Highly Scalable Genome Assembly on Campus Grids

Christopher Moretti, Michael Olson, Scott Emrich, and Douglas Thain
Department of Computer Science and Engineering
University of Notre Dame

ABSTRACT

Bioinformatics researchers need efficient means to protzege
collections of sequence data. One application of intergshome
assembly, has great potential for parallelization, howewest pre-
vious attempts at parallelization require uncommon higl-bard-
ware. This paper introduces a scalable modular genome assem
bler that can achieve significant speedup using large numbér
conventional desktop machines, such as those found in ausamp
computing grid. The system is based on the Celera open-ourc
assembly toolkit, and replaces two independent sequentdules
with scalable replacements: a scalable candidate seletpioits

the distributed memory capacity of a campus grid, while ted-s
able aligner exploits the distributed computing capachyr large
problems, these modules provide robust task and data merege
while also achieving speedup with high efficiency on sesa@kes

of resources. We show results for several datasets rangam f
738 thousand to over 121 million alignments using campu rgri
sources ranging from a small cluster to more than a thousatte
spanning three institutions. Our largest run so far acheaed27x
speedup with 71.3 percent efficiency.

1. INTRODUCTION

Scientists often are able to create applications that sthlee
domain problems on one core, or even a small cluster. Unfor-
tunately, as they scale up their problem size these reseiree
come insufficient due to the scale of the problem’s CPU, mgmor
disk, or network requirements. Traditionally scientistsvé had
to rework their solution into a custom high performance catap
ing implementation that can overcome these requirements) us
larger and more complicated hardware. As an alternativéi) t
we consider the “many task computing” paradigm [18] as a way
to solve problems at this scale on commodity hardware by-coor
dinating thousands of sequential processes together inaboanic
workload. We focus on two types of problems typically sol\msd
high performance solutions at this scale: naturally paraitob-
lems with memory, network, and disk limitations; and tramially
serial problems that have oppressive memory requirements.

Bioinformatics abounds with problems that fit these chanast

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

MTAGS '09November 16th, 2009, Portland, Oregon, USA

Copyright 2009 ACM 978-1-60558-714-1/09/11 ...$10.00.

tics. Given the recent explosive growth of the amount of geico
data available, scientists are finding the need to perfomoigéc
analysis at unprecedented scales. Many such analyses|tae p
on sequences millions of bases long, but DNA sequencerséyre o
capable of producing many short sequences.

Genome assembly is the process by which the thousands or mil-
lions of reads from a sequencing run are combined to produge|
contiguous sequences that represent actual chromosonhesciell.
This is generally done by trying to detect all the places whmirs
of reads overlap each other, then running algorithms thattiist
overlap information to build larger sequences. Becauseuhaoer
of sequences in a sequencing run is very large, this is catipot
ally intensive. Modern sequencers that produce a greatabat
of shorter sequences [17] further increase the amount afape
that need to be computed.

We demonstrate challenges and opportunities for many task ¢
puting on a campus grid with a distributed implementatiorhef
memory-intensive candidate selection step and the cortiquoialy-
intensive alignment step of genome assembly, which areiskscl
in detail in Section 2. Our implementations of these stegsitute
the memory and processing loads across a campus grid tiesdiev
the specific limitations of the serial solutions.

The resulting products were run on several datasets whoss si
ranged from 100 thousand to 8 million sequences. The memory
required for candidate selection was reduced from 18GB amoges
core to less than 2GB per core across the cluster througheut t
workload, ensuring consistent access to data withoutycpsatiing
to disk. For the naturally parallel alignment step we werke ab
spread the computation of 121 million alignments acros<erttwan
1000 cores while maintaining 71.3% parallel efficiency.

In this paper, we provide an overview of genome assembly and
its parallelizable aspects in Section 2. Our pipeline isgrated
into a full genome assembly in Section 3. The distributedhfra
work, data and benchmarking environment are detailed itiGed.
Sections 5 and 6 describe the design, implementation aridrper
mance of the first two stages of the assembly pipeline. Weusiésc
our ability to scale to many cores at multiple institutionsSec-
tion 7.

2. OVERVIEW OF GENOME ASSEMBLY

Genome sequencirig the laboratory process of determining an
organism’s DNA string (A,G,T,C) from a biological sampleow
ever, no current sequencing process is capable of prodacirgy-
ganism'’s entire string of millions or billions of bases. teed, the
physical process produces a large number of random sufstoin
the sequence known asads Depending on the exact process,
these reads can vary in length from 25 to 1000 bases each [17].
Individually, these reads have limited scientific val@&nome as-

————— / | 7 / 1 A?
/ \ / I / / \\ A+
/l \ | | /l // ! N\
(a) (b) (©) (d)

Figure 1. Logical Overview of the Assembly Process.
(a) Assembly begins with a set of unrelated reads. (b) Sharttamatches are found that select candidates that mayagvexkc) Actual
overlaps are computed. (d) A layout is generated based oawbraps and a consensus sequence is generated.

Timeto Assemble A. Gambiae

Assembly | Alignment System Candidate
Framework | Algorithm Size Selection Alignment Consensus
Celera Celera 4 cores 4 hrs, 20 min 3 hrs, 11 min
Modular | Complete 1core| *1hr,35 min | * 12 days, 4 hrs
Modular Banded Icore[*1hr,35min| *7hrs,9min 2 hrs. 33 min
Modular | Complete| campus grid 5min 45 min '
Modular Banded| campus grid 5min 11 min
Timeto Assemble S. Bicolor
Assembly | Alignment System Candidate
Framework | Algorithm Size Selection Alignment | Consensus
Celera Celera 4 cores crashed after 9 days N/A
Modular [Complete 1core| *14 hr,39 min| * 50 days, 15 hrs
Modular Banded 1core| *14 hr,39 min| *46 hrs, 17 min 17 hrs
Modular | Complete| campus grid 34 min 2 hrs, 40 min
Modular Banded| campus grid 34 min 43 min

Table 1: Summary of Results
* indicates time estimated from campus grid run

semblyis the computational process of arranging reads in the cor- quiring millions of pairs of sequences to be compared usisgla
rect order to produce the largest possible contiguousgstlmown contained alignment algorithm. No task requires inter-patation
ascontigs There are many assemblers [10, 14, 25, 16] that solve communication or has dependencies on prior tasks. Mosiquev
the problem in a variety of ways. Here, we consider threesstep approaches to parallelizing assembly have focused on gmogr
shown in Figure 1: candidate selection, alignment, andamsss. ming models and hardware architectures for tightly-codgar-

In thealignmentstep, we must find all overlaps between the suf- allelism, requiring dedicated high performance clustersmas-
fix of one read and the prefix of another. To ensure that enough sively parallel supercomputers. Additionally, previoygpeaches
reads will overlap, a genome sequencing project oversanigen have only focused on parallelizing the alignment steq, rstilning
the DNA in the cell by a factor of 5-10. In principle, every sin the candidate selection step using slow, memory-intersagelien-
gle read should be compared to every other read. However, thi tial programs. This paper presents solutions that solvefitbe
is anO(n?) problem that is computationally infeasible for larger two components of assembly in parallel using a master-wage
problem sizes. proach with sequential programs.

To avoid this problemc¢andidate selectiois performed first to
find candidate pairs or reads that are likely to overlap. Thissu-
ally done using a method known asmer counting, in which each
subsequence of lengthin the input is added to a hash table and
any sequence pairs that share at least one exact match ¢ leng
k are considered to be candidates. This is a linear time alhgori
that reduces the work necessary in the alignment step cerasity. sembly [23]. Celera is relatively modular; the top-levebgram is
Finally, the assembler lays out reads in the proper orden fiign- a script that invokes each of the stages discussed abone, losal
ment, creates one or more combined sequences, and then formdles to communicate between steps. The candidate seleation
them together into larger structures callehffolds Since this pa- alignment steps are woven into a single module. Each stagalis
per does not address these steps in detail, we simply refaetn tithreaded and can achieve parallel speedup on a singleimeach

3. ASCALABLE MODULAR ASSEMBLER

We use the Celera [14] open source assembler as a startimg poi
Celera is widely used for processing whole genome shotgta da
and was the tool employed in the originahopheles gambiaas-

jointly as theconsensustep.

Because a typical genome sequencing project creates msillio
of reads, genome assembly is one of the most computationally
tensive problems in bioinformatics, and would benefit froangd-
lelization. The alignment step is the most naturally pafalte-

Table 1 shows some typical results from the Celera assembler
on a 4-core Opteron 2356 CPU with 32GB RAM. We repeated the
previously-assemblefinopheles gambiaend attempted an assem-
bly of Sorghum bicolarwhich is an order of magnitude larger. The
A. gambiaeassembly completed in 7 hours and 31 minutes, but the
S. bicolorassembly ran for 9 days before crashing. If we are to

Number | Average | Candidate | Uncomp. | Task Data | Comp. Task Data
Dataset Reads | Read Size Pairs Size Size Size Comp. Size
Small A. gambiae scaffold| 101617 764.22 738838 80.2MB 684.2MB | 21.9MB 187.6MB
Medium | A. gambiae complet¢ 1801181| 763.66 12645128 1.4GB 13.2GB 0.4GB 3.6GB
Large S. bicolor simulated| 7915277 747.57 121321821 5.7GB 127GB 1.7GB 34.6GB
Table 2: Genomes Used in this Paper
make genome assembly an everyday task in biological rdsearc
b dup b Lord - itud Workers
must be sped up by several orders of magnitude. Dispatched

As shown in Figure 2, we are replacing each stage in the assem-

bler with a scalable version that exploits the memory capamid
computational power of a campus grid. The new modules are com
patible with the old implementations, so we can improve gsem-
bly step by step. In this paper, we will demonstrate improgeta
in the candidate selection and alignment stage, leavingeswus
for future work. The algorithmic details of both candidatdes-
tion and alignment are an open topic of research in bioin&tits,
so we allow the user to custom algorithms for each by progdin
simple sequential program run in parallel on many workers.
We use three different methods of alignme@tompletes the full
Smith-Waterman alignment algorithm, which is simple bupex-

sive;Bandeds a simple heuristic improvement on Smith-Waterman,

andCelerais the complex, finely tuned heuristic built into Celera.
CompleteandBandedare found in any bioinformatics textbook and
easily implemented in an afternoon. Both perform worse tBah

era on a single node, but our framework can scale these simple

algorithms up to massive scale.

Table 1 summarizes the performance of our modular assembler

The first two steps of thA. gambiaeassembly were reduced from
4 hours, 20 minutes down tt6 minutes. The first two steps of
the S. bicolor assembly were reduced from over 9 days down to

77 minutes. (Of course, the consensus step awaits parallelization

and is still measured in hours.) By harnessing a campus wyed,
can convert a long term batch job into a nearly-interactivtivy.
The remainder of this paper explains how this is accomplishe

4. ENVIRONMENT AND DATA

-7 to Campus Grit

Complete

Read Sequence

Figure2: A Scalable Modular Assembler

faster than the dispatch latency in the campus grid queuditiad-
ally, the workers retain state between tasks, so files neeglathny
tasks only need to be transferred from the master to a givekero
once. Another advantage on some systems without preemigtion
that later tasks are less influenced by the submitter's degrari-
ority (which falls as the submitter uses campus grid resssiover

Many institutions manage hundreds or thousands of computa- time), because unlike separately submitted batch jobg,atenot

tion resources that are available for users via batch syst&imese
“campus grids” tend to be a mixture of desktop workstatiaesss-
room and laboratory machines, and cluster nodes. Someroesou
may be dedicated to serving campus grid users, while maricpar
ipate only when idle from their primary purpose. At our itstion

being evaluated individually for execution on the batchteys

In practice, the user runs the master programs normally sn hi
or her workstation. The worker processes can be submittélaeto
campus grid, or run individually from the command line on esd
where the user has login access. Combination of these nmethod

Condor [26] is used to manage most scavenged resources whil possible, and will be demonstrated in Section 7.

Sun Grid Engine [6] is used for dedicated high performancs-cl
ters. In both cases users submit jobs to the relevant quedetha
distributed computing system facilitates execution okthipbs on
available cores.

Middleware. The requirements of matching jobs to available re-
sources means that even in the absence of contention farceso

Figure 2 shows how the pieces work together. In general, the
master streams the executable and input files to the workechw
writes them to local disk. The worker invokes the executaktier-
ing the output locally. When the task is finished, the outprit-w
ten back over the network to the master. The master recehes a
verifies the results data, then writes it to permanent storddpk-

there may be a latency of 30 seconds or more before a submitteding the master responsible for results storage allows ataevan-

job begins remote execution, which is not unusual for thgpes

of systems. This is especially detrimental for short-rmgnjobs,

in which the execution time is not much more than the latefioy.
combat this, we adapt a simple observation from Falkon [t&] t
we can dispatch as a batch job long-running middleware te exe
cute many short-running tasks on a node without having taipay
overhead of submitting each task as a batch job.

tages over having the application or the worker store thaltss
no globally available shared filesystem is required, wonbweo-
cesses are completely independent of the application, astem
processes can interchange methods of verification basetailn a
able resources or application-specific workload-levekiderations.
Genomic Data. The primary experiments were run on three ge-
nomic datasets shown in Table 2 The smallest dataset cedsist

To accomplish this, we use Work Queue [27], a general purpose of the all the reads from the largest scaffold Afiopheles gam-

master-worker system in which the batch job (a “worker” @®s)
connects over the network to a process on a central noder(tas-*
ter”) that dispatches the smaller tasks to run. This digpatenuch

biae S the next was the entir&. gambiae $yenome (unpublished,
manuscript in preparation), and the largest was a set oflatetl
reads of theSorghum bicolorgenome [15]. The size and number

Hash table of all minimizers

0 1 2 3
. . - o
(A) Sequential Candidate Selection S 5500 - - - - . . .
> 5000
(]
Vs 1 2 3 T 4500
[°] = [9] € 4000
1] vs 1 2 3 @ 3500
= 3000
2| vs 2 3 £ 2500
3 2000 2 GB threshold
3] vs [3 & 1500 f K
> 1000 1 GB threshold
B) Distributed Candidate Selection Q 500
IS
o 0 1 1 1 1 1 1 1 -
= 0 100 200 300 400 500 600 700 800
Figure3: Memory Needed for Candidate Selection Total CPU Time (CPU minutes)

Figure 4. Candidate Selection Memory Usage Per Node

of candidate alignments for each dataset is summarizedile Pa
The A. gambiaegenome was sequenced using traditional Sanger
sequencing, which has longer read lengths, but is more skmen
and time consuming. The simulat&l bicolor dataset was gen-
erated by extracting reads of 500-1000 bases from the fidiShe
bicolor genome with randomized starting positions.

For benchmarking the candidate selection and alignmenieimp

. . . . 1000 T T T T T — 30
mentations, each data set was run multiple times, varyiagtim- 900 | Runtime —&—-
ber of workers from 16 to 512. When possible, jobs were run on & 800 | Speedup o= 4 25
nodes in the Notre Dame Condor pool, although for larger rensb) 700 L
of workers we harnessed machines from other institutions. E 600 | » 20 S

T 500 15 8
5. CANDIDATE SELECTION g 400 t 0 &
The candidate selection step suggests pairs of reads that ma g 388

overlap. It takes as its input a set of sequences and outpes a = 100 | 15
of candidate pairs for the alignment stage. Itis based dfiefdea 0 S 0

of k-mer counting. Ak-mer counter starts with the assumption that 0 5 10 15 20 25 30
if two sequences share at least one short subsequence tichesia
exactly, then they are more likely to have significant oyerldence
the goal is to find all pairs that share at least one subsegueinc
lengthk (a k-mer) that match exactly. In the experiments belbw,
was chosen to be 22, based on results from [20].

Conventional Approaches. Typically k-mer counting is done
by adding eaclk-mer in the input to a large hash table, then travers-
ing the table to find all pairs of reads that share at leastkoner.
UMDOverlapper [20] introduced minimizers, which are a st
all possiblek-mers that reduce the number/ofmers one needs to
keep track of without losing specificity. Many assembles smme 3000

Number of Processors

Figure5: Scalability of Cand. Selection on Medium Genome

variation on this method [3, 8, 14]. ' " Runtime —a—" 60
The problem with both thé-mer and minimizer counting meth- @ 2500 f Speedup = 1 50
ods is their memory usage. To add millions of minimizers to a o 2000 | 40
hash table along with metadata used 16GB of memory for tige lar = S
dataset. A regulak-mer counter would take even more. Mdst 2 1500 30 §
mer counters solve this problem by storing intermediata ttathe 3 &
disk, which is not only slow, but also limits the amount of ikva o 1000 r 20
able parallelism. To ameliorate this issue, we consider thaakin 5 500! 10
which memory usage is distributed along with computation.
Minimizer counting is not a “naturally parallel” problermathe 0= ' : ' ' : 0
conventional approach of breaking the sequencesrifitcsubsets 0 10 20 30 40 50 60
of sizel and giving each subset to a worker does not work. Because Number of Processors

every sequence’s minimizers must be compared against ethezy
sequence’s minimizers, every sequence must have been isha ha Figure6: Scalability of Cand. Selection on L arge Genome
table with every other sequence at the same time.
Parallel Algorithm. Consider that if the sequences in each sub-
set are added to a hash table with the sequences in everysotier

set, then the above criterion will have been met, and evesgiple
combination of sequences will have been made. To paradléiiz,
instead of adding all sequences to a large hash table, eussjtipe
pair of subsets is given as a task to the worker, which conspute
and returns the candidates. Figure 3(B) illustrates hovwsthisets
are grouped and distributed to the workers. At first glanceaaly
seem counterproductive to increase the amount of compnuntati
this manner. A genome hasn k-mers if there arex sequences
with an average length ofi bases, so it take®(nm) time to add
them to the hash table. Once the parallel method divides thiem
n/l subsets, there will b&n/1)(n/l1+1)/2 = O(n? /1?) tasks that
need to be completed, each of which will takélm) time to com-
plete. This means that the overall amount of computationrthest
now be done i©(n?m/1).

Figure 4 describes the tradeoff of increased total comjmutdor
reduced memory usage per node. Despite the additional dempu
tional complexity, the advantages to this method are tvebfBirst,
each subset of sizecan be computed entirely in memory. Sec-
ond, because the subsets do not rely on other subsets, thdeca
computed in parallel on workers in the cluster.

Implementation. The distributed candidate selection begins by
dividing the input inton /! subsets of length Tasks are generated
by making all possible pairs of subsets, including one wliteie
compared with itself, resulting itn/1)(n/l + 1)/2 total tasks.

Once tasks are generated, each one is sent to the worker alon
with an executable that performs the sequential candidd¢etson
step on that pair. When a worker completes a task it sendssthe |
of candidates back to the master, which outputs them to arfie a
assigns the worker a new task.

A potential problem is that even though the smaller taskssize
cause the candidate selection to require much less memoggie
the workers on which the it runs will often have less memognth
the powerful machines running the master. The candidatsel
tion executable will check the amount of memory availabletmn
worker and further subdivide its task into subsets smalughao
be executed in core and operate on them sequentially.

Lastly, candidate selection has a recovery mechanism antbas
master is terminated. Each time results for a task are redeind
written to permanent storage, a second file is updated timaaics
a list of each pair of subsets that was completed. If the maste
interrupted, it resumes by only submitting tasks that areliated
in the recovery file.

Results. Distributing candidate selection only helps when the
dataset does not fit in the memory of a single node. So, we only
evaluate the medium and large datasets. To ensure thaskdl ta
would be able to run on the machines available in our campds gr
we chose a subset size of 2GB for the large dataset and 1GBefor t
medium dataset. We determined empirically that the cantelisie:
lection requires space in memory roughly equal to 2.3KBisege.
Thus, to keep the large dataset’s tasks under our memorstibiick

we need 22 subsets, each of size 360000. For the medium dataseth

the subset size was set at 250000, making 8 subsets. Speadup w

calculated by assuming that the memory must be kept below the

threshold and finding how long it takes to run the subsetsesequ
tially in a low-memory environment.

The results for the medium dataset are summarized in Figure 5
The medium dataset scales up to 30 nodes, maintaining ab&tt 5
parallel efficiency. When the subset size is reduced evehdur
more nodes can be used, however it does not significantlyceedu
the overall runtime, only the memory used per worker. Simila
results can be observed for the large dataset in Figure 6hwhi
scales almost linearly up to 40 nodes.

One of the biggest challenges in the candidate selectiomeis t

data transfer time. Each subset of sequences must be caimpare
with every other subset, so the sequences must be trardsteree
worker once for every subset. In the context of Figure 3(Bis t
means that a subset needs to be transferred once for eaet subs
its row and once again for each row in which it appears. Inmwothe
words, givern/l subsets, each subset of sizmust be transferred
n/l times, which means a total @(n?/l) data must be trans-
ferred from the worker overall. In the future, performancegit

be improved by implementing a caching scheme in which the mas
ter prefers to send tasks to workers that already have onetbrdh

the subsets.

6. ALIGNMENT

Computing multiple alignments from a single set of reads is a
naturally parallel problem, composed of hundreds of nilioof
self-contained computationally-intensive tasks, that loe solved
using the many-tasks paradigm. The input for our alignerlis a
brary of sequences and a list of candidate sequence paesaged
by the candidate selection step discussed in Section 5. {ipeito
is a list of the sequence pairs that overlap and data abouevhe
alignments occur in the sequences.

Alignment Algorithms. An important choice in any assembler
is the algorithm used for alignment of the reads. For the expe
iments here, we use a simple Smith-Waterman (SW) alignment

gi:ommonly taught in bioinformatics textbooks [7]. This aigam

computes alignments in time proportional to the lengthshefge-
guences by computing progressive overlap scores in a dygrjano
gramming matrix. The reasons we chose SW are twofold. First,
it can be implemented very easily, highlighting the abilifyour
framework to be reused by domain experts not familiar wits di
tributed systems programming. Second, its increased tsétysi
may be required in certain cases, such as in SNP discovery pro
grams like MOSAIK [9] and in short-read sequence assemblers
Conventional Approach. Given a naturally parallel problem,
the intuitive approach is to split the problem up into as measks
as there are resources, and submit those tasks as batclo jiies t
campus grid [11, 14]. The simplest way to do this is to prestag
the work locally and require the batch system to transfertals&
input data with the batch job. An issue with this solutionwho
ever, is its voracious consumption of local state. As mosttba
systems require all files to be in place on submission andireima
place (because of the likelihood of latency, out-of-ordaxagition,
or eviction) the framework would have to prestage locallyeador-
responding to every task. For workloads in which sequenpgpea
in many different candidates this means that the master hava
enough disk space for many times the total data set size. Ag-an
ample, Table 2 shows the sequence library and required &tsk d
sizes for our three workloads. The task data correspondieto t
amount of data that must be sent over the network.
A related alternative to the conventional approach is simbut
e data are prestaged onto the resources where the computat
will take place. The tasks would then be run on resources with
the appropriate task input. A complication with this metl®that
the input data are quite large and the target campus gridiress
are neither persistent nor reliable. The former limits obility to
prestage all the tasks’ data to every compute node. The liaits
our ability to carefully craft exactly which tasks will rumawvhich
resources and prestage the appropriate task input fileschagly.
Note that variants of these two approaches can ameliorate so
of their major drawbacks, but at the cost of requiring addil
high-capacity, reliable resources. Moreover, in any oféheases,
each task runs as a separate batch job incurring the fulheaeras-
sociated with the batch system. This becomes worse as vealklo

get bigger due to degraded batch system priority for latstga

Design and Implementation. The alignment master's system
architecture is designed to avoid the disk space, netwaendy,
and bandwidth bottlenecks encountered in the conventapmaioach.
To prevent excessive consumption of disk space and slowdiles
tem access to many small files, the master process readsinptite
library (genetic sequences in this case) and stores theesegsi in
a hash table for fast lookup based on the sequence idenfiter.
prevent task submission latency from limiting effectivegielism,
the input data (the sequence ID, the sequence metadatdiexse-t
quence data for each candidate pair) for many separateoestaf
the serial program are grouped together into task buffecsdéF
crease total data sent over the network, the candidates l&sirted,;
what this means for the alignment application is that paierisg
a first sequence can easily be grouped together with thedskare
quence copied only once in a task buffer rather than oncevianye
pair that includes it. Once the tasks have been bufferedhegehe
sequential program and the task buffer are sent over theonletw
the worker.

Because the master may run for many hours or days, it inclades
recovery mechanism for starting back up a workload duringctvh
the master has crashed. The recovery mechanism in the rsaster
veys completed pairs from the results and mimics startingwa n
workload for those not yet completed. Once the recovery mech
anism has discerned all the completed pairs, the remairfdéeo
workload continues unhindered.

While the master’s design considerations save on disk space
shown in Table 2 and conserve network bandwidth, this corhes a
the cost of requiring all the sequences in memory on the maste
throughout the workload, rather than just during task awoiesion.

Results. We measure our ability to scale using both strong scal-
ing and weak scaling. A workload that indicates good strong-
scaling efficiency will, for a constant workload problemesizee
its speedup scale by the same factor as the increase in nwhber
processors. A workload that indicates good weak-scalifig@ficy
will keep a constant turnaround time if both the problem sind
the number of nodes are increased by the same scaling factor.

Calculating conventional parallel speedup for a heteregaa
and dynamic set of resources is not meaningful. Furtheaure
the benchmarks were so large and contained so many aligaritent
was not feasible to simply run all the alignments sequéntiale
use the workload’s average execution time across all taslj-
plied by the number of tasks completed as the sequentiahrant
for the parallel speedup computation. Note that later, guFds

12, 13 and 14 where we graph the speedup as a function of time

for both problematic and corrected instances, the avenagéme
from the corrected version is used.

In the benchmarks below, each task contained 5000 aligrement
Our benchmarks showed that when running on a sufficiently fas
network, such as a local cluster, task size did not have afisigmit
effect on performance, which can be seen in Figure 11.

Task size becomes more important when many nodes are furthe

away in the network, as the transfer time for each task doés no
scale linearly with the size of the task. Larger task sizestpa
same overhead while sending more data, and utilize the worke
better, resulting in faster run times and better speedupweder,
there are two major downsides to increased task size. Fitbe
system is especially volatile, more work is lost when a woike
evicted. Second, the master queues a large amount of tasks to
sure that the master never runs out of tasks to assign. Arltagle
size will take up more memory per task, increasing the memory
consumption. The effects of excessive memory consumptien a
discussed in more detail in Section 7.

Turnaround Time (s)

Turnaround Time (s)

Turnarothd Time (s)

1800
1600
1400 r
1200
1000
800
600
400
200

Figure?7

30000
25000
20000
15000 F
10000
5000 r

Runtime '—-—
Speedup —&—

100
Number of Processors

200 300 400

. Scalability of Alignment on Small Genome

Runtime '—-—
Speedup —&—

I I I I I

100 200 300 400
Number of Processors

500

400

300

200

100

Speedup

Speedup

Figure 8: Scalability of Alignment on Medium Genome

100000
90000
80000
70000
60000 r
50000 r
40000 r
30000 r
20000 r

10000 | -

0

Runtime '—.—
Speedup —6—

n n n n n

Figure9

100 200 300 400
Number of Processors

500

400

300

200

100

Speedup

. Scalability of Alignment on Large Genome

2000 o Runtime ——"] 120
- 18007 Speedup @
£ 1600 1 100
g 1400 ¢ g
E 1200 t §
_§ 1000 r o
3 800 &
S 600
E 400 e
200 &
0 ! ! ! ! ! ! 0
0 20 40 60 80 100 120
Number of Processors
Figure 10: Effect of Faster Alignment
~ 16384 T
2 64 workers =—-—
IS 128 workers e
§ 8192 L 256 workers
Py
E 4096 g —
-8 e J
=}
(= 2048 1
IS
£
=}
= 1024 t
100 1000 10000

Candidates per Task

Figure 11: Alignment Candidates Per Task

We observed scaling speedup for almost all of the benchmarks
However, each benchmark has features that shed light otrémgths
and weaknesses of the system. For our smallest dataset igeeath
near linear speedup until about 128 workers (Figure 7). Bsea
this is the smallest dataset, with too many nodes all the visrk
completed before some nodes receive a task.

The medium dataset (Figure 8) yielded better results; tbpaff

generating candidates. Once the candidate selection etespits
workers can be redirected to work for the aligner’s master pr
cess. For example, in one instance the candidate seleatitimeo
medium dataset ran in 423 seconds on 60 workers. The aligner r
in 502 seconds for a combined runtime of 925 seconds. However
the pipeline running 30 workers on candidate selection ahdmt
alignment finished in only 654 seconds.

7. SCALING UPTO THE GRID

For very large problems, the computational resources redui
exceed the capacity of the clusters comprising Notre Dagzeis-
pus grid. At this point, we explore the ramifications of rummion
multi-institutional resources such as remote Condor poolthe
Open Science Grid [1]. Our primary experiments in the sectio
run on the large dataset using Condor’s flocking mechanisrana
example of using remote grids. We start off with a discussibn
managing workers efficiently at the grid scale, and how se\ay-
stacles can result in idle workers waiting to be assignecstas

Waiting for Out-of-Core Task Data. Complete alignment on
the large dataset scales at nearly linear speedup up to 2&@nsp
but saw a marked decrease in performance when using 512 work-
ers. The biggest problem with running such a large dataset wa
memory. Although we were running the master on a machine with
8GB of memory, the large dataset was 5.7GB. This is loadexd int
memory to achieve the best retrieval times when buildinggas
Additionally, the master buffers tasks in memory.

With 512 workers, the additional buffered tasks caused tag-m
ter to exceed physical memory. When the master began to need
paging for its task management, performance began to degrad
The effect of this can be seen in Figure 12(A). Because itstake
significantly longer to create the number of tasks requiveatkers
must wait longer to receive their task. When running with gnan
workers, the amount of time necessary to give tasks to aiitir-
ers is longer than the amount of time it takes a worker to cetepl
this task. This creates a convoy effect, where workers agadipg
more time waiting to be processed by the master than theydspen
actually working. This explains the large variation in thenber
of tasks working.

To combat this issue, we took a rather straightforward aggino
Because DNA consists of only 4 letters, it is possible toespnt

in speedup did not occur until 512 nodes were used. The large a single base of DNA as a 2-bit number rather than a character

dataset displayed similar scalability to the previous skttalt was

to achieve nearly 75% compression. Once the amount of memory

able to run on 512 cores in only 9595 seconds, for a speedup of needed can be kept within the physical memory, the mastesily/e

455.74. This dataset did highlight some of the challengethef
assembly problem and of distributed computing in generbesg
are discussed in detail in Section 7.

Banded Alignment. One of the primary advantages of our frame-
work is its ability to substitute any alignment algorithnr fbe one
used in our benchmarks. So, in addition to these benchmamks,
have also considered how our framework adapts to alignment p
grams that are considerably faster than the simple solut®nse
above. We tested this by implementing a simple banded abgim
in which only a narrow band of the SW dynamic programming ma-
trix is computed [7]. In this case, the amount of data reméties
same while the execution time of each task decreases sagttifjc
As aresult of the increased relative overhead, we would &g
creased scalability. The results are summarized in FigQreVle
achieve increasing speedup up to 64 workers, at which point w
begin to experience diminishing returns.

Pipelining. In the previous sections we discuss the candidate
selection and alignment steps separately. However, irtipeathe
two steps can be pipelined, because the aligner can begstraota
ing and submitting tasks as soon as the candidate sele@gind

able to keep up with the workers requesting tasks. In thie,dhe
number of workers running at any time remains relativelystant,
subject only to minor fluctuations, mostly caused by channgése
number of workers active. Figure 12(B) shows how the same job
ran on 512 workers with compression enabled.

Waiting for Network Transfers. When a master has too many
workers connected to it, it takes the master longer to adsigiks
to all the workers than it takes for an individual worker toiim
its task. The same symptoms appear as in the memory case above
workers spend more time waiting to be given new tasks thay the
spend working, and efficiency suffers. Further, some warkean
experience starvation, triggering idleness timeouts aditing as
the number of connections to the master gets too large. $rctse,
the main problem is waiting for the master to transfer tasta da
every worker. There are just over 650 machines in Notre Dame’
Condor pool; to exceed this number we are forced to use meshin
from other institutions’ Condor pools, particularly PusdUniver-
sity and the University of Wisconsin.

While we could transmit data to machines at Notre Dame at an
average speed of 42.29 MB/s (meaning data for a task could be

600 T T T T T 100 100
=3 =%
=]
g 00 1{ e0 g 1{ 80
Q o
5)
@ 400 2 - g
2 160 8 = 160 8
= o =
g 300 20 g £ 40 g
] o c B o
5 20 & % &
1%] 4
% 100 [} 12 g 1%
[i =
0 5 1 1 1 1 A O H O
0 2000 4000 6000 8000 10000 12000 0 1000 2000 3000 4000 5000 6000 7000
Time (seconds) Time (seconds)
Tasks Running —— Pct Complete s Tasks Running —— Pct Complete s
Speedup === Speedup ---=----
(A) No Compression (B) Compression

Figure 12: The Effect of Data Compression.
These graphs show the effect of data compression on thermaadiiity to dispatch tasks using the large dataset. Edobves a timeline of
a single run, with the number of tasks running, the cumutesipeedup, and the percent complete over time. Figure 12§ dot use data
compression, and oscillates between 300 and 400 tasksngiaionce, reaching a speedup of slightly better than 30@ure 12(B) uses
compression, and stabilizes at about 500 workers with adigeef about 500x.

T T T T T T 7 100 1000 100
o 1000 | (/f o
3 3
g £ 4 80 2 800 4 80
o 800 2 o 2
(7] 2 [@
2 L 1 60 %L 2 600 1 60 %L
S 600 m““'m, | S S S
£ il 1 40 = 2 400 | 1 40 5
S 400 S < S
@ 1'". R o I g x g

02 et m i a a
% 200 | ,_.,n."";:i"“ - {20 % 200 | | 1 20
['}.r"' [i
...J‘ ! ! ! ! ! ! ! 0 0 ALl ! ! ! ! ! 0
0 1000 2000 3000 4000 5000 6000 7000 8000 0 500 1000 1500 2000 2500 3000 3500 4000
Time (seconds) Time (seconds)
Tasks Running —— Pct Complete s Tasks Running —— Pct Complete s
Speedup === Speedup ===
(A) Single M aster (B) Dual Masters

Figure 13: The Effect of Splitting Masters.
When using a sulfficiently large number of workers on the la@@set, the master does not have enough network bandwidtéep all of
them busy. These figures show a timeline of a single run wihoapnately 950 workers using one master (A) and two magBrsWith
a single master, workers complete faster than the mastedispatch new work, so not all nodes can be kept busy progeasionce, and
the speedup reaches less than 400x. With dual masters, peellugp reaches 790x before settling out about 700x. Notetteainequal
distribution of completing work in (B) causes the dropoffdred 3000s.

transfered in only a few hundredths of a second), data toreurd 950 submitted workers, while Figure 13(B) shows the smaothe
took an average of .36s, and data to Wisconsin was even slatver two-master version of the same workload. The maximum number
.53s per transfer. In a job we ran with 900 submitted workers f of workers running tasks at a time was 921 with two masters.

a single master with 5000 candidates per task, the average-tr From Desktop to Grid. Now we give an example of a large pro-
fer time was 0.27s. 835 workers completed tasks, with thersth duction workload scaled up to run on a multi-institutiongtlg We
failing to find an available campus grid resource or exitifigra construct a scenario that serves to demonstrate all of tierfes

starvation. This means the average time to transfer filet 838 of our framework, and illustrates a typical use performingoan-
workers was 225s, which is greater than the typical task ¢efiop plete alignment of the large dataset, the simul&ebicolor The
time. scenario presents several of the key components of our fvarke

In order to solve this efficiency problem, we split the listoain- adaptability to many types of resources (local executigacetion

didate pairs in half and run the master on two separate meshin as a cluster job, execution on a campus batch system, ese@si
When using two masters on the above workload, sending data topart of a multi-institutional resource pool); fault-todgrce to fail-
450 workers each averaging 0.27s per task takes only 12bstko ures on the worker nodes; and fault tolerance to failureshen t
masters were able to work efficiently. master node.

Figure 13(A) shows a timeline of workers waiting rather tlaan As in many fields, research in bioinformatics is highly exptory.
tively computing associated with this problem for a simjtay with An active researcher may test many slight variations upoalgo:

o
S 700 —— ‘ 100
8 6002 S, camus Remoe - o
2 2 \
& 2 vs erd . Grids < e {180 %
5 500 % &2 2 e 3
S 4002 23 F - 160 §
o 6 2% ‘@ ,r""*' O
g 300 - 2 1P et 40 E
S 200 .aﬂ*::‘:.----ﬂ- § ffrmmme - 3
. - o
S 100 | P 20 $
—Ef) _Eﬂ;m:::a‘-’u
© 0 : w ‘ 0
= 0 2000 4000 6000
Time (seconds)
Tasks Running Speedup - Percent Complete

Figure 14: Scaling Up tothe Grid
This figure shows the timeline of a large assembly run on @&sysgtrown progressively from a single workstation up to adasgale grid
including resources at the University of Notre Dame, Purdilréversity, and the University of Wisconsin. The mastepisilly killed

halfway through to demonstrate failure recovery.

100

Ej
S 1200
o | 1 80)
=3 1000 3
Lo} L [=%
< 800 4 60 g
2 600l ©
= 140 T
c
S 400 <]
& £
g 200 | . 20
ﬁ 0 il L L L L 0
0 1000 2000 3000 4000 5000 6000
Time (seconds)
Tasks Running —— Pct Complete s

Speedup

Figure 15: Sustaining Grid Scale
This figure shows the timeline of a 121M candidate run on ttgela
sequence set using approximately 1300 workers at twolitistiis
separated by a WAN. Two masters support almost 1300 at pebk an
use 1000 or more workers consistently for most of the 90-minu
runtime, totaling a speedup of 927x.

rithm, generating a number of tests of various sizes befareged-
ing to analyze an entire dataset. Because our frameworkwiths
an arbitrary number of workers, a user may slowly generatallsm
results, then progressively add resources as confidenegnisdy
Figure 14 gives a real example of this progressive growthndJs
our framework, one author started a worker process on higstar
tion. After a few minutes, he surveyed the progress and chited
that serial execution would not be sufficient, so he askedvad@r
to start a worker on her own machine, and also prepared and sub
mitted some batch jobs to his research group’s 32-nodeetluss
these jobs started running, speedup increased accordihtgp-
ing to finish the alignments that afternoon, he submitted jab
the campus computing grid at Notre Dame, followed by submis-
sions to Condor-based grids at Purdue University and thedoni
sity of Wisconsin. About halfway through the complete adsigm
however, he accidentally powered off his workstation, aagyishe
computation to halt. Fortunately, when the master was ntestait
loaded all of the complete results, accepted connectiama the

still-running workers, and continued where it left off. Thatire
assembly completed in just over two hours, with a speedu@f 2
and a maximum of 680 CPUs in use at once. Note that the low
speedup should not be alarming, because of the gradualenatur
which the workers were added, and because of the crash inithe m
dle of the job.

Table 3 summarizes the work distribution across sites. ablest
running at home were slower and exhibited more runtime eng/i
because the local campus grid includes a large number of scav
enged resources compared with more homogeneous dedicated g
resources at the other sites.

Tasks | Average Runtime (s
Total 16936 184.1+ 53.8
Notre Dame| 7998 215.3+ 46.4
Purdue 7760 154.0+ 40.8
Wisconsin | 1232 170.1+ 56.2

Table 3: Summary of Workload

Even making many connections over the WAN, the master was
still able to maintain a steady task throughput with machiae
three different institutions. The scalability is strongaking into
account that the final speedup is not reflective of the finaé sif
the workload — and with an improved wide area network connec-
tion even more resources at remote institutions could bedsaed.
Additionally the multiple-masters technique used beforéemon-
strate a solution to insufficient network bandwidth willldbie ad-
vantageous.

Many-Node Run. Finally, we take advantage of using two mas-
ters on a single workload to show scalability beyond thatshim
the scenarios above. Using multi-institutional resourees com-
pleted Smith-Waterman alignments of the largest datas21-il-
lion candidate pairs from a set of 8 millions sequences — oetin
one and a half hours. For comparison, the same workloadlgeria
would take over 57 days on an average resource from our pool.
Figure 15 shows a peak of almost 1300 resources harnessed, su
tained levels above 1000 for an hour during the workload, and
final speedup of 927x at 71.3% parallel efficiency.

8. RELATED WORK

Because determining overlaps between candidates is the mos [8]
time intensive step of an assembly, it is the step most often p
allelized. For example, to assemble the mouse genome thd®PCA [9]
program was developed to use 24 compute nodes and a shared file
system [11]. PCAP generated a total of 273 million overldyzs t [10]
were processed in 80 distinct batch jobs, each of which toddkys
to compute on a Compaqg ES40. Kalyanaraman et al. later export
an approach that could process 47 million maize candidige-al
ments in under 2 hours using 1024 processors of an IBM Blue-
Gene/L [12]. More recent work has explored using FPGAs [24] [12]
and the Cell processor [21] to speed up alignment, which avoul
provide up to a 100X speedup.

These parallel solutions to genome assembly have reliechon o
batch processing, complex MPI programming or specializad-h
ware. In contrast, we are interested in a growing trend telkbgy [13]
modular genome assembly components such as the UMDOverlap-
per [20], which can reliably work with phrap, the Celera asbéer,
and Atlas. Another example is the AMOS consortium [17], vahic
is actively developing an open source, modular assembblipg
Here, we extend this modular design concept to facilitastarn
parallel genome assembly. Rather than rely on specialiaed- h
ware and/or programming, we use custom candidate seleation
alignment modules that are highly adaptable to many typeksef
tributed resources.

Our assembly components use the well-known master-worker
(MW) paradigm for distributed computing. The independtaiitire
nature of MW lends itself to fault tolerance [2] and otherfper
mance enhancements [4]. The Condor-MW framework has been
used to scale up CPU-intensive applications such as ogatiioiz
problems to nearly 2000 nodes [13]. Our use of conventiomék U
programs as modular units is inspired by a similar manygas&h-
nigue demonstrated by Falkon [19]. Similar systems sucHasd=
Burst [22] have applied the Map-Reduce [5] data-parall@hgo-
tation model to a similar bioinformatics problem.

[11]

[14]

[15]

[16]

[17]

[18]

[19]

9. ACKNOWLEDGEMENTS

This work was supported in part by a University of Notre Dame
strategic initiative for Global Health, by the National fitstes of
Health (NIAID contract HHSN266200400039C) and the Nationa
Science Foundation (grant CNS06-43229).

10. REFERENCES

[1] The Open Science Grid. http://www.opensciencegrigl.or

[2] D. Bakken and R. Schlichting. Tolerating failures in the
bag-of-tasks programming paradigm.|EEE International
Symposium on Fault Tolerant Computidgine 1991.

[3] S. Batzoglou et al. ARACHNE: A whole-genome shotgun
assembleiGenome Res12(1):177-189, January 2002.

[4] D. da Silva, W. Cirne, and F. Brasilero. Trading cycles fo
information: Using replication to schedule bag-of-tasks
applications on computational grids. Buro-Par, 2003.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large cluster. @perating Systems Design and
Implementation2004.

[6] W. Gentzsch. Sun grid engine: Towards creating a compute
power grid. INCCGRID '01: Proceedings of the 1st
International Symposium on Cluster Computing and the
Grid, page 35, Washington, DC, USA, 2001. IEEE
Computer Society.

[7] D. Gusfield.Algorithms on strings, trees, and sequences :
computer science and computational bioloGambridge

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Univ. Press, January 2007.

P. Havlak et al. The Atlas genome assembly sys®enome
Res 14(4):721-732, April 2004.

L. W. W. Hillier et al. Whole-genome sequencing and vatia
discovery inC. elegansNat MethodsJanuary 2008.

X. Huang and A. Madan. CAP3: A DNA sequence assembly
program.Genome Res9(9):868-877, September 1999.

X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. Hillier.
PCAP: A whole-genome assembly progra@enome Res.
13(9):2164-2170, September 2003.

A. Kalyanaraman, S. Emrich, P. Schnable, and S. Aluru.
Assembling genomes on large-scale parallel computers.
Journal of Parallel and Distributed Computing7(12):1240

— 1255, 2007. Best Paper Awards: 20th International Péralle
and Distributed Processing Symposium (IPDPS 2006).

3] J. Linderoth et al. An enabling framework for masterrar

applications on the computational grid.IEEE High
Performance Distributed Computingages 43-50,
Pittsburgh, Pennsylvania, August 2000.

E. W. Myers et al. A whole-genome assembly of Drosophila
Science287(5461):2196-2204, March 2000.

A. H. Paterson et al. The Sorghum bicolor genome and the
diversification of grasse®ature 457(7229):551-556,
January 2009.

M. Pop et al. Genome sequence assembly: Algorithms and
issuesComputer 35(7):47-54, 2002.

M. Pop and S. L. Salzberg. Bioinformatics challengeaef
sequencing technologyrends in Genetic4(3):142-149,
March 2008.

I. Raicu, I. Foster, and Y. Zhao. Many-Task Computing fo
Grids and Supercomputers. IBEE Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGSP8)8.

I. Raicu, Y. Zhao, C. Dumitrescu, |. Foster, and M. Wilde
Falkon: a Fast and Light-weight taskK executiON framework.
In IEEE/ACM Supercomputin@007.

M. Roberts et al. A preprocessor for shotgun assembly of
large genomeslournal of Computational Biology
11(4):734-752, 2004.

A. Sarje and S. Aluru. Parallel biological sequence
alignments on the cell broadband engine. pages 1-11, April
2008.

M. Schatz. CloudBurst: Highly sensitive read mappirithw
MapReduceBioinformatics (Online Advance Accesapril
2009.

M. V. Sharakhova et al. Update of the Anopheles gambiae
PEST genome assemb({yenome Biology8:R5+, January
2007.

O. Storaasli and D. Strenski. Exploring acceleratioigisce
applications with FPGAs. July 2007.

K. A. Swan et al. High-throughput gene mapping in
caenorhabditis eleganGenome Red2(7):1100-1105, July
2002.

D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. In F. Berman, G. Fox, and T. Hey, editoGid
Computing: Making the Global Infrastructure a Reality
John Wiley, 2003.

L. Yu, C. Moretti, S. Emrich, K. Judd, and D. Thain.
Harnessing Parallelism in Multicore Clusters with the
All-Pairs and Wavefront Abstractions. IREE High
Performance Distributed Computingages 1-10, 2009.

