
Fine-Grained Access Control in the Chirp Distributed File System

Patrick Donnelly and Douglas Thain

Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, Indiana 46556

Email: pdonnel3, dthain@nd.edu

Abstract—Although the distributed filesystem is a widely
used technology in local area networks, it has seen less use
on the wide area networks that connect clusters, clouds,
and grids. One reason for this is access control: existing
filesystem technologies require either the client machine to
be fully trusted, or the client process to hold a high value
user credential, neither of which is practical in large scale
systems. To address this problem, we have designed a system
for fine-grained access control which dramatically reduces the
amount of trust required of a batch job accessing a distributed
filesystem. We have implemented this system in the context
of the Chirp user-level distributed filesystem used in clusters,
clouds, and grids, but the concepts can be applied to almost
any other storage system. The system is evaluated to show that
performance and scalability are similar to other authentication
methods. The paper concludes with a discussion of integrating
the authentication system into workflow systems.

Keywords-distributed; filesystem; authentication; grid;
proxy; ticket;

I. INTRODUCTION

Large scale distributed computing systems such as clus-

ters, clouds, and grids provide end users with access to

virtually unlimited computing power at the touch of a button.

However, a challenge of operating in these environments is

that trust decreases as the scale of a system grows. The user

of a small private cluster usually has a high degree of trust in

the integrity of every single node. But, the user of a campus-

scale computing system or an international computing grid

cannot even name every node of the system, much less trust

every single one with high value credentials.

This lack of trust makes it particularly difficult to scale

up distributed file and storage systems beyond a certain size.

Existing distributed systems either require that a remote

node be trusted completely (as in NFS [1]) or that each

client holds a high value user credential (as in AFS [2]).

For a batch job to access the filesystem, this high value

credential must be attached to the job, stored in a queue,

and transferred to multiple remote execution sites. If the

credential is captured by a malicious party, they will be

able to act as the user across the entire filesystem until

the credential expires. As a result, the distributed filesystem

concept has seen little use across truly large-scale, wide-area

distributed systems.

To address this problem, we have designed a system

for fine-grained access control which dramatically reduces

the risk of attaching credentials to batch jobs. We have

implemented this system in the context of the Chirp [3]

user-level distributed filesystem, but the concepts can be

applied to almost any other storage system. The unprivileged

end user can generate tickets that provide specific, limited

access rights to directories on that server. Tickets can then

be attached to jobs that run in wide area distributed systems.

As the jobs run, they transparently access data through

the filesystem interface (via Parrot [4] or FUSE [5]), but

are limited to the rights indicated by the ticket. If the

execution site is compromised or the ticket captured in any

way, the attacker only gains the rights associated to that

particular job, and not the user’s entire range of abilities. If

connected to a data-aware workflow system, the tickets can

be generated automatically without any user intervention,

thus transparently improving system security.

This paper describes our implementation of fine-grained

access control in the Chirp distributed fileystem. In Sec-

tion II, we give background information on Chirp and its

supported authentication and access control mechanisms.

Section III, we describe the cryptographic fundamentals of

our work, and indicate when and where an attacker can

attempt to exploit the system. In Section IV, we give details

of the implementation of the ticket system within Chirp, and

briefly outline the user interface. In Section V, we evaluate

the performance scalability of the system, and show that

it can scale at least to 100,000 outstanding tickets without

significant performance impact. For Section VI, we discuss

how the system can be integrated into the larger context of

a user’s workflow as in Figure 1. We close with a discussion

of Related Work.

II. BACKGROUND

A. Chirp

The Chirp [3] distributed filesystem is designed for ex-

porting access to file data for use in grid computation.

Chirp runs as a regular user process that makes available a

directory tree on the local filesystem for networked access.

Strong and flexible security mechanisms protect data through

per-directory Access Control Lists (ACLs) and multiple

authentication modes. Figure 2 gives a general overview of

multiple software stacks of a single client accessing Chirp.

Figure 1: Workflow of Grid Jobs Using Ticket Authentication to Access the Chirp Distributed Filesystem

Figure 2: Chirp Distributed Filesystem

B. Authentication Options

The Chirp filesystem is designed to manage data for

scientific workflows in a distributed environment. Chirp pro-

vides several authentication mechanisms to access this data

easily and securely from compute nodes. Each authentication

option determines the subject of the client. A subject is

a tuple containing the authentication mechanism used to

authenticate and the identity of the client. This is represented

by a string as mechanism:identity.

In practice, it is common for many or all of the available

authentication mechanims to be used. It is important to note

the subject generated by the authentication mechanism does

not grant any inherent rights by itself. Data is protected by

access control lists, discussed in Section II-C, which give

rights to an explicit subject.

Here, we discuss each authentication mechanism to famil-

iarize the reader with current methods used to allow access

to data on a grid.

• Hostnames The most flexible mechanism to authenti-

cate with a Chirp server is to use hostname masks. Us-

ing a Reverse Domain Name Service (rDNS) query, the

client’s fully qualified domain name (FQDN) becomes

the subject for the session. As an example, a client

connecting from foo.cse.nd.edu would have the

subject hostname:foo.cse.nd.edu.

• Unix Chirp also allows the user to authenticate as their

system username. The server gives the client a random

filename and requests the client to create the file. The

owner of the created file is the subject of the client. By

default this filename will be in a temporary directory

such as /tmp on Unix. This will obviously only work

when the client and server are on the same machine.

A more useful setup would use a shared filesystem as

a rendezvous location. On our campus grid, where we

have AFS [2] installed, we make available a standard

campus-writeable directory where all files used for

authentication are created.

• Kerberos A user may also authenticate with Chirp

directly using Kerberos. To setup Kerberos authentica-

tion, a Chirp server must have superuser privileges to

access the system’s host certificates. This establishes

the Chirp server as a regular Kerberos compatible

service which can authenticate with users.

• Globus Globus GSI authentication can be achieved by

starting the Chirp server either with a regular user’s

proxy certificate generated via grid-proxy-init or

with the system host certificate accessed as superuser.

Users may then authenticate normally with the Chirp

server with a Globus credential.

C. Access Control Lists

Chirp offers per-directory access control lists (ACL) to

manage access of data by an authenticated client. The

following access rights are supported:

r read l list

w write d delete

p put a admin

v reservation

The rights above are self explanatory except for reser-

vation. The reservation right allows a subject to reserve

(create) a directory with the parenthesized rights following

the v. The subject gains these rights in the new directory.

For example, v(rwlda) would allow a subject to create a

directory where the subject has the rights rwlda.

These access rights are set and retrieved on a directory

using RPC setacl and getacl, respectively. A typical

command to change the ACL might look like:

setacl / kerberos:pdonnel3@nd.edu rwl

The server maintains an ACL file for each directory

which contains a variable number of subject and rights

tuples. Subjects may include the globbing character *. The

following is an example ACL file that is used in the root

directory of a shared Chirp store:

File 1 An example Access Control List file.

unix:condor lda

unix:admin lda

unix:* lv(rwlda)

globus:/O=Computing_Lab/* lv(rwlda)

hostname:*.nd.edu lv(rwlda)

Later on we will use Chirp’s access control list function-

ality to add restrictions for proxy tickets.

III. DESIRED MECHANISM FOR PROXIED

AUTHENTICATION IN A GRID ENVIRONMENT

A grid is composed of various domains with local policies

for authentication. On a university campus, this is an acute

situation where many researchers and departments have their

own systems with incompatible or private policies. It is not

uncommon however for the researchers to form a network

of machines which share computational resources for mutual

gain. A typical setup may use Condor [6] to manage such a

network of resources.

Further, it is common to have temporary services setup to

manage various aspects of distributed computation on such

a grid. Examples of such services include master worker

frameworks or filesystem export servers such as Chirp.

These services are transient by nature. It is, therefore, im-

practical to give them a dedicated ticket which is recognized

by a centralized authority, such as Kerberos.

We consider the following desirable attributes when de-

signing an authentication system which is easier to use in a

grid.

• Transferable The ability to transfer a ticket with a job

for access to a shared data resource such as NFS or

AFS. This ticket should not require interactive assis-

tance from the job submitter.

• Ease of Use A user should be able to allocate tickets

with the service in a simple manner. A ticket should be

a simple file that is transferred with a job.

• Temporary A ticket should have a limited lifetime to

minimize risk if stolen. This is a common attribute for

ticket authentication systems such as in Kerberos and

Globus.

• Secure A ticket file should give as much assurance as

possible that the client represents the user. Credentials

should have limited authorization rights to lower risk.

We have developed a system which allows for the creation

of a restricted proxy (hereafter simply called ticket) for

a presently authenticated user. It is important to note the

distinction between a ticket of an authenticated user versus a

ticket of a user credential. A ticket for a user credential may

contain a tuple of the shared session key, an expiration time,

various restrictions, and is signed by the user’s credential.

This mechanism implies we have a method for validating

such a credential, if the user even has one. On a campus

grid, this is not the case. In contrast, an authenticated user

is already recognized by the server and may register a ticket

for authentication attempts by other clients.

For the Chirp filesystem, when a user is already au-

thenticated, we would like to allow the user to designate

a temporary ticket which enables proxying of the current

authenticated subject. We will accomplish this through the

use of public key encryption and restricted access control.

We have a few reasons for choosing public key encryption

for authentication over other mechanisms such as shared

symmetric key encryption or hashed message authentication

codes (HMAC). First, we view storing the secret key on

a Chirp server as an unnecessary risk as a compromise

of the key on one server will compromise it everywhere

else. The ability to have a ticket recognized (registered) by

multiple Chirp servers is deliberate. Second, because Chirp

sessions are not encrypted, transmitting the secret key in the

clear exacerbates the risk of discovery. Finally, public key

encryption allows for collaborators to exchange public keys

to register manually on a server without revealing any secret

key.

A. The Mechanism

A user which is presently authenticated with the Chirp

server may present a public key to the server which is

to allow another client to authenticate as the subject of

the user. Authentication using the private and public key

pair resembles SSH [7] authentication except it will not

be mutual: the server is not validated by the client. The

server will use standard challenge response authentication

to confirm the client has the private key corresponding to

the registered public key. From now on, we will refer to the

ticket residing on the server as a registered ticket.

As part of registration of a ticket the user prescribes an

expiration time after which any authentication attempt will

fail. Further, clients authenticated using an expired ticket

will have all subsequent file operations fail upon checking

the ACL.

B. Authentication Steps

A user, A, must first create a private and public key pair

which we denote as SKA and PKA respectively. These keys

will be used for challenge response authentication. First, it

is necessary to register the public key with the server, CS.

The user also sets an expiration time t. Note that the user

is already authenticated with the server when registering the

public key.

A → CS PKA, t, A (1)

Following registration of the public key, the user modifies

the access control rights of the ticket. This is represented as

a variable number of messages which change the ACL mask

. The user uses a hash digest as an identifier for the ticket

in subsequent messages. Initially a registered ticket has no

access rights.

A → CS {PKA}hash, path1, mask1

A → CS {PKA}hash, path2, mask2

A → CS {PKA}hash, path3, mask3

(2)

Once a ticket is registered, a client may use the ticket to

authenticate with the server. This is done by querying the

server first if it has a ticket registered with the given digest.

A → CS {PKA}hash (3)

If the server has a registered ticket with a matching hash

digest of the corresponding public key, it allows authentica-

tion to continue and issues a challenge, or nonce.

CS → A ICS (4)

The client receives the challenge and will sign it with the

ticket’s private key. The result is transmitted to the server.

A → CS {ICS}SKA (5)

After verification of the signed nonce, the server considers

the authentication successful.

C. Recognized Vulnerabilities

Mutual authentication is absent in this proposed design

although it does not need to be. In a system desiring mutual

authentication, users registering a ticket will already be

authenticated with a server; the users have the public key

of the server to store with the ticket. The authentication

steps then should follow the standard challenge response

authentication outlined by Needham and Schroeder [8] for

mutual authentication using Public Key algorithms. The

client and server will not need to consult an authentication

server (AS) to confirm their respective public keys because

they are stored within the ticket during registration.

For our systems, the other Chirp authentication modes do

not validate the identity of the server and our evaluation of

the risk of masquerading servers in a typical grid environ-

ment is small. Further, in a cycle scavenging setup using a

job submission platform like Condor, it is difficult to confirm

the integrity of computation results and so confirming the

source of data does not add any security to the overall

system. Chirp servers also work on unencrypted channels

so man-in-the-middle attacks are still a concern. So, we do

not feel mitigating this risk warrants the added complexity

to the system. In contrast, restricting access to data is of

great interest.

Hash Collisions of tickets allows for the replacement of

your own or another user’s ticket. With a suitably strong

hashing algorithm, this is exceeding unlikely. The worst case

scenario is a job’s inability to authenticate.

Theft of a ticket is central to the design considerations of

the system. We resolve this open problem through expiration

times of tickets and restricted access control.

IV. PORTABLE TICKET AUTHENTICATION IN THE CHIRP

DISTRIBUTED FILESYSTEM

The first step in setting up a ticket with a Chirp server is

the creation of a public and private key pair. When we refer

to the ticket, we are referring to the private key which clients

use to authenticate. Next, the public key is registered with

a server through an RPC, see Figure 3, which associates

the key with your authenticated subject. In addition to the

public key, a ticket is registered with an expiration time and

a subject. Typically this subject is self which refers to the

subject of the authenticated client. The client may register

tickets for other subjects if the client is the superuser of the

Chirp server (set via an option to the Chirp server).

When a client authenticates using a ticket, it becomes the

subject of the ticket. That is, the subject you assume when

authenticated with the Chirp server is the subject of the ticket

and any client authenticating using that ticket. This subject

is used when testing access control rights within a directory

(subject to restrictions discussed below).

After a ticket is registered, it initially has no rights

associated with it and can not be used to access data on

the server. It is necessary to change the access control list

Figure 3: Creating a Ticket in Chirp

rights of the ticket to enable access. This is done through

a ticket_modify RPC which sets an ACL mask for a

given path. Recall from Section II-C that each directory has

an ACL file which describes the access rights of various

subjects. When resolving the access control rights of a client

authenticated using a ticket, we mask the access rights of

ticket subject, or the subject that registered the ticket, with

the ACL mask of the ticket.

As an example, if we have a user bob that uses Unix

authentication to register a ticket, the subject of that user

is unix:bob. bob modifies the access rights of his ticket

to have rl in the /foo directory. Assume unix:bob

has rwl permissions in the /foo directory. When a client

authenticates using bob’s ticket, the access rights in the

/foo directory for the ticket authenticated client will be the

logical conjunction (AND) of the ticket’s ACL mask and the

ACL of unix:bob. This would result in rl permissions.

These operations are conveniently packaged with a

ticket_create command within the Chirp client toolset:

ticket_create -output foo.ticket \\

-bits 1024 -duration 86400 \\

/ rl /foo rwl

This command first creates a public and private RSA key

pair. The public key is then registered with the corresponding

access rights.

A. Managing Chirp Tickets

Once a ticket is registered, the user must give the ticket

access to directories by setting an ACL mask. This is done

using the ticket_modify RPC which may be used like

so:

ticket_modify foo.ticket / rl

The above command gives the ticket read and list access

to the root directory so long as the user who registered the

ticket retains those access rights.

One can delete a registered ticket the ticket_delete

RPC. Like ticket_modify, the subject of the ticket must

match the subject of the current session. As an example

command:

ticket_delete foo.ticket

A user may list the tickets registered on a server using the

ticket_list RPC. The command returns a list of ticket

identifiers which are essentially hash digests of the public

keys of each registered ticket. These identifiers are usable

in any ticket_ RPC in place of the client ticket filename.

ticket_list self

The ticket_get RPC returns the information for a

registered ticket including the ticket subject, public key, the

expiration time left in seconds, and a variable number of

ACL masks.

ticket_get foo.ticket

B. Authenticating with a Chirp Ticket

Authenticating using a ticket is as simple as transferring

the ticket file with your job. Chirp provides options and

environment variables as part of the client toolset to list the

tickets to use for authentication. Generally, applications will

not use the client toolset directly and instead will utilize

Parrot [9]. Parrot is another application tool we develop

used to transparrently connect an application to Chirp by

intercepting I/O system calls and redirecting them. Parrot,

through the use of the libchirp library, offers support for

ticket authentication.

Figure 4 shows the process of authenticating with a Chirp

ticket. The application will issue an IO system call which is

redirected by Parrot to libchirp . libchirp will use the ticket,

foo.ticket, to attempt authentication to the Chirp server. The

authentication process itself is handled by sending the digest

of the public key of the ticket. Recall that the ticket itself is

simply a private key which can be used to generate the public

key on demand. The digest is used for content addressable

storage on the server. Upon receiving the digest, the Chirp

server will attempt to open a top-level file .__ticket.X

where X is the digest of the public key. This file contains

the registered public key, expiration date, ACL masks, and

other metadata.

If the Chirp server is successful in opening the registered

ticket file, it will confirm the ticket is still valid by asserting

the current time is less than the expiration time of the ticket.

If the ticket is still valid, it will respond to the client with a

cryptographic nonce (one-time-use random number) which

the client must sign with its private key. Once the client

Figure 4: Authentication using a Chirp Ticket

transmits the signed nonce, the server confirms the signature

and considers the authentication successful.

After authentication, most file operations require a check

of a directory’s ACL to confirm access rights. Any time this

occurs the ticket is consulted to mask the rights of the user

with ACL mask of the ticket. This prevents a user’s ticket

retaining rights the user may lose in the future. In addition to

checking the ACL mask, the Chirp server will also confirm

the expiration time for the ticket has not been exceeded since

the client authenticated.

C. Garbage Collection of Tickets

Because the server maintains a list of tickets which expire,

it is worth noting that garbage collection is necessary for the

system to function. Periodically the server will go through

each ticket it has registered and discard the expired.

V. EVALUATION

Of particular interest for the evaluation of this authen-

tication system is the ability to scale. We have conducted

tests to analyze the cost of using tickets while doing various

file operations. We also want to compare the latency and

throughput of the authentication mechanisms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10K 20K 30K 40K 50K 60K 70K 80K

T
im

e
 (

s
e

c
o

n
d

s
)

Number of Tickets Outstanding

Create One Ticket
Retrieve One Ticket
Authenticate with Ticket
Read Empty File
Read 16MB File

Figure 5: Various File Operations as Number of Registered

Tickets increases in thousands.

Figure 5 shows the scaling of various operations: creating

a ticket, reading an empty file, reading a 16MB file, and

listing a registered ticket (ticket_list). The authentica-

tion is done over the localhost loopback interface with the

server exporting a Linux ext4 filesystem. We attribute the

linear scaling for creating tickets to the filesystem cost of

inserting files in a directory.

Authentication System Latency (milliseconds)

Hostname 6

Unix 19

Globus 95

Ticket 89

The latency and throughput give an idea of the number of

authentication attempts a client can perform serially and in

parallel. Testing of the latency of each authentication system

is also done over the loopback interface while the throughput

scaling tests were done over our campus grid. The through-

put is measured from continuous connections from several

clients over a period of time. Hostname authentication can

be viewed as a speed of light test for the system as most

authentications succeed with a hostname cache hit. Using

this graph, we can approximate the number of concurrent

clients we can support.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 2 4 8 16 32

A
u

th
e

n
ti
c
a

ti
o

n
 T

h
ro

u
g

h
p

u
t

(a
u

th
/s

e
c
o

n
d

)

Number of Clients

Hostname
Unix
Globus
Ticket

Figure 6: Authentication Throughput

VI. COMPLETE SYSTEM AND FUTURE WORK

To setup a complete workflow using a ticket, a user

identifies data needs manually and runs the necessary

command to create a ticket with each server. As an

example scenario, a user with a job that requires ac-

cess to the /data directory would make a ticket

ticket_create -o my.ticket /data rwl. They

may then construct a job which includes my.ticket when

dispatched to the compute node.

Jobs may retrieve data through Chirp command line

tools or libchirp or through system call redirection

via Parrot which offers a global file namespace for all

catalogued Chirp servers. A client could then access data

directly from the filesystem via filename constructions such

as /chirp/hostname:port/data. As a final step to

running the workflow, a user may delete the ticket manually

using ticket_delete or let it expire naturally.

As future work we intend to augment ticket authentication

to integrate more fully with our existing workflow managers.

In particular, we desire tickets to be automatically created

on behalf of the user based on the data needs of the task to

be run. So, as in Figure 1 on page 2, we envision a workflow

manager which contacts data servers to create a single ticket

with restricted authorization for all the data a job needs. This

new system will utilize tickets registered on multiple servers.

Jobs will then have a single credential which is recognized

by different servers without increasing risk.

VII. RELATED WORK

There are a number of factors to consider when creating

a suitable portable ticket authentication mechanism for a

distributed filesystem. For our purposes, we confine our

considerations in the context of a grid environment where

we want to do computing, probably using some batch job

submission platform, such as Condor [6].

The presumed setting where the filesystem resides im-

pacts how authentication is handled. Distributed filesystems

such as Hadoop [10] assume a local network where claimed

user identities are implicitly trusted. On the other end of

the spectrum, we have AFS [2] and Ceph [11] which are

designed for access by thousands of concurrent users, e.g.

on a campus grid, where authentication must be strictly

enforced; these systems must provide for data integrity

and confidentiality. AFS solves this by incorporating Ker-

beros [12] which independently and securely handles user

authentication. Ceph also uses a scheme similar to Ker-

beros [13].

While AFS and Ceph are suitable as a data store in a

managed grid or cluster, Chirp is designed for a grid where

data for a distributed job system may be accessed in a

temporary fashion and where the data is usually located on

a resource not managed directly by the organization. In this

environment, it is important for data to be protected from

other users of the grid while having minimal infrastructure

requirements so the data can be easily accessed by jobs

on other nodes in the grid. In particular, Chirp does not

require an authentication structure where the server and

clients have persistent credentials. Both clients and the server

are assumed to have transient location.

Distributed filesystems generally recognize only one au-

thentication mechanism. LWFS [14] and Chirp notably

depart from this style by allowing multiple authentication

schemes including Kerberos and Globus GSS-API [15].

Access control has varying granularity across distributed

filesystems. Granularity for access may be limited to file

blocks, objects, files, and directories. Filesystems usually

choose granularity based on how data is distributed to data

nodes. LWFS and Object Storage Devices, complying to the

ANSI T10 SCSI OSD standard [16], use coarse grained

objects for rights associated with a capability. PVFS [17]

implements POSIX Access Control Lists which provide fine-

grained access control on a per-file or per-directory basis.

Chirp also provides Access Control Lists which are managed

on the exported filesystem. As discussed in Section II-C,

the ACL is a simple file managed in each directory. This is

necessary for allowing the Chirp server to be easily torn

down and restarted or for allowing multiple front Chirp

servers to export the same back-end filesystem.

Delegated access is an especially useful feature in a

grid environment where the distributed filesystem allows

access by otherwise unprivileged users or by ”anonymous”

compute jobs. Kerberos version 5 now has a user ticket field,

authorization-data, which provides arbitrary and additive

restrictions interpreted by the end application [18]. The user-

generated proxy ticket is tied to a specific client and host

service as it is a regular Kerberos ticket with added re-

strictions. Unfortunately, such a system creates unreasonable

requirements on the user/system generating the delegated

credentials as the future clients may not be known ahead

of time. Additionally, which data the job requires access to

may not be known at job submission time.

Ceph provides a protocol, Maat [13], which allows the

creation of credentials that may be delegated to other clients.

This system is the most similar to the approach adopted by

Chirp but differs in a few significant ways. For both systems,

a delegated credential is a private/public key pair that proves

authenticity. For each file the user wishes to delegate access

to, Ceph provides a capability associating the hash of the

public key with the rights to the file and a lifetime token. In

contrast, Chirp manages ticket lifetime and access control

on the exported filesystem as it does with regular Access

Control Lists; clients with the ticket do not need a signed

credential from the Chirp server indicating the rights of the

ticket. Jobs also only need to carry the ticket, or private key,

to authenticate.

Ceph also requires that rights to files for a delegated

credential be known during creation. Chirp allows the dy-

namic modification of the ACL mask for a ticket using the

ticket_modify RPC.

In Ceph, delegated credentials associate rights with the

hash of the public key. As a result, the private/public key

pair temporarily has access rights to files independent of the

user which created the credential. For Chirp, a ticket has a

number of access right masks which are applied to the ticket

creator’s access rights. This feature is useful so ticket rights

do not need to be simultaneously updated when changes to

the ACL are made. Updating all of a user’s tickets is an

expensive operation: it requires iterating over all tickets on

the Chirp server to locate all of the user’s tickets.

VIII. CONCLUSIONS

Many established authentication systems exist which se-

curely authenticate users; however, we have argued that

these systems are not always suitable for grid authentication

needs and that we require solutions that are agnostic of

environment authentication systems while providing fine-

grained authorization to user data. We have developed

an authentication mechanism which fulfils these needs by

providing mobile, limited-lifetime tickets with configurable

access control limits. We also demonstrate how these tickets

may be used in a complete environment.

Chirp is free software distributed under the GNU General

Public License and can be downloaded at: http://www.cse.

nd.edu/∼ccl/software.

REFERENCES

[1] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon, “Design and implementation of the Sun network
filesystem,” in USENIX Summer Technical Conference, 1985,
pp. 119–130.

[2] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West, “Scale and perfor-
mance in a distributed file system,” ACM Trans. on Comp.
Sys., vol. 6, no. 1, pp. 51–81, February 1988.

[3] D. Thain, C. Moretti, and J. Hemmes, “Chirp: A Practical
Global Filesystem for Cluster and Grid Computing,” Journal
of Grid Computing, vol. 7, no. 1, pp. 51–72, 2009.

[4] D. Thain and M. Livny, “Parrot: An Application Environment
for Data-Intensive Computing,” Scalable Computing: Prac-
tice and Experience, vol. 6, no. 3, pp. 9–18, 2005.

[5] “Filesystem in user space,”
http://sourceforge.net/projects/fuse.

[6] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the
grid,” in Grid Computing: Making the Global Infrastructure
a Reality, F. Berman, G. Fox, and T. Hey, Eds. John Wiley,
2003.

[7] T. Ylönen, “SSH - Secure Login Connections Over the Inter-
net,” in Proceedings of the 6th USENIX Security Symposium.
San Jose, CA: USENIX, July 1996, pp. 37–42.

[8] R. Needham and M. Schroeder, “Using encryption for authen-
tication in large networks of computers,” Communications of

the ACM, vol. 21, no. 12, pp. 993–999, 1978.

[9] D. Thain and M. Livny, “Parrot: Transparent user-level mid-
dleware for data-intensive computing,” University of Wis-
consin, Computer Sciences Department, Tech. Rep. 1493,
December 2003.

[10] Hadoop, http://hadoop.apache.org/, 2007.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed
file system,” in USENIX Operating Systems Design and
Implementation, 2006.

[12] J. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An
authentication service for open network systems,” in Proceed-
ings of the USENIX Winter Technical Conference, 1988, pp.
191–200.

[13] A. Leung and E. Miller, “Scaling security for big, parallel file
systems,” in Proceedings of the 5th USENIX conference on
File and Storage Technologies. USENIX Association, 2007,
pp. 14–14.

[14] R. Oldfield, L. Ward, R. Riesen, A. Maccabe, P. Widener, and
T. Kordenbrock, “Lightweight i/o for scientific applications,”
in Cluster Computing, 2006 IEEE International Conference
on. IEEE, 2006, pp. 1–11.

[15] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A
Security Architecture for Computational Grids,” in ACM
Conference on Computer and Communications Security, San
Francisco, CA, November 1998, pp. 83–92.

[16] R. Weber, “Information technology: Scsi object-based storage
device commands (osd),” Technical Council Proposal Docu-
ment T, vol. 10, p. 92, 2004.

[17] P. Carns, W. Ligon III, R. Ross, and R. Thakur, “Pvfs: A
parallel file system for linux clusters,” in Proceedings of
the 4th annual Linux Showcase & Conference-Volume 4.
USENIX Association, 2000, pp. 28–28.

[18] B. Neuman, “Proxy-based authorization and accounting for
distributed systems,” in Distributed Computing Systems,
1993., Proceedings the 13th International Conference on.
IEEE, 1993, pp. 283–291.

