’s DNA string (A,G,T,C) from a biological sample. How-
ever, no current sequencing process is capable of producingan or-
ganism’s entire string of millions or billions of bases. Instead, the
physical process produces a large number of random substrings of
the sequence known asreads. Depending on the exact process,
these reads can vary in length from 25 to 1000 bases each [17].
Individually, these reads have limited scientific value.Genome as-

(b) (c) (d)(a)

Figure 1: Logical Overview of the Assembly Process.
(a) Assembly begins with a set of unrelated reads. (b) Short exact matches are found that select candidates that may overlap. (c) Actual
overlaps are computed. (d) A layout is generated based on theoverlaps and a consensus sequence is generated.

Time to Assemble A. Gambiae
Assembly Alignment System Candidate

Framework Algorithm Size Selection Alignment Consensus
Celera Celera 4 cores 4 hrs, 20 min 3 hrs, 11 min

Modular Complete 1 core * 1 hr, 35 min * 12 days, 4 hrs

2 hrs, 33 min
Modular Banded 1 core * 1 hr, 35 min * 7 hrs, 9 min
Modular Complete campus grid 5 min 45 min
Modular Banded campus grid 5 min 11 min

Time to Assemble S. Bicolor
Assembly Alignment System Candidate

Framework Algorithm Size Selection Alignment Consensus
Celera Celera 4 cores crashed after 9 days N/A

Modular Complete 1 core * 14 hr, 39 min * 50 days, 15 hrs

17 hrs
Modular Banded 1 core * 14 hr, 39 min * 46 hrs, 17 min
Modular Complete campus grid 34 min 2 hrs, 40 min
Modular Banded campus grid 34 min 43 min

Table 1: Summary of Results
* indicates time estimated from campus grid run

semblyis the computational process of arranging reads in the cor-
rect order to produce the largest possible contiguous strings known
ascontigs. There are many assemblers [10, 14, 25, 16] that solve
the problem in a variety of ways. Here, we consider three steps
shown in Figure 1: candidate selection, alignment, and consensus.

In thealignmentstep, we must find all overlaps between the suf-
fix of one read and the prefix of another. To ensure that enough
reads will overlap, a genome sequencing project oversamples from
the DNA in the cell by a factor of 5-10. In principle, every sin-
gle read should be compared to every other read. However, this
is anO(n2) problem that is computationally infeasible for larger
problem sizes.

To avoid this problem,candidate selectionis performed first to
find candidate pairs or reads that are likely to overlap. Thisis usu-
ally done using a method known ask-mer counting, in which each
subsequence of lengthk in the input is added to a hash table and
any sequence pairs that share at least one exact match of length
k are considered to be candidates. This is a linear time algorithm
that reduces the work necessary in the alignment step considerably.
Finally, the assembler lays out reads in the proper order from align-
ment, creates one or more combined sequences, and then forms
them together into larger structures calledscaffolds. Since this pa-
per does not address these steps in detail, we simply refer tothem
jointly as theconsensusstep.

Because a typical genome sequencing project creates millions
of reads, genome assembly is one of the most computationallyin-
tensive problems in bioinformatics, and would benefit from paral-
lelization. The alignment step is the most naturally parallel, re-

quiring millions of pairs of sequences to be compared using aself-
contained alignment algorithm. No task requires inter-computation
communication or has dependencies on prior tasks. Most previous
approaches to parallelizing assembly have focused on program-
ming models and hardware architectures for tightly-coupled par-
allelism, requiring dedicated high performance clusters or mas-
sively parallel supercomputers. Additionally, previous approaches
have only focused on parallelizing the alignment step, still running
the candidate selection step using slow, memory-intensivesequen-
tial programs. This paper presents solutions that solve thefirst
two components of assembly in parallel using a master-worker ap-
proach with sequential programs.

3. A SCALABLE MODULAR ASSEMBLER
We use the Celera [14] open source assembler as a starting point.

Celera is widely used for processing whole genome shotgun data,
and was the tool employed in the originalAnopheles gambiaeas-
sembly [23]. Celera is relatively modular; the top-level program is
a script that invokes each of the stages discussed above, using local
files to communicate between steps. The candidate selectionand
alignment steps are woven into a single module. Each stage ismul-
tithreaded and can achieve parallel speedup on a single machine.

Table 1 shows some typical results from the Celera assembler
on a 4-core Opteron 2356 CPU with 32GB RAM. We repeated the
previously-assembledAnopheles gambiaeand attempted an assem-
bly of Sorghum bicolor, which is an order of magnitude larger. The
A. gambiaeassembly completed in 7 hours and 31 minutes, but the
S. bicolorassembly ran for 9 days before crashing. If we are to

Number Average Candidate Uncomp. Task Data Comp. Task Data
Dataset Reads Read Size Pairs Size Size Size Comp. Size

Small A. gambiae scaffold 101617 764.22 738838 80.2MB 684.2MB 21.9MB 187.6MB
Medium A. gambiae complete 1801181 763.66 12645128 1.4GB 13.2GB 0.4GB 3.6GB

Large S. bicolor simulated 7915277 747.57 121321821 5.7GB 127GB 1.7GB 34.6GB

Table 2: Genomes Used in this Paper

make genome assembly an everyday task in biological research, it
must be sped up by several orders of magnitude.

As shown in Figure 2, we are replacing each stage in the assem-
bler with a scalable version that exploits the memory capacity and
computational power of a campus grid. The new modules are com-
patible with the old implementations, so we can improve the assem-
bly step by step. In this paper, we will demonstrate improvements
in the candidate selection and alignment stage, leaving consensus
for future work. The algorithmic details of both candidate selec-
tion and alignment are an open topic of research in bioinformatics,
so we allow the user to custom algorithms for each by providing a
simple sequential program run in parallel on many workers.

We use three different methods of alignment:Completeis the full
Smith-Waterman alignment algorithm, which is simple but expen-
sive;Bandedis a simple heuristic improvement on Smith-Waterman,
andCelerais the complex, finely tuned heuristic built into Celera.
CompleteandBandedare found in any bioinformatics textbook and
easily implemented in an afternoon. Both perform worse thanCel-
era on a single node, but our framework can scale these simple
algorithms up to massive scale.

Table 1 summarizes the performance of our modular assembler.
The first two steps of theA. gambiaeassembly were reduced from
4 hours, 20 minutes down to16 minutes. The first two steps of
the S. bicolor assembly were reduced from over 9 days down to
77 minutes. (Of course, the consensus step awaits parallelization
and is still measured in hours.) By harnessing a campus grid,we
can convert a long term batch job into a nearly-interactive activity.
The remainder of this paper explains how this is accomplished.

4. ENVIRONMENT AND DATA
Many institutions manage hundreds or thousands of computa-

tion resources that are available for users via batch systems. These
“campus grids” tend to be a mixture of desktop workstations,class-
room and laboratory machines, and cluster nodes. Some resources
may be dedicated to serving campus grid users, while many partic-
ipate only when idle from their primary purpose. At our institution
Condor [26] is used to manage most scavenged resources, while
Sun Grid Engine [6] is used for dedicated high performance clus-
ters. In both cases users submit jobs to the relevant queues and the
distributed computing system facilitates execution of those jobs on
available cores.

Middleware. The requirements of matching jobs to available re-
sources means that even in the absence of contention for resources
there may be a latency of 30 seconds or more before a submitted
job begins remote execution, which is not unusual for these types
of systems. This is especially detrimental for short-running jobs,
in which the execution time is not much more than the latency.To
combat this, we adapt a simple observation from Falkon [19] that
we can dispatch as a batch job long-running middleware to exe-
cute many short-running tasks on a node without having to paythe
overhead of submitting each task as a batch job.

To accomplish this, we use Work Queue [27], a general purpose
master-worker system in which the batch job (a “worker” process)
connects over the network to a process on a central node (the “mas-
ter”) that dispatches the smaller tasks to run. This dispatch is much

Selection
Candidate Alignment Consensus

Sequence
Complete

Worker Worker

Align Workers
Dispatched

to Campus Grid

Select

Candidate
List Overlaps

Reads

Figure 2: A Scalable Modular Assembler

faster than the dispatch latency in the campus grid queue. Addition-
ally, the workers retain state between tasks, so files neededby many
tasks only need to be transferred from the master to a given worker
once. Another advantage on some systems without preemptionis
that later tasks are less influenced by the submitter’s degraded pri-
ority (which falls as the submitter uses campus grid resources over
time), because unlike separately submitted batch jobs, they are not
being evaluated individually for execution on the batch system.

In practice, the user runs the master programs normally on his
or her workstation. The worker processes can be submitted tothe
campus grid, or run individually from the command line on nodes
where the user has login access. Combination of these methods is
possible, and will be demonstrated in Section 7.

Figure 2 shows how the pieces work together. In general, the
master streams the executable and input files to the worker, which
writes them to local disk. The worker invokes the executable, stor-
ing the output locally. When the task is finished, the output writ-
ten back over the network to the master. The master receives and
verifies the results data, then writes it to permanent storage. Mak-
ing the master responsible for results storage allows several advan-
tages over having the application or the worker store the results:
no globally available shared filesystem is required, workerpro-
cesses are completely independent of the application, and master
processes can interchange methods of verification based on avail-
able resources or application-specific workload-level considerations.

Genomic Data. The primary experiments were run on three ge-
nomic datasets shown in Table 2 The smallest dataset consisted
of the all the reads from the largest scaffold ofAnopheles gam-
biae S, the next was the entireA. gambiae Sgenome (unpublished,
manuscript in preparation), and the largest was a set of simulated
reads of theSorghum bicolorgenome [15]. The size and number

Hash table of all minimizers
1 2 30

(A) Sequential Candidate Selection

1 2 31

1 2 30 0vs

2 32

3 3vs

vs

vs

(B) Distributed Candidate Selection

Figure 3: Memory Needed for Candidate Selection

of candidate alignments for each dataset is summarized in Table 2.
The A. gambiaegenome was sequenced using traditional Sanger
sequencing, which has longer read lengths, but is more expensive
and time consuming. The simulatedS. bicolor dataset was gen-
erated by extracting reads of 500-1000 bases from the finished S.
bicolor genome with randomized starting positions.

For benchmarking the candidate selection and alignment imple-
mentations, each data set was run multiple times, varying the num-
ber of workers from 16 to 512. When possible, jobs were run on
nodes in the Notre Dame Condor pool, although for larger numbers
of workers we harnessed machines from other institutions.

5. CANDIDATE SELECTION
The candidate selection step suggests pairs of reads that may

overlap. It takes as its input a set of sequences and outputs aset
of candidate pairs for the alignment stage. It is based off ofthe idea
of k-mer counting. Ak-mer counter starts with the assumption that
if two sequences share at least one short subsequence that matches
exactly, then they are more likely to have significant overlap. Hence
the goal is to find all pairs that share at least one subsequence of
lengthk (a k-mer) that match exactly. In the experiments below,k
was chosen to be 22, based on results from [20].

Conventional Approaches. Typically k-mer counting is done
by adding eachk-mer in the input to a large hash table, then travers-
ing the table to find all pairs of reads that share at least onek-mer.
UMDOverlapper [20] introduced minimizers, which are a subset of
all possiblek-mers that reduce the number ofk-mers one needs to
keep track of without losing specificity. Many assemblers use some
variation on this method [3, 8, 14].

The problem with both thek-mer and minimizer counting meth-
ods is their memory usage. To add millions of minimizers to a
hash table along with metadata used 16GB of memory for the large
dataset. A regulark-mer counter would take even more. Mostk-
mer counters solve this problem by storing intermediate data to the
disk, which is not only slow, but also limits the amount of avail-
able parallelism. To ameliorate this issue, we consider a method in
which memory usage is distributed along with computation.

Minimizer counting is not a “naturally parallel” problem, and the
conventional approach of breaking the sequences inton/l subsets
of sizel and giving each subset to a worker does not work. Because
every sequence’s minimizers must be compared against everyother
sequence’s minimizers, every sequence must have been in a hash
table with every other sequence at the same time.

Parallel Algorithm. Consider that if the sequences in each sub-
set are added to a hash table with the sequences in every othersub-

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

 0 100 200 300 400 500 600 700 800M
em

or
y

R
eq

ui
re

d
pe

r
N

od
e

(M
B

)

Total CPU Time (CPU minutes)

1 GB threshold

2 GB threshold

Figure 4: Candidate Selection Memory Usage Per Node

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 5 10 15 20 25 30
 0

 5

 10

 15

 20

 25

 30
T

ur
na

ro
un

d
T

im
e

(s
)

S
pe

ed
up

Number of Processors

Runtime
Speedup

Figure 5: Scalability of Cand. Selection on Medium Genome

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60
 0

 10

 20

 30

 40

 50

 60

T
ur

na
ro

un
d

T
im

e
(s

)

S
pe

ed
up

Number of Processors

Runtime
Speedup

Figure 6: Scalability of Cand. Selection on Large Genome

set, then the above criterion will have been met, and every possible
combination of sequences will have been made. To parallelize this,
instead of adding all sequences to a large hash table, every possible
pair of subsets is given as a task to the worker, which computes
and returns the candidates. Figure 3(B) illustrates how thesubsets
are grouped and distributed to the workers. At first glance itmay
seem counterproductive to increase the amount of computation in
this manner. A genome hasnm k-mers if there aren sequences
with an average length ofm bases, so it takesO(nm) time to add
them to the hash table. Once the parallel method divides theminto
n/l subsets, there will be(n/l)(n/l+1)/2 = O(n2/l2) tasks that
need to be completed, each of which will takeO(lm) time to com-
plete. This means that the overall amount of computation that must
now be done isO(n2m/l).

Figure 4 describes the tradeoff of increased total computation for
reduced memory usage per node. Despite the additional computa-
tional complexity, the advantages to this method are twofold. First,
each subset of sizel can be computed entirely in memory. Sec-
ond, because the subsets do not rely on other subsets, they can be
computed in parallel on workers in the cluster.

Implementation. The distributed candidate selection begins by
dividing the input inton/l subsets of lengthl. Tasks are generated
by making all possible pairs of subsets, including one whereit is
compared with itself, resulting in(n/l)(n/l + 1)/2 total tasks.

Once tasks are generated, each one is sent to the worker along
with an executable that performs the sequential candidate selection
step on that pair. When a worker completes a task it sends the list
of candidates back to the master, which outputs them to a file and
assigns the worker a new task.

A potential problem is that even though the smaller task sizes
cause the candidate selection to require much less memory per task,
the workers on which the it runs will often have less memory than
the powerful machines running the master. The candidate selec-
tion executable will check the amount of memory available onthe
worker and further subdivide its task into subsets small enough to
be executed in core and operate on them sequentially.

Lastly, candidate selection has a recovery mechanism in case the
master is terminated. Each time results for a task are received and
written to permanent storage, a second file is updated that contains
a list of each pair of subsets that was completed. If the master is
interrupted, it resumes by only submitting tasks that are not listed
in the recovery file.

Results. Distributing candidate selection only helps when the
dataset does not fit in the memory of a single node. So, we only
evaluate the medium and large datasets. To ensure that all tasks
would be able to run on the machines available in our campus grid,
we chose a subset size of 2GB for the large dataset and 1GB for the
medium dataset. We determined empirically that the candidate se-
lection requires space in memory roughly equal to 2.3KB/sequence.
Thus, to keep the large dataset’s tasks under our memory threshold,
we need 22 subsets, each of size 360000. For the medium dataset
the subset size was set at 250000, making 8 subsets. Speedup was
calculated by assuming that the memory must be kept below the
threshold and finding how long it takes to run the subsets sequen-
tially in a low-memory environment.

The results for the medium dataset are summarized in Figure 5.
The medium dataset scales up to 30 nodes, maintaining about 50%
parallel efficiency. When the subset size is reduced even further
more nodes can be used, however it does not significantly reduce
the overall runtime, only the memory used per worker. Similar
results can be observed for the large dataset in Figure 6, which
scales almost linearly up to 40 nodes.

One of the biggest challenges in the candidate selection is the

data transfer time. Each subset of sequences must be compared
with every other subset, so the sequences must be transferred to a
worker once for every subset. In the context of Figure 3(B), this
means that a subset needs to be transferred once for each subset in
its row and once again for each row in which it appears. In other
words, givenn/l subsets, each subset of sizel must be transferred
n/l times, which means a total ofO(n2/l) data must be trans-
ferred from the worker overall. In the future, performance might
be improved by implementing a caching scheme in which the mas-
ter prefers to send tasks to workers that already have one or both of
the subsets.

6. ALIGNMENT
Computing multiple alignments from a single set of reads is a

naturally parallel problem, composed of hundreds of millions of
self-contained computationally-intensive tasks, that can be solved
using the many-tasks paradigm. The input for our aligner is ali-
brary of sequences and a list of candidate sequence pairs generated
by the candidate selection step discussed in Section 5. The output
is a list of the sequence pairs that overlap and data about where the
alignments occur in the sequences.

Alignment Algorithms. An important choice in any assembler
is the algorithm used for alignment of the reads. For the exper-
iments here, we use a simple Smith-Waterman (SW) alignment
commonly taught in bioinformatics textbooks [7]. This algorithm
computes alignments in time proportional to the lengths of the se-
quences by computing progressive overlap scores in a dynamic pro-
gramming matrix. The reasons we chose SW are twofold. First,
it can be implemented very easily, highlighting the abilityof our
framework to be reused by domain experts not familiar with dis-
tributed systems programming. Second, its increased sensitivity
may be required in certain cases, such as in SNP discovery pro-
grams like MOSAIK [9] and in short-read sequence assemblers.

Conventional Approach. Given a naturally parallel problem,
the intuitive approach is to split the problem up into as manytasks
as there are resources, and submit those tasks as batch jobs to the
campus grid [11, 14]. The simplest way to do this is to prestage
the work locally and require the batch system to transfer thetask
input data with the batch job. An issue with this solution, how-
ever, is its voracious consumption of local state. As most batch
systems require all files to be in place on submission and remain in
place (because of the likelihood of latency, out-of-order execution,
or eviction) the framework would have to prestage locally a file cor-
responding to every task. For workloads in which sequences appear
in many different candidates this means that the master musthave
enough disk space for many times the total data set size. As anex-
ample, Table 2 shows the sequence library and required task data
sizes for our three workloads. The task data corresponds to the
amount of data that must be sent over the network.

A related alternative to the conventional approach is similar, but
the data are prestaged onto the resources where the computation
will take place. The tasks would then be run on resources with
the appropriate task input. A complication with this methodis that
the input data are quite large and the target campus grid resources
are neither persistent nor reliable. The former limits our ability to
prestage all the tasks’ data to every compute node. The latter limits
our ability to carefully craft exactly which tasks will run on which
resources and prestage the appropriate task input files accordingly.

Note that variants of these two approaches can ameliorate some
of their major drawbacks, but at the cost of requiring additional
high-capacity, reliable resources. Moreover, in any of these cases,
each task runs as a separate batch job incurring the full overhead as-
sociated with the batch system. This becomes worse as workloads

get bigger due to degraded batch system priority for later tasks.
Design and Implementation. The alignment master’s system

architecture is designed to avoid the disk space, network latency,
and bandwidth bottlenecks encountered in the conventionalapproach.
To prevent excessive consumption of disk space and slow filesys-
tem access to many small files, the master process reads in theinput
library (genetic sequences in this case) and stores the sequences in
a hash table for fast lookup based on the sequence identifier.To
prevent task submission latency from limiting effective parallelism,
the input data (the sequence ID, the sequence metadata, and the se-
quence data for each candidate pair) for many separate instances of
the serial program are grouped together into task buffers. To de-
crease total data sent over the network, the candidate list is sorted;
what this means for the alignment application is that pairs sharing
a first sequence can easily be grouped together with the shared se-
quence copied only once in a task buffer rather than once for every
pair that includes it. Once the tasks have been buffered together, the
sequential program and the task buffer are sent over the network to
the worker.

Because the master may run for many hours or days, it includesa
recovery mechanism for starting back up a workload during which
the master has crashed. The recovery mechanism in the mastersur-
veys completed pairs from the results and mimics starting a new
workload for those not yet completed. Once the recovery mech-
anism has discerned all the completed pairs, the remainder of the
workload continues unhindered.

While the master’s design considerations save on disk spaceas
shown in Table 2 and conserve network bandwidth, this comes at
the cost of requiring all the sequences in memory on the master
throughout the workload, rather than just during task construction.

Results. We measure our ability to scale using both strong scal-
ing and weak scaling. A workload that indicates good strong-
scaling efficiency will, for a constant workload problem size, see
its speedup scale by the same factor as the increase in numberof
processors. A workload that indicates good weak-scaling efficiency
will keep a constant turnaround time if both the problem sizeand
the number of nodes are increased by the same scaling factor.

Calculating conventional parallel speedup for a heterogeneous
and dynamic set of resources is not meaningful. Further, because
the benchmarks were so large and contained so many alignments it
was not feasible to simply run all the alignments sequentially. We
use the workload’s average execution time across all tasks,multi-
plied by the number of tasks completed as the sequential runtime
for the parallel speedup computation. Note that later, in Figures
12, 13 and 14 where we graph the speedup as a function of time
for both problematic and corrected instances, the average run time
from the corrected version is used.

In the benchmarks below, each task contained 5000 alignments.
Our benchmarks showed that when running on a sufficiently fast
network, such as a local cluster, task size did not have a significant
effect on performance, which can be seen in Figure 11.

Task size becomes more important when many nodes are further
away in the network, as the transfer time for each task does not
scale linearly with the size of the task. Larger task sizes pay the
same overhead while sending more data, and utilize the workers
better, resulting in faster run times and better speedup. However,
there are two major downsides to increased task size. First,if the
system is especially volatile, more work is lost when a worker is
evicted. Second, the master queues a large amount of tasks toen-
sure that the master never runs out of tasks to assign. A larger task
size will take up more memory per task, increasing the memory
consumption. The effects of excessive memory consumption are
discussed in more detail in Section 7.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 100 200 300 400 500
 0

 100

 200

 300

 400

 500

T
ur

na
ro

un
d

T
im

e
(s

)

S
pe

ed
up

Number of Processors

Runtime
Speedup

Figure 7: Scalability of Alignment on Small Genome

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500
 0

 100

 200

 300

 400

 500
T

ur
na

ro
un

d
T

im
e

(s
)

S
pe

ed
up

Number of Processors

Runtime
Speedup

Figure 8: Scalability of Alignment on Medium Genome

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

 0 100 200 300 400 500
 0

 100

 200

 300

 400

 500

T
ur

na
ro

un
d

T
im

e
(s

)

S
pe

ed
up

Number of Processors

Runtime
Speedup

Figure 9: Scalability of Alignment on Large Genome

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 20 40 60 80 100 120
 0

 20

 40

 60

 80

 100

 120
T

ur
na

ro
un

d
T

im
e

(s
)

S
pe

ed
up

Number of Processors

Runtime
Speedup

Figure 10: Effect of Faster Alignment

 1024

 2048

 4096

 8192

 16384

 100 1000 10000

T
ur

na
ro

un
d

T
im

e
(s

ec
on

ds
)

Candidates per Task

64 workers
128 workers
256 workers

Figure 11: Alignment Candidates Per Task

We observed scaling speedup for almost all of the benchmarks.
However, each benchmark has features that shed light on the strengths
and weaknesses of the system. For our smallest dataset we achieved
near linear speedup until about 128 workers (Figure 7). Because
this is the smallest dataset, with too many nodes all the workis
completed before some nodes receive a task.

The medium dataset (Figure 8) yielded better results; the dropoff
in speedup did not occur until 512 nodes were used. The large
dataset displayed similar scalability to the previous dataset. It was
able to run on 512 cores in only 9595 seconds, for a speedup of
455.74. This dataset did highlight some of the challenges ofthe
assembly problem and of distributed computing in general. These
are discussed in detail in Section 7.

Banded Alignment. One of the primary advantages of our frame-
work is its ability to substitute any alignment algorithm for the one
used in our benchmarks. So, in addition to these benchmarks,we
have also considered how our framework adapts to alignment pro-
grams that are considerably faster than the simple solutionwe use
above. We tested this by implementing a simple banded alignment,
in which only a narrow band of the SW dynamic programming ma-
trix is computed [7]. In this case, the amount of data remainsthe
same while the execution time of each task decreases significantly.
As a result of the increased relative overhead, we would expect de-
creased scalability. The results are summarized in Figure 10. We
achieve increasing speedup up to 64 workers, at which point we
begin to experience diminishing returns.

Pipelining. In the previous sections we discuss the candidate
selection and alignment steps separately. However, in practice the
two steps can be pipelined, because the aligner can begin construct-
ing and submitting tasks as soon as the candidate selection begins

generating candidates. Once the candidate selection completes, its
workers can be redirected to work for the aligner’s master pro-
cess. For example, in one instance the candidate selection on the
medium dataset ran in 423 seconds on 60 workers. The aligner ran
in 502 seconds for a combined runtime of 925 seconds. However,
the pipeline running 30 workers on candidate selection and 40 on
alignment finished in only 654 seconds.

7. SCALING UP TO THE GRID
For very large problems, the computational resources required

exceed the capacity of the clusters comprising Notre Dame’scam-
pus grid. At this point, we explore the ramifications of running on
multi-institutional resources such as remote Condor poolsor the
Open Science Grid [1]. Our primary experiments in the section
run on the large dataset using Condor’s flocking mechanism, as an
example of using remote grids. We start off with a discussionof
managing workers efficiently at the grid scale, and how several ob-
stacles can result in idle workers waiting to be assigned tasks.

Waiting for Out-of-Core Task Data. Complete alignment on
the large dataset scales at nearly linear speedup up to 256 workers,
but saw a marked decrease in performance when using 512 work-
ers. The biggest problem with running such a large dataset was
memory. Although we were running the master on a machine with
8GB of memory, the large dataset was 5.7GB. This is loaded into
memory to achieve the best retrieval times when building tasks.
Additionally, the master buffers tasks in memory.

With 512 workers, the additional buffered tasks caused the mas-
ter to exceed physical memory. When the master began to need
paging for its task management, performance began to degrade.
The effect of this can be seen in Figure 12(A). Because it takes
significantly longer to create the number of tasks required,workers
must wait longer to receive their task. When running with many
workers, the amount of time necessary to give tasks to all thework-
ers is longer than the amount of time it takes a worker to complete
this task. This creates a convoy effect, where workers are spending
more time waiting to be processed by the master than they spend
actually working. This explains the large variation in the number
of tasks working.

To combat this issue, we took a rather straightforward approach.
Because DNA consists of only 4 letters, it is possible to represent
a single base of DNA as a 2-bit number rather than a character
to achieve nearly 75% compression. Once the amount of memory
needed can be kept within the physical memory, the master is easily
able to keep up with the workers requesting tasks. In this case, the
number of workers running at any time remains relatively constant,
subject only to minor fluctuations, mostly caused by changesin the
number of workers active. Figure 12(B) shows how the same job
ran on 512 workers with compression enabled.

Waiting for Network Transfers. When a master has too many
workers connected to it, it takes the master longer to assigntasks
to all the workers than it takes for an individual worker to finish
its task. The same symptoms appear as in the memory case above:
workers spend more time waiting to be given new tasks than they
spend working, and efficiency suffers. Further, some workers can
experience starvation, triggering idleness timeouts and exiting as
the number of connections to the master gets too large. In this case,
the main problem is waiting for the master to transfer task data to
every worker. There are just over 650 machines in Notre Dame’s
Condor pool; to exceed this number we are forced to use machines
from other institutions’ Condor pools, particularly Purdue Univer-
sity and the University of Wisconsin.

While we could transmit data to machines at Notre Dame at an
average speed of 42.29 MB/s (meaning data for a task could be

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000
 0

 20

 40

 60

 80

 100

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
ed

up

P
er

ce
nt

 D
on

e

Time (seconds)

Tasks Running
Speedup

Pct Complete

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000
 0

 20

 40

 60

 80

 100

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
eu

p

P
er

ce
nt

 D
on

e

Time (seconds)

Tasks Running
Speedup

Pct Complete

(A) No Compression (B) Compression

Figure 12: The Effect of Data Compression.
These graphs show the effect of data compression on the master’s ability to dispatch tasks using the large dataset. Each shows a timeline of
a single run, with the number of tasks running, the cumulative speedup, and the percent complete over time. Figure 12(A) does not use data
compression, and oscillates between 300 and 400 tasks running at once, reaching a speedup of slightly better than 300x. Figure 12(B) uses
compression, and stabilizes at about 500 workers with a speedup of about 500x.

 0

 200

 400

 600

 800

 1000

 0 1000 2000 3000 4000 5000 6000 7000 8000
 0

 20

 40

 60

 80

 100

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
ed

up

P
er

ce
nt

 C
om

pl
et

e

Time (seconds)

Tasks Running
Speedup

Pct Complete

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 20

 40

 60

 80

 100

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
ed

up

P
er

ce
nt

 C
om

pl
et

e

Time (seconds)

Tasks Running
Speedup

Pct Complete

(A) Single Master (B) Dual Masters

Figure 13: The Effect of Splitting Masters.
When using a sufficiently large number of workers on the largedataset, the master does not have enough network bandwidth to keep all of
them busy. These figures show a timeline of a single run with approximately 950 workers using one master (A) and two masters(B). With
a single master, workers complete faster than the master candispatch new work, so not all nodes can be kept busy processing at once, and
the speedup reaches less than 400x. With dual masters, peak speedup reaches 790x before settling out about 700x. Note that the unequal
distribution of completing work in (B) causes the dropoff beyond 3000s.

transfered in only a few hundredths of a second), data to Purdue
took an average of .36s, and data to Wisconsin was even slower, at
.53s per transfer. In a job we ran with 900 submitted workers for
a single master with 5000 candidates per task, the average trans-
fer time was 0.27s. 835 workers completed tasks, with the others
failing to find an available campus grid resource or exiting after
starvation. This means the average time to transfer files to all 835
workers was 225s, which is greater than the typical task completion
time.

In order to solve this efficiency problem, we split the list ofcan-
didate pairs in half and run the master on two separate machines.
When using two masters on the above workload, sending data to
450 workers each averaging 0.27s per task takes only 121s, soboth
masters were able to work efficiently.

Figure 13(A) shows a timeline of workers waiting rather thanac-
tively computing associated with this problem for a similarjob with

950 submitted workers, while Figure 13(B) shows the smoother
two-master version of the same workload. The maximum number
of workers running tasks at a time was 921 with two masters.

From Desktop to Grid. Now we give an example of a large pro-
duction workload scaled up to run on a multi-institutional grid. We
construct a scenario that serves to demonstrate all of the features
of our framework, and illustrates a typical use performing acom-
plete alignment of the large dataset, the simulatedS. bicolor. The
scenario presents several of the key components of our framework:
adaptability to many types of resources (local execution, execution
as a cluster job, execution on a campus batch system, execution as
part of a multi-institutional resource pool); fault-tolerance to fail-
ures on the worker nodes; and fault tolerance to failures on the
master node.

As in many fields, research in bioinformatics is highly exploratory.
An active researcher may test many slight variations upon analgo-

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000
 0

 20

 40

 60

 80

 100
T

as
ks

 R
un

ni
ng

 a
nd

 S
pe

ed
up

P
er

ce
nt

 C
om

pl
et

e

Time (seconds)

O
ne

 W
or

ks
ta

tio
n

A
dd

 W
or

ks
ta

tio
n

A
dd

 C
lu

st
er

Add
Campus

Grid

Add
Remote
Grids

F
or

ce
d

M
as

te
r

C
ra

sh

Tasks Running Speedup Percent Complete

Figure 14: Scaling Up to the Grid
This figure shows the timeline of a large assembly run on a system grown progressively from a single workstation up to a large scale grid
including resources at the University of Notre Dame, PurdueUniversity, and the University of Wisconsin. The master is forcibly killed
halfway through to demonstrate failure recovery.

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000 6000
 0

 20

 40

 60

 80

 100

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
ed

up

P
er

ce
nt

 C
om

pl
et

e

Time (seconds)

Tasks Running
Speedup

Pct Complete

Figure 15: Sustaining Grid Scale
This figure shows the timeline of a 121M candidate run on the large
sequence set using approximately 1300 workers at two institutions
separated by a WAN. Two masters support almost 1300 at peak and
use 1000 or more workers consistently for most of the 90-minute
runtime, totaling a speedup of 927x.

rithm, generating a number of tests of various sizes before proceed-
ing to analyze an entire dataset. Because our framework runswith
an arbitrary number of workers, a user may slowly generate small
results, then progressively add resources as confidence is gained.

Figure 14 gives a real example of this progressive growth. Using
our framework, one author started a worker process on his worksta-
tion. After a few minutes, he surveyed the progress and determined
that serial execution would not be sufficient, so he asked a coworker
to start a worker on her own machine, and also prepared and sub-
mitted some batch jobs to his research group’s 32-node cluster. As
these jobs started running, speedup increased accordingly. Hop-
ing to finish the alignments that afternoon, he submitted jobs to
the campus computing grid at Notre Dame, followed by submis-
sions to Condor-based grids at Purdue University and the Univer-
sity of Wisconsin. About halfway through the complete assembly,
however, he accidentally powered off his workstation, causing the
computation to halt. Fortunately, when the master was restarted, it
loaded all of the complete results, accepted connections from the

still-running workers, and continued where it left off. Theentire
assembly completed in just over two hours, with a speedup of 269x
and a maximum of 680 CPUs in use at once. Note that the low
speedup should not be alarming, because of the gradual nature in
which the workers were added, and because of the crash in the mid-
dle of the job.

Table 3 summarizes the work distribution across sites. The tasks
running at home were slower and exhibited more runtime outliers,
because the local campus grid includes a large number of scav-
enged resources compared with more homogeneous dedicated grid
resources at the other sites.

Tasks Average Runtime (s)
Total 16936 184.1± 53.8

Notre Dame 7998 215.3± 46.4
Purdue 7760 154.0± 40.8

Wisconsin 1232 170.1± 56.2

Table 3: Summary of Workload

Even making many connections over the WAN, the master was
still able to maintain a steady task throughput with machines at
three different institutions. The scalability is strong – taking into
account that the final speedup is not reflective of the final state of
the workload – and with an improved wide area network connec-
tion even more resources at remote institutions could be harnessed.
Additionally the multiple-masters technique used before to demon-
strate a solution to insufficient network bandwidth will still be ad-
vantageous.

Many-Node Run. Finally, we take advantage of using two mas-
ters on a single workload to show scalability beyond that shown in
the scenarios above. Using multi-institutional resources, we com-
pleted Smith-Waterman alignments of the largest dataset – 121 mil-
lion candidate pairs from a set of 8 millions sequences – in under
one and a half hours. For comparison, the same workload serially
would take over 57 days on an average resource from our pool.
Figure 15 shows a peak of almost 1300 resources harnessed, sus-
tained levels above 1000 for an hour during the workload, anda
final speedup of 927x at 71.3% parallel efficiency.

8. RELATED WORK
Because determining overlaps between candidates is the most

time intensive step of an assembly, it is the step most often par-
allelized. For example, to assemble the mouse genome the PCAP
program was developed to use 24 compute nodes and a shared file
system [11]. PCAP generated a total of 273 million overlaps that
were processed in 80 distinct batch jobs, each of which took 7days
to compute on a Compaq ES40. Kalyanaraman et al. later reported
an approach that could process 47 million maize candidate align-
ments in under 2 hours using 1024 processors of an IBM Blue-
Gene/L [12]. More recent work has explored using FPGAs [24]
and the Cell processor [21] to speed up alignment, which would
provide up to a 100X speedup.

These parallel solutions to genome assembly have relied on on
batch processing, complex MPI programming or specialized hard-
ware. In contrast, we are interested in a growing trend to develop
modular genome assembly components such as the UMDOverlap-
per [20], which can reliably work with phrap, the Celera assembler,
and Atlas. Another example is the AMOS consortium [17], which
is actively developing an open source, modular assembly pipeline.
Here, we extend this modular design concept to facilitate custom
parallel genome assembly. Rather than rely on specialized hard-
ware and/or programming, we use custom candidate selectionand
alignment modules that are highly adaptable to many types ofdis-
tributed resources.

Our assembly components use the well-known master-worker
(MW) paradigm for distributed computing. The independent-failure
nature of MW lends itself to fault tolerance [2] and other perfor-
mance enhancements [4]. The Condor-MW framework has been
used to scale up CPU-intensive applications such as optimization
problems to nearly 2000 nodes [13]. Our use of conventional Unix
programs as modular units is inspired by a similar many-tasks tech-
nique demonstrated by Falkon [19]. Similar systems such as Cloud-
Burst [22] have applied the Map-Reduce [5] data-parallel compu-
tation model to a similar bioinformatics problem.

9. ACKNOWLEDGEMENTS
This work was supported in part by a University of Notre Dame

strategic initiative for Global Health, by the National Institutes of
Health (NIAID contract HHSN266200400039C) and the National
Science Foundation (grant CNS06-43229).

10. REFERENCES
[1] The Open Science Grid. http://www.opensciencegrid.org.
[2] D. Bakken and R. Schlichting. Tolerating failures in the

bag-of-tasks programming paradigm. InIEEE International
Symposium on Fault Tolerant Computing, June 1991.

[3] S. Batzoglou et al. ARACHNE: A whole-genome shotgun
assembler.Genome Res., 12(1):177–189, January 2002.

[4] D. da Silva, W. Cirne, and F. Brasilero. Trading cycles for
information: Using replication to schedule bag-of-tasks
applications on computational grids. InEuro-Par, 2003.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large cluster. InOperating Systems Design and
Implementation, 2004.

[6] W. Gentzsch. Sun grid engine: Towards creating a compute
power grid. InCCGRID ’01: Proceedings of the 1st
International Symposium on Cluster Computing and the
Grid, page 35, Washington, DC, USA, 2001. IEEE
Computer Society.

[7] D. Gusfield.Algorithms on strings, trees, and sequences :
computer science and computational biology. Cambridge

Univ. Press, January 2007.
[8] P. Havlak et al. The Atlas genome assembly system.Genome

Res, 14(4):721–732, April 2004.
[9] L. W. W. Hillier et al. Whole-genome sequencing and variant

discovery inC. elegans. Nat Methods, January 2008.
[10] X. Huang and A. Madan. CAP3: A DNA sequence assembly

program.Genome Res., 9(9):868–877, September 1999.
[11] X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. Hillier.

PCAP: A whole-genome assembly program.Genome Res.,
13(9):2164–2170, September 2003.

[12] A. Kalyanaraman, S. Emrich, P. Schnable, and S. Aluru.
Assembling genomes on large-scale parallel computers.
Journal of Parallel and Distributed Computing, 67(12):1240
– 1255, 2007. Best Paper Awards: 20th International Parallel
and Distributed Processing Symposium (IPDPS 2006).

[13] J. Linderoth et al. An enabling framework for master-worker
applications on the computational grid. InIEEE High
Performance Distributed Computing, pages 43–50,
Pittsburgh, Pennsylvania, August 2000.

[14] E. W. Myers et al. A whole-genome assembly of Drosophila.
Science, 287(5461):2196–2204, March 2000.

[15] A. H. Paterson et al. The Sorghum bicolor genome and the
diversification of grasses.Nature, 457(7229):551–556,
January 2009.

[16] M. Pop et al. Genome sequence assembly: Algorithms and
issues.Computer, 35(7):47–54, 2002.

[17] M. Pop and S. L. Salzberg. Bioinformatics challenges ofnew
sequencing technology.Trends in Genetics, 24(3):142–149,
March 2008.

[18] I. Raicu, I. Foster, and Y. Zhao. Many-Task Computing for
Grids and Supercomputers. InIEEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS08), 2008.

[19] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde.
Falkon: a Fast and Light-weight tasK executiON framework.
In IEEE/ACM Supercomputing, 2007.

[20] M. Roberts et al. A preprocessor for shotgun assembly of
large genomes.Journal of Computational Biology,
11(4):734–752, 2004.

[21] A. Sarje and S. Aluru. Parallel biological sequence
alignments on the cell broadband engine. pages 1–11, April
2008.

[22] M. Schatz. CloudBurst: Highly sensitive read mapping with
MapReduce.Bioinformatics (Online Advance Access), April
2009.

[23] M. V. Sharakhova et al. Update of the Anopheles gambiae
PEST genome assembly.Genome Biology, 8:R5+, January
2007.

[24] O. Storaasli and D. Strenski. Exploring accelerating science
applications with FPGAs. July 2007.

[25] K. A. Swan et al. High-throughput gene mapping in
caenorhabditis elegans.Genome Res, 12(7):1100–1105, July
2002.

[26] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. In F. Berman, G. Fox, and T. Hey, editors,Grid
Computing: Making the Global Infrastructure a Reality.
John Wiley, 2003.

[27] L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain.
Harnessing Parallelism in Multicore Clusters with the
All-Pairs and Wavefront Abstractions. InIEEE High
Performance Distributed Computing, pages 1–10, 2009.

