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PRINCIPLES FOR THE DESIGN AND OPERATION OF ELASTIC

SCIENTIFIC APPLICATIONS ON DISTRIBUTED SYSTEMS

Abstract

by

Dinesh Rajan Pandiarajan

Scientific applications often harness the concurrency in their workloads to par-

tition and operate them as independent tasks and achieve reasonable performance.

To improve performance at scale, the partitions are operated in parallel on large

pools of resources in distributed computing systems, such as clouds, clusters, and

grids. However, the exclusive and on-demand deployment of applications on these

platforms presents challenges. The target hardware is unknown until runtime and

variable between deployments when applications are deployed on these platforms. So

operating parameters such as the number of partitions and the instances to provision

for execution must be determined at runtime for efficient operation.

In this work, I build and demonstrate elastic applications to provide the desired

characteristics for operation on distributed computing systems. I present case-studies

of elastic applications from different scientific domains and draw broad observations

on their design and the challenges to their efficient operation. I develop and evaluate

techniques at the middleware and the application layer to achieve efficient operation.

In effect, the presented techniques create self-operating elastic applications that dy-

namically determine the partitions of their workloads and the scale of resources to

utilize. I conclude by showing that self-operating applications achieve high time- and

cost-efficiency in their deployed environments in distributed computing systems.
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CHAPTER 1

INTRODUCTION

1.1 Concurrent Scientific Applications on Distributed Systems

The scale and complexity of software in scientific- and data-oriented fields contin-

ues to increase to sustain the advancement of knowledge in their domains. Examples

can be observed in a variety of scientific fields such as bioinformatics [15, 104], molecu-

lar dynamics [85, 107], data mining [130], fluid dynamics [99], genetic algorithms [31],

and biometrics [82]. In order to achieve reasonable performance at large scales, these

applications typically incorporate or exploit concurrency in their workloads. That is,

these applications partition the workloads into concurrent pieces and operate them

independently on allocated resources.

Common approaches used for enabling the concurrent operation of scientific appli-

cations include design patterns [35, 36, 39], programming abstractions [43, 62, 100],

language support [27, 121], runtime support [24], and middleware [108]. A well-

known example is the Message Passing Interface (MPI) [43] paradigm that partitions

the workload as concurrent processes and operates them simultaneously on a equiva-

lent number of CPUs. A more recent example is Hadoop that partitions the workload

into concurrent tasks [35, 39] and operates them on multiple compute nodes.

Even with the exploitation of concurrency during execution, these applications

have grown to surpass the compute and storage capacity of a single or a small net-

work of nodes. Their resource needs are often satisfied only by the aggregate capacity

of hundreds to thousands of compute nodes [64]. In other words, the infrastructure
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for the operation of concurrent scientific applications are only available in large dis-

tributed computing systems [7, 16, 111]. These systems provide the hardware, re-

sources, and interfaces for deploying and operating scientific applications at scale.

The current generation of the distributed computing systems can be classified as

clusters, clouds, and grids.

Clusters. Clusters are a large pool of interconnected resources that are tightly

controlled for access and usage by the organizations maintaining them. Access to

the resources is often provided through batch scheduling systems such as SGE [49],

PBS [55], Maui [63], etc. Clusters are usually found in university campuses and re-

search laboratories. Also, data centers maintained by commercial organizations for

internal use are strikingly similar to clusters in how they are operated and accessed. It

is common to find the hardware, capacity, capabilities, and performance of resources

in a cluster to be homogeneous and fixed. As a result, operation on clusters is lim-

ited to the operating environment defined and configured on the resources. Clusters

provide dedicated access to resources for the requested duration of operation. How-

ever, the duration of operation using resources in clusters is typically bounded by a

globally enforced interval (often 48 hours).

Clouds. Operation using resources in grids and clusters are typically restricted

to the participants, members, and stakeholders of the organizations maintaining

them. The rapid emergence of cloud computing over the last decade has addressed

this limitation and democratized access to large scale computing. Cloud comput-

ing providers, such as Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service

(PaaS), provide public and on-demand access to resources at scale using a metered

pricing model [47, 124]. These providers also offer access to resources of various types

and sizes by grouping them into tiers according to the size, capacity, and capabilities

of the resources. Further, the operating environment in cloud platforms can be com-

pletely configured to suit the needs of the applications. It is important to note the
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deployment of applications on cloud platforms incurs monetary costs to the operators

who provision and maintain resources for the operation of the applications.

Grids. Grids are a federation of resources aggregated across multiple clusters,

campuses, data centers, and organizations. They are built and operated to enable

inexpensive access to large scales of resources to the contributing organizations who

otherwise lack access to such scales in the resources directly available under their

ownership. Grids are focused on providing a seamless interface to geographically dis-

tributed and heterogeneous resources with different access control policies, services,

and interfaces for operation. Examples of grids include Condor [111], Open Science

Grid [91], and BOINC [20], and Folding@Home [102]. Grids typically operate by

harnessing the idle and unused resources in the federation to run large computations.

They allocate idle cycles or capacity as resources available for operation and termi-

nate them when an higher-priority operator, such as the owner of those resources,

begins consumption. As a result, applications operating on grids must be prepared

for the addition and termination of resources at a moment’s notice.

The infrastructure offered in these platforms consist of compute, storage, and net-

work resources that are often virtualized to enable simultaneous sharing of resources.

These platforms are also considered to provide services for mapping jobs onto provi-

sioned resources and balancing load across the available resources. Users can harness

these platforms through the interfaces they offer for requesting, configuring, and ter-

minating the allocation of resources, and for submitting processes for execution on

the allocated resources.

As the scale and complexity of scientific applications continues to increase, the

number of providers of clusters, clouds, and grids, and the pool of resources offered

through them have continued to increase to meet the demand. This trend is beneficial

for end-users of the applications since it grants them multiple options for deploying

the applications at the scales they require or desire. Further, these platforms enable
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end-users to provision resources on-demand and maintain them only for the dura-

tion of use. In addition, the direct access to resources allows end-users to provision

resources across multiple platforms or providers to build the desired operating en-

vironment for the applications. For instance, an end-user might provision resources

from a cluster and complement it with resources provisioned from multiple cloud

providers to accelerate the execution when desired.

In summary, the current generation of distributed computing systems have intro-

duced the ability to achieve exclusive deployments at large scales by provisioning and

maintaining resources exclusively for a single invocation of the application.

1.2 Problem Statement

The advancements provided by the current generation of distributed computing

systems described above have also introduced a new set of challenges. The access

to a variety of resource providers has resulted in a wide variety of resource and

hardware configurations on which the application can be deployed and operated. This

is further compounded when end-users federate resources across multiple platforms to

achieve the scales needed for operation. That is, the target hardware and operating

environment of such applications are unknown until runtime and prone to vary in each

invocation of the same application. This presents challenges since existing approaches

to the design and operation of large concurrent applications assume prior knowledge

of the target environment during their design [24, 43, 108].

The challenges to the design and operation of concurrent scientific applications

on the current generation of distributed computing systems can be stated as follows:

• How should applications be designed and partitioned on platforms when their
target hardware is unknown and variable at the time of their design?

• How should applications determine and express their resource requirements in
terms of the scale of compute instances required for efficient operation?
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In addition, platforms such as clouds charge the end-users directly for the re-

sources they provision and use. Therefore, the cost of operation must be considered

so the end-users can operate the applications in a cost-efficient manner. The chal-

lenges described above can be extended and summarized as follows:

How should applications be built and operated so they achieve high

cost-efficiency during operation at scale when their target hardware is

unknown and variable at the time of their design?

1.3 Overview of Existing Approaches

I begin the search for a solution that addresses these challenges with a discussion

of the deployment and operation model of concurrent applications on distributed

computing systems as illustrated in Figure 1.1. In this figure, the developers are the

entities that design and implement the algorithms that define the structure of the

workload of the applications. The developers use and incorporate various techniques

in the applications to partition their workloads so they can be operated concurrently.

On the other hand, the operators are the entities that operate the applications by

provisioning resources and deploying the application on these resources. The oper-

ators provide the inputs to the application and utilize the results returned by the

application. Note that the operators of scientific applications on distributed comput-

ing systems are often the end-users who directly benefit from the operation of the

application on the provided inputs.

I proceed to use the model presented in Figure 1.1 to discuss the current state-of-

the-art in the development and operation of concurrent scientific applications. This

discussion will highlight the assumptions and drawbacks of existing techniques and

establish the need for a new class of techniques to address the identified challenges.

The techniques currently employed in the development and operation of large

concurrent applications can be presented under three categories:
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Figure 1.1. The deployment model of concurrent applications on
distributed computing systems.

• The developers of the application define the behavior during operation by spec-
ifying the target hardware for operation and the runtime behavior on that
hardware as part of the design. This allows developers to build and tune the
application to specific hardware and achieve efficient operation on them. This
approach is beneficial when the application is deployed exactly on the hardware
and operating environment assumed during design. Examples of this approach
are found in MPI [43] and Cilk [24].

• The operators of the applications specify the resources for operation and tune
the operating parameters of the application based on the size, type, and char-
acteristics of the resources being provisioned. This approach is prevalent in
environments where there are multiple applications and invocations run on the
same pool of provisioned infrastructure. The operators here determine the
parameters for the operation of the applications such that the provisioned in-
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frastructure is utilized in a cost-efficient manner. Hadoop [53] employs this
approach in requiring the operators of the Hadoop cluster to define and specify
the performance and reliability characteristics for the operation of applications
on the cluster.

• The middleware or runtime system between the resources and the applications
takes control of the operation of the application and operates the application
in a manner it defines as efficient. SEDA [119] is a popular example of this
approach. In these approaches, the middleware assumes certain characteristics
of the workload or requires these characteristics to be communicated at runtime.
The knowledge of the workload characteristics is required for the middleware
to make intelligent decisions for their efficient operation.

In summary, these approaches do not support the efficient operation of applica-

tions on hardware unknown during design, or exclusive deployments for each invoca-

tion, or execution of arbitrary workloads.

1.4 Case for Applications as Operators

To address the challenges described in Section 1.2, I propose and demonstrate

that scientific applications must (1) be built as elastic applications and (2) act as

operators in their deployed environments in distributed computing systems.

In this work, I show that applications built and run as elastic applications are

fault-tolerant, adaptive to the resources available for operation, portable across plat-

forms, and simultaneously operate on heterogeneous hardware and operating environ-

ments. These characteristics are essential and beneficial for successful operation on

current distributed computing environments characterized by metered, on-demand,

and exclusive deployments on commodity hardware.

In addition, I argue that elastic applications must assume the responsibilities of

their operators in determining the resources to provision for operation, directing the

concurrent execution of their workloads, and adapting their execution to the operat-

ing conditions. By serving as their operators, applications can measure the operat-

ing conditions and precisely harness knowledge of the current and future needs and
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characteristics of their workloads to determine the operating parameters for efficient

operation. Even when the target hardware is unknown and variable, self-operating

applications achieve time- and cost-efficient operation by determining the resource

requirements and tuning the concurrent operation of their workloads according to

the measured operating conditions.

The key ideas advocated and demonstrated by this dissertation can be summa-

rized as follows:

Self-operating elastic applications achieve time- and cost-efficient opera-

tion on distributed computing systems. These applications directly partition

the concurrency in their workloads into independent tasks, submit the tasks for

simultaneous execution, determine the resources to allocate, and adapt their oper-

ation according to the characteristics of the deployed environment.

1.5 Overview of Dissertation

This dissertation studies concurrent scientific applications and the challenges as-

sociated with their operation on the current generation of distributed systems com-

prised of clusters, clouds, and grids. It then addresses the challenges by presenting

and evaluating techniques for building self-operating elastic applications that over-

come the challenges in achieving time- and cost-efficient operation. It organizes this

presentation in the following chapters.

Chapter 2: Related Work. This chapter reviews prior work on the program-

ming paradigms and techniques used for the concurrent operation of large workloads

on distributed systems. It also discusses current techniques in the middleware and

application layer as well as the principles currently advocated in altering the resource

configurations according to the requirements of the applications. This chapter shows

why these principles and techniques cannot be extended to scientific applications

8



with fixed-size workloads directly operated by end-users on distributed computing

systems.

Chapter 3: Elastic Applications. Large scientific workloads are increasingly

deployed at scale on resources with diverse and commodity hardware configurations.

The reasons behind this trend extend from the readily available access to the wide

variety of resources offered in cloud platforms to the federation of resources from

one or more cluster, cloud, or grid computing platforms. This chapter argues the

need for elastic applications and identifies the desired characteristics for operation on

diverse hardware configurations. It experimentally demonstrates the characteristics

of an elastic application and their benefits for operation on diverse and dynamically

changing operating environments.

Chapter 4: Case Studies of Elastic Applications. This chapter utilizes the

established characteristics of elastic applications in the previous chapter to convert a

variety of scientific workloads to elastic applications. This chapter shows the conver-

sion of six scientific workloads and describes their elastic implementations in terms

of their construction, operation, and the solutions devised to address the challenges

encountered during construction and operation. The chapter also derives high-level

principles for the design of elastic applications from the experiences in building and

operating these applications.

Chapter 5: Middleware Techniques. This chapter formulates the principles

for the design of middleware used for the construction and operation of elastic ap-

plications. It argues for loosening the guidelines imposed by conventional wisdom

on middleware to hide all information about the underlying operating environment.

Specifically, the chapter argues that middleware should expose selective information

about the underlying operating environment to the applications. The chapter also

shows that gains in efficient operation can be achieved when middleware consider and

implement strategies for the migration and management of data during operation of
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the applications on distributed computing systems at scale.

Chapter 6: Application-level Techniques. This chapter presents techniques

for self-operating applications that overcome the challenges with achieving cost-

efficient operation without knowledge of the operating environments at the time of

their design. The chapter shows applications that incorporate the techniques of

application-level model, control, and adaptation to achieve cost-efficiency in any de-

ployed environment without intervention from the end-users who provision resources

for the application.

Chapter 7: Conclusions. This chapter summarizes the principles and tech-

niques presented in this dissertation for the efficient operation of scientific applica-

tions at scale. It shows how the presented techniques for self-operating applications fit

among the use of abstractions and agents for the design and operation of applications

as advocated by previous work. It concludes the dissertation with a vision for how

the presented techniques can be extended to construct fully autonomous distributed

computing applications and identifies future work needed to achieve this vision.
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CHAPTER 2

RELATED WORK

2.1 Scientific Computing

Scientific applications run resource-intensive computations or analysis that are

based on a workload determined by the algorithms they implement and the inputs

and configuration parameters supplied at runtime. In the previous decades, the scales

required for the operation of these applications were only available in super- and high-

performance computing environments [68, 106]. These environments provided access

to expensive and high-end hardware with low failure rates and uniform performance

profiles. These characteristics of the operating environment enabled the applications

to be built and tuned for a specific type of hardware on which they were required or

expected to be operated.

The above high-performance computing environments were also characterized by

restricted access to the stakeholders/members of the organization maintaining them

due to the proprietary setups and expensive infrastructure and maintenance costs.

This meant the operation of large scientific applications was available to only those

with access to these special and restricted environments. As a result, the developers

and operators of these applications were limited and often found it easy to collaborate

in building and operating the applications at scale.

The last two decades have seen the rise and growth of distributed computing sys-

tems in the form of clusters [49, 55, 63], clouds [3, 16], and grids [7, 91, 111]. These

distributed computing systems have democratized access to large arrays of computa-

tional resources by offering them for public consumption at low costs. By providing
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easy and quick access to large-scale resources, these platforms have enabled scientific

software to expand in their scale and complexity and enable scientific breakthroughs.

To help navigate the challenges of building and operating applications on differ-

ent distributed computing systems and their myriad providers, several frameworks

and abstractions were invented. Wolski et al, were the first to present such a frame-

work for operating applications simultaneously across multiple distributed computing

platforms [122]. More recently, [79] demonstrated a framework that transparently

runs applications across heterogeneous resources federated from multiple cloud and

grid platforms. There have also been work on building programming paradigms

operating scientific and data-intensive applications on distributed computing sys-

tems [31, 40, 52, 84].

Other efforts have focused on providing broad lessons learned from their expe-

riences in operating scientific applications on different platforms [59, 73, 125]. The

authors in [59] report and evaluate their experiences in running scientific applications

in a virtualized cloud environment. They show that the scheduling and communica-

tion overheads need to be carefully considered in evaluating the benefits of running

scientific applications on a cloud platform. Lu et al, in [73], describe their experiences

in running a bioinformatics application on Windows Azure and present best practices

for handling the overheads of large scale concurrent operation on cloud platforms.

However, the challenges of efficient operation on distributed computing systems

have been largely left to the application designers. This has resulted in piecemeal ap-

proaches that target a specific class of applications [88, 128] or an operating environ-

ment [10, 32]. In addition, the use of cloud platforms for operation incurs monetary

costs to the operators of the application who provision and maintain the necessary

resources. This demands applications to consider and achieve cost-efficiency during

operation. Further, the detachment between the developers of the applications and

the users or operators of the applications presents new challenges that need to be
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considered and addressed. For example, the operators of the applications might de-

ploy the applications on hardware at a scale that were not known or considered by

the developers of the application during design.

2.2 Service-oriented workloads

Several efforts have focused on solving challenges with the optimal operation and

provisioning of resources for service-oriented and multi-tenant environments such as

web applications [114], e-commerce systems [117], Software-as-a-Service (SaaS) [14],

and databases [96]. Service-oriented workloads handle and satisfy requests from end

users for access to data that is stored or processed remotely such as web content,

databases, web applications, etc. They are characterized by dynamic workloads that

are dictated by the presence and demands of end users.

The techniques for service-oriented environments include load prediction and load

mapping [123], estimation [101, 131], analysis of previous deployments and loads [117],

and monitoring and adapting the provisioned resources according to the needs of

the services [90, 114]. The techniques advocate the adaptation of the operating

environment to the demands of the services.

Service-oriented workloads are unknown, unpredictable, and determined by exter-

nal factors such as the current demands of users during runtime. These parameters

are often externally monitored to determine and adapt the size of resources allocated

for their operation. Further, the economy of operation of these workloads are deter-

mined by the operating costs incurred in serving multiple users and guaranteeing the

negotiated service level agreements. The characteristics of service-oriented processes

are summarized and compared against those of scientific applications characterized

by fixed workloads in Table 2.1.

The differences with service-oriented and multi-tenant environments require tech-
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TABLE 2.1

KEY DIFFERENCES BETWEEN COMPUTATION-ORIENTED AND

SERVICE-ORIENTED PROCESSES

Computation-oriented Service-oriented

Instances
Multiple instances; one for each
user

Single instance; shared across users

Workload Pre-defined Unknown and unpredictable

Deployment
Different platforms and environ-
ments

Anchored to one platform and en-
vironment

Invocation
Multiple times, serves users who
invoked

Once, serves multiple disparate
users

Need for Scale Concurrency/parallelism
Load balancing, redundancy, repli-
cation

Performance Metric Operating time and costs Service level agreements and profit

Operation Lifetime Finite duration Prolonged/indefinite

Changes in Operating En-

vironment
Impact throughout lifetime Impact isolated to specific duration

niques for the cost-efficient deployment and operation of scientific applications with

fixed workloads to be considered and devised differently.

2.3 Workload Decomposition

The decomposition and partitioning of workloads into concurrent pieces is a well-

studied topic in computer science since its early days [86, 95]. Over the years, this

study has extended to scientific workloads and workflows to present techniques for

improving their scale and time to completion [30, 67, 109].

The partitioning and decomposition of workloads have been studied in shared ex-

ecution environments, such as grids and clusters [34, 54]. The work in [34] studies the

use of genetic algorithms to determine a scheduling strategy that can be applied to

determine the optimal partitions and the resources to provision. Hedayat et al. [54]
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describe a distributed workflow management framework for partitioning and operat-

ing workflows on multiple clusters. These efforts however do not consider efficient

operation as a metric in building and evaluating their solutions.

Recently, a number of efforts have explored novel and unconventional mechanisms

to solving the partitioning of workloads in an optimal manner. Agarwal et al. [10]

considered a system with a large proportion of recurring jobs and utilized information

from prior executions to determine the optimal degree of parallelism to enable during

operation. The work in [67] describes the importance of identifying the optimal num-

ber of data partitions for MapReduce applications. It presents preliminary insights

from an approach combining code and data analysis with optimization techniques.

There have also been efforts that consider the partitioning of a specific class of

applications. For instance, the work in [31] studies and establishes a theoretical model

to predict execution times and compute the optimal number of workers for genetic

algorithms. Another instance is the work in [109] that formulates a graph partitioning

algorithm for DAG workflows such that the data transfer overheads between the nodes

of the DAG is lowered.

However, the partitioning of workloads to achieve time- and cost-efficient opera-

tion in every invocation based on the characteristics of the deployed environment have

not been considered and addressed. This work considers the partitioning of work-

loads in such environments where the applications can be deployed in environments

that are unknown and unpredictable during design and vary in each invocation.

2.4 Resource Allocation

The provisioning and allocation of resources for large-scale and resource-intensive

applications have been extensively studied in the context of distributed comput-

ing [37, 66, 98]. Recently, several efforts have considered the cost-efficient deploy-

ment of scientific and data-intensive workloads in cloud platforms [48, 56, 116]. The
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authors in [48] and [33] present heuristics for the optimal allocation of resources for

an arbitrary batch of independent jobs. They also show that the optimal allocation

of resources for an arbitrary batch of independent jobs to be NP-Complete and then

present heuristics-based algorithms for allocation.

The effort presented in [56] describes scheduling techniques in the middleware for

multi-user environments running on cloud resources. Aneka presented in [116] is a

middleware that maximizes resource utilization and cost-efficiency by multiplexing

the execution of several applications on available resources and dynamically scaling

resources when demand exceeds supply. These frameworks require or propose some

coordination between the resource providers and the developers and operators of the

applications in order to maximize the utilization of the provisioned resources.

Previous efforts have built and applied elaborate models for optimizing the time

and cost of operation of applications in certain operating environments in [23, 120].

They utilize feedback from allocated nodes and apply the model to drive resources

allocation based on time and cost constraints of the user. The framework in [23] is

targeted at deployments in a hybrid environment comprised of resources drawn from

a local cluster and a commercial cloud. The framework schedules jobs on the local

cluster and provisions resources in the cloud when the capacity at the cluster cannot

satisfy the time constraints of the applications. The Conductor framework in [120]

presents an abstraction for efficiently deploying MapReduce applications. It includes

a model describing the costs and the computation and storage capacities of various

instances offered in a cloud platform. The models are applied to select the services

that achieve the lowest cost in running the MapReduce application. The applicability

of the framework is restricted to the cloud services and instances that are modeled.

Other efforts have studied and built scheduling techniques for finding the optimal

number of resources in grid and cloud computing environments for a given workflow

under cost constraints [29, 66, 88]. These efforts focus on allocating resources and
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scheduling tasks on those resources such that the workflow completes within the given

time and cost constraints. The authors in [57] employ empirical heuristics based on

assumptions about the workflow and the characteristics of the provisioned resources

to propose a scheduling algorithm that dynamically adapts the resource allocations

during run-time. Efforts have also been made in dynamically provisioning resources

from cloud platforms to extend traditional scientific computing environments such as

clusters and batch systems [45, 75, 76].

There have also been efforts that provide resource allocation techniques for a

specific class of applications they study. For example, the work in [132] considers a

class of applications with flexibility in the quality of the computational results (e.g.,

accuracy) they provide. The authors develop a model mapping the parameters that

determine the quality of the computations to the resource requirements. The model

is then applied to determine the resource allocations that meet the budget and time

constraints set by the user while maximizing the quality of the computation results.

Stewart et al. [105] build a model describing the resources needs of a multi-component

application using instrumentation in the operating system.

The work described in this dissertation focuses on determining the resource allo-

cation that achieves efficient operation of large concurrent workloads in any operating

environment deployed on the distributed computing systems of clusters, clouds, and

grids. This work considers the operating environment to be deployed on resources

that are exclusively provisioned and maintained for the operation of an instance of

the application. It will present techniques for determining the scale of resources that

achieve efficient operation in each exclusive deployment.

2.5 Middleware Techniques

Large-scale, resource-intensive, and scientific applications are built and operated

using middleware, such as operating systems [21], batch scheduling systems [49], exe-
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cution engines [53, 62]. The applications are typically constructed using the program-

ing interfaces provided or imposed by the middleware. This allows the middleware

to direct and manage the execution of the application on the available resources.

Several programming frameworks exist for the development and execution of data-

intensive workflows and applications [5, 53, 78, 87]. Recently, the use of execution

engines for building and running resource- and data-intensive applications have grown

in popularity [53, 62, 84]. Hadoop [53] is an open-source implementation that sup-

ports the MapReduce programming paradigm [38]. Dryad provides a programming

framework and distributed execution engine for DAG-based workloads [62]. CIEL

extends the programming and execution model to support dynamic data dependen-

cies and arbitrary data-dependent control flows [84]. These frameworks offer several

advanced features in allowing users to modify their workflows to run on distributed

systems and improve the run-time performance and time-to-completion. However,

most of these frameworks require prior installation on the resources allocated for

operation and therefore can be an inconvenience for on-demand deployment and op-

eration of applications.

These frameworks were designed for operation within a single infrastructure or

administrative domain and are similar to batch systems [49, 55] in their scheduling

and management of resources. However, unlike batch systems, these distributed

execution engines also control and manage the workload or data partitioning, data

transfer, and locality when executing their applications. Since these decisions are

often hidden from the applications, it is difficult for the operators of the applications

to accurately estimate and provision the right size of resources required for their

execution. This impacts their runtime performance and lowers their cost-efficiency

when deployed on cloud platforms.
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2.6 Application-level adaptations

Application-level techniques and adaptations have been proposed and studied in

several fields such as databases [61], distributed programs [46], and multimedia [115]

systems [11]. The work in [9] considers applications that adapt their workload accord-

ing to the resources available for operation and presents compiler-level techniques for

building such applications. The authors in [51] survey techniques, such as partition-

ing, in the database layer for adapting query plans to changing operating conditions.

Previous efforts have successfully advocated and demonstrated the use of application-

level models and techniques for overcoming challenges in various operating environ-

ments [32, 44]. The work in [32] advocates application-level scheduling techniques

for efficiently running independent jobs on heterogeneous resources in a grid. Doyle

et al. [44] formulate and apply an internal model of the behavior of service-oriented

programs to predict their memory and storage requirements and provision resources

for multiple competing programs running on a shared infrastructure.

This dissertation advocates and applies application-level techniques for achiev-

ing cost-efficient deployment and operation of concurrent applications in distributed

computing platforms.
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CHAPTER 3

ELASTIC APPLICATIONS

3.1 Introduction

The execution environments offered by distributed computing systems can be very

challenging since they consist of heterogeneous resources with rapidly changing avail-

ability and a high probability of failure. For example, the Spot-Pricing [17] service

offered by Amazon provides virtual machines whenever the market price falls below

the user’s threshold. An application running on this service must be prepared for the

addition and removal of resources at a moment’s notice. In this way, it is not unlike a

grid using a cycle-stealing strategy such as Condor [72] or BOINC [20]. In addition,

the execution environments can vary in their behavior and characteristics between

invocations of the applications due to differences in the hardware and characteristics

of the platforms on which they are deployed.

Previously built scientific applications are not prepared for such execution envi-

ronments, because they are usually built around the assumption of fixed, homoge-

neous resources at a single location. For example, message-passing applications are

usually designed to run on a fixed number of processors – usually a power of two –

that cannot change during runtime. A multi-threaded program is usually designed

to run on a fixed number of cores selected at startup; changing the number of cores

at runtime results in a serious performance penalty.

Further, these scientific applications lack the ability to harness any currently

available resources to proceed with execution and this often leads to poor productivity
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where valuable time is spent waiting for all requested resources to be available. Also,

while fault tolerance can be achieved with checkpointing or other error recovery

techniques implemented at the application level, they inherently lack a dynamic fault-

tolerance and error-recovery mechanism that will allow for executions to recover from

multiple failures, proceed execution or migrate seamlessly to another site in the event

of unrecoverable failures. The behavior and performance of such applications vary

with hardware, platform, network characteristics [12, 94] and often need to be tuned

to suit the platform and hardware used in execution.

In summary, previously built scientific applications are constrained by the avail-

ability of dedicated and tightly controlled resources. These applications are inefficient

in their utilization of available resources and any resources that become available dur-

ing run-time. Such limitations prevent these applications from successfully leveraging

the scale and affordability of operation on distributed computing systems.

This chapter introduces and defines elastic applications as the paradigm of choice

in building applications for distributed computing systems. It describes the neces-

sary characteristics that every elastic application must exhibit to achieve successful

operation on distributed computing systems. It goes on to present the conversion

of a scientific application to an elastic application that exhibits these characteris-

tics. This chapter concludes with an experimental demonstration of the scalability,

resource adaptability, fault-tolerance, and portability of elastic applications during

their operation.

3.2 Definition and Characteristics

We define applications that adapt their operation to the characteristics of the

deployed environment as elastic applications [92]. These applications exhibit flex-

ibility in the execution of the workload, tolerance to failures, adaptability to the

resources available for operation, and portability across different platforms. They
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can dynamically adapt to the size, scale, and type of resources available at any given

moment, and tolerate failures in the hardware and execution environment. Further,

their deployment can be moved to a different platform or infrastructure with mini-

mal effort and intervention from the operators. As a result, elastic applications are

well-suited to operate in the dynamic environments of distributed computing systems

such as clusters, clouds, and grids.

The characteristics of elastic applications are described as follows:

• Adaptability. They must adapt to resource availability during run time. That
is, they must dynamically expand their resource consumption to include re-
sources that become available during execution. At the same time, they must
also adapt to resources being lost or terminated during execution. These adap-
tations must occur seamlessly without intervention from the operators.

• Fault-tolerance. They must continue execution in the presence of run-time
failures. They must isolate failures to individual executions or resources and
dynamically recover by re-running the failed executions or by migrating them
to successfully operating resources.

• Portability. They must be portable across different platforms and environ-
ments with limited effort from users. They must be able to execute on any
platform using the software components specified by users for that platform
without having to be re-engineered or rewritten.

• Versatility. By leveraging their portability, elastic applications must be able
to simultaneously harness resources with diverse operating environments. In
other words, users must be able to run them using resources federated from
any cluster, cloud, or grid platform as long as the software compatibility with
the different operating environments is established.

These characteristics further enable elastic applications to achieve scalability and

reproducibility without being tied to a specific operating environment or hardware.

3.3 Programming Model and Architecture

In this work, I consider workloads that can be expressed and operated using

the split-map-merge paradigm and show their construction as elastic applications.

This paradigm encompasses the bag-of-tasks [35], bulk synchronous parallel [50],
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Figure 3.1. Architecture of split-map-merge based elastic applications.

scatter-gather [36], and the popular Map-Reduce [38] (where the split is done during

the initial upload of the data to the filesystem of the execution framework) models

of concurrent programming. A number of large-scale workloads are expressed and

operated using the split-map-merge paradigm [8, 74, 112]. A formal expression for

the split-map-merge paradigm is formulated below.

Workload : f(N) → O, (3.1)

Split(N, k) : N → {s1, s2, . . . , sk}, (3.2)

Map(k) : f(si) → Oi for i = 1, 2, . . . , k, (3.3)

Merge(k) : {O1, O2, . . . , Ok} → O. (3.4)
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Equation 3.1 describes the overall operation of the workload which performs a

transformation on input N to produce output O. The split step in Equation 3.2 takes

a parameter k and splits N into k partitions. The map step runs the transformation

on each of the k partitions as shown in Equation 3.3. Finally, the merge step in

Equation 3.4 aggregates the outputs of the individual map functions to produce the

final output O. The merge function could be a simple concatenation of the outputs

or a sophisticated function (e.g., merge of values in sorted order) depending on the

workload. It is important to note the value of O is not affected by the choice of k. The

concurrency in split-map-merge workloads results from the simultaneous execution

of the map operations.

Figure 3.1 presents a overview of the architecture of elastic applications using the

split-map-merge paradigm. The workload of the applications can be expressed in a

variety of forms. It could be a directed acyclic graph or workflow in which the tasks

and their relationship are fully elaborated in advance. It could be a data decompo-

sition in which a large dataset is broken into pieces and processed independently. It

could be an iterative algorithm in which a set of tasks is dispatched, evaluated, and

then dispatched again until an end condition is met. These structures can describe a

variety of applications, such as Monte-carlo simulations [22], protein folding [8], and

bioinformatics [112]. Also, the workloads of the elastic applications can consist of a

single, multiple, or iterative split-map-merge phases.

Elastic applications are typically implemented by constructing a long-running

coordinator that submits a large number of short-running tasks. The coordinator

is responsible for observing available resources, decomposing the workload into tasks

of appropriate size, submitting and monitoring tasks, handling fault-tolerance, and

interacting with users. The individual tasks are usually self-contained executable

programs, along with their expected input and output files. The individual tasks

may make use of local physical parallelism in the form of multi-core machines or

24



accelerated hardware such as GPUs, while the coordinator operates at a parallelism

of anywhere from one hundred to ten thousand tasks running simultaneously.

3.4 Middleware

The construction and operation of elastic applications on distributed computing

environments can consume extensive effort, time, and cost, especially if these ap-

plications run large and complex workloads. To lower the level of effort and cost

required, developers can take advantage of frameworks and middleware to engineer

their applications through the offered API and library interfaces.

A framework chosen for building and operating elastic applications must imple-

ment and provide the necessary interfaces for achieving the required properties of

resource adaptability, fault-tolerance, portability, versatility, and scalability. In ad-

dition, the framework must be able to operate independent of the platform, oper-

ating environment, and hardware provisioned for operation. It must also hide the

complexities and heterogeneity in the underlying platforms and hardware from the

applications. Finally, it must offer easy to use interfaces and facilitate quicker devel-

opment and deployment of the applications to different platforms and providers with

minimal effort from the developers and operators of the applications.

In this work, we use the Work Queue [127] framework developed by our research

lab at the University of Notre Dame. It is important to note that are several other

middleware and frameworks can be utilized for building elastic applications [53, 62,

65]. We chose Work Queue since it provided us the opportunity to incorporate, study,

and evaluate the application and middleware techniques presented in this work.

The Work Queue [26] framework is used to implement the master-coordinator

of the elastic applications. Work Queue provides interfaces for describing the tasks

of a workload, submitting the tasks for execution, and retrieving the results of the

executions. Work Queue has been used to build a number of elastic applications in
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fields such as molecular dynamics, data mining, bioinformatics, and fluid dynamics [8,

83, 92, 93, 112].

The Work Queue framework is based on a master-worker execution model. It

consists of the following components:

• Work Queue Library implements and provides the functionality for coor-
dinating the workload execution across workers. It schedules tasks on work-
ers, transfers the inputs and outputs of tasks, and reschedules failed tasks.
The library also provides data management capabilities, such as caching and
scheduling policies that favor workers with pre-existing data.

• Work Queue API provides the interfaces (in C, Python, and Perl) to the
Work Queue library. The API is used to create master (coordinator) programs
that create, describe, and submit tasks for execution, and retrieve their outputs
upon execution.

• Work Queue Worker is a lightweight process that is run on the allocated
resources. It connects to a specified Work Queue master and executes the
dispatched tasks.

The master-coordinator of the elastic applications is implemented by their devel-

opers using the Work Queue API. The individual units of execution of the application,

referred from here on as tasks, are partitioned and described by the master. The in-

put files, the executables and execution commands to run, and the output files of

the tasks are specified by the master using the API of Work Queue. The underlying

Work Queue library dispatches and coordinates the executions of the tasks across the

connected workers, aggregates the completed results and returns them to the master-

coordinator. Figure 3.2 presents the outline of the construction and execution of an

elastic application using Work Queue.

The Work Queue library dispatches tasks to workers as they establish connection

and reschedules tasks running on terminated workers. This allows applications to

adapt to the size of the available resources during runtime. Work Queue automatically

reschedules tasks that failed due to resource failures and allows the application to

examine completed tasks and resubmit tasks with erroneous results, thereby enabling
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Figure 3.2. Construction and operation of applications using Work Queue.
The code on the left is an outline of an elastic application.

fault-tolerance in its applications. Work Queue requires applications to explicitly

specify the software and data dependencies for the tasks so the environment needed

for execution can be created at the workers without concern for the native execution

environment. This enables Work Queue to provide data management facilities, such

as caching and scheduling policies that favor workers with cached data.

The workers are deployed as executables on the provisioned resources and they

are invoked as standalone processes. The workers can be compiled, installed, and run

on any POSIX compliant environment. This implies that the worker can virtually be

deployed and run on any operating environment including Microsoft Windows based

environments (using Cygwin [1]).
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3.5 Example: Elastic Replica Exchange

We construct an example elastic application to experimentally demonstrate and

evaluate the characteristics of elastic applications and the benefits they present for

operation on distributed computing systems. In this chapter, we consider the con-

struction of replica exchange molecular dynamics simulation as an elastic application.

Replica exchange molecular dynamics [25, 107] is a technique used to improve the

sampling of the potential energy surface in a protein system. Further details about

the replica exchange algorithm and its implementation as an elastic application are

presented in Chapter 4.

The replica exchange computations are typically implemented using MPI. Some

of the simulation software such as ProtoMol [77] and Gromacs [71] offer built-in MPI

implementations for this purpose. However, as we discussed earlier in Section 3.1, the

MPI based implementations exhibit disadvantages and inefficiencies when operated

on distributed computing systems. So to overcome the shortcomings of MPI based

implementations of replica exchange, we built an elastic implementation using the

Work Queue framework described above.

The implementation of elastic replica exchange involves the creation of the mas-

ter (coordinator) script described in Section 3.3. The master is built using the Work

Queue API. The master creates and specifies the configuration and input files re-

quired for each iteration of the computation and gathers the output files upon their

completion by the Work Queue workers. At the end of each iteration, the master

checks to see if an exchange can be attempted between two replicas and if so swaps

the necessary parameters of those replicas. The master then proceeds to generate the

configuration and input files for the next iteration. The master, therefore, coordi-

nates the entire simulation across the workers running on the allocated resources for

operation. The tasks created by the master use the ProtoMol [77] as the computation

kernel for running the simulations on their inputs.
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In the next sections, we experimentally study and evaluate this elastic implemen-

tation of replica exchange.

3.6 Comparison against an Existing Construction using MPI
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Figure 3.3. Running time performance comparison of MPI- and Work
Queue-based implementations of replica exchange.

We first compare the performance of the elastic implementation of replica ex-

change using Work Queue against its MPI implementation. For the experiments in

this section, we deployed and ran both implementations on the Sun Grid Engine [49]

infrastructure at the University of Notre Dame. Each experimental run involved simu-

lations over 100 Monte Carlo steps with each step running 10000 molecular dynamics

steps. Figure 3.3 compares the running time of the MPI- and Work Queue-based

implementations of replica exchange. The number of workers deployed and run was

equal to the number of replicas simulated in the experiment. For example, a run

with 30 replicas had 30 workers being deployed and run. The running time of these
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experiments were measured from the start of simulation to its completion. Therefore,

Figure 3.3 does not include the job queuing and scheduling delays. In this figure,

we observe that the Work Queue implementation has a slightly higher running time

than the MPI implementation. This is attributed to the communication and data

transfer overheads between the master and workers running remotely.

An important observation we make in Figure 3.3 is that the MPI runs do not

scale well beyond 120 replicas. This is due to the lack of resources at this scale being

available simultaneously on the Notre Dame SGE infrastructure. We also note that

the Notre Dame SGE has a constraint on the resources available to a user at any

given time, thereby limiting the scalability of the MPI implementation even with

the availability of more resources. On the other hand, we see that the Work Queue

implementation scales well due to its ability to scavenge and utilize resources as

they become available. Experiments beyond 120 replicas were achieved by deploying

multiple workers on resources with multiple computing cores and invoking their ex-

ecution on each core through MPI. This illustrates better scalability characteristics

of the Work Queue implementation of elastic replica exchange.

3.7 Experimental Illustration of Characteristics

In this section, we evaluate the operation of elastic replica exchange in terms of

the characteristics identified in Section 3.2. We begin by describing the platforms

used in the experiments presented in this section.

Campus SGE. The Sun Grid Engine (SGE) at the University of Notre Dame is

a dedicated platform for running high performance scientific applications. The jobs

are submitted to the compute nodes via the SGE batch submission system [49]. The

compute nodes run Red Hat Enterprise Linux (RHEL) as their operating environ-

ment. The compute nodes here are typically composed of high-end hardware. The
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TABLE 3.1

PLATFORMS USED IN THE EXPERIMENTAL STUDY AND

DEMONSTRATION OF ELASTIC REPLICA EXCHANGE

Name System Processor I/O

Platform A Amazon EC2 2*2 x 1.0-1.2 GHz 7.5 GB memory

Platform B Notre Dame SGE 2*2 x 2.6 GHz 8-12 GB memory

Platform C Microsoft Azure 2 x 1.6 GHz 3.5 GB memory

workers were queued and submitted as jobs to this grid. Upon being scheduled and

run, the workers connect to the master and execute the assigned workloads.

Amazon EC2. The Elastic Compute Cloud or EC2, built by Amazon.com, is

a platform that allows virtual machine instances to be requested, allocated, and

deployed on demand by users. Different instance sizes are provided with vary-

ing hardware configurations to satisfy different requirements and workloads of the

users [18, 89]. The instances allocated can be installed and run with different Linux

operating system flavors and kernels and their operating environments can also be

customized. Since the instances can be installed and customized to run a Linux

environment, the migration of our implementation to EC2 was similar to SGE.

Microsoft Azure. The Windows Azure platform, from Microsoft, offers virtual

instances running an image of the Azure operating system. The virtualized instance

is offered through the Azure hypervisor and provides an operating environment based

off the Windows Server 2008 R2 VM system [58, 80]. There are two computational

roles offered in the platform - the web role that serves as the front end interface to the

allocated compute instances, and the worker role that serves as the core computing

unit that runs tasks and applications. As a result of this two tiered architecture, we
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built wrapper scripts that communicate to the web role and invoke workers on the

worker roles. We also used Cygwin-compiled executables in migrating our implemen-

tation to this environment.
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Figure 3.4. Failures observed with Replica Exchange using Work Queue.

The failures include both application-level (such as failure to reach desired
simulation state) and system-level failures (such as timeouts on data transfer).

Figure 3.4 illustrates the number of failures that occurred on the worker sites when

running on the campus SGE platform. These failures are attributable to a variety

of factors such as stalled workers, application faults, data transmission failures,etc.

With the MPI-based implementation, these failures will stall the entire experiment

and will need to be restarted and rerun. The Work Queue implementation offers

fault-tolerance by rerunning only the failed task in the experimental run, and in the

event of any unrecoverable failures at a worker, migrating its execution to a different

worker.

We now proceed to port and study the elastic implementation of replica exchange

on two cloud computing platforms, Amazon EC2 and Microsoft Azure. We study
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and demonstrate the behavior of our elastic implementation on these different plat-

forms. Our objective is not to compare the performance of the distributed computing

platforms against each other, as they offer different cost-performance trade-offs us-

ing different hardware. Instead, our goal here is to show that our system functions

correctly and portably across multiple different environments.
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Figure 3.5. Comparison of running times on the platforms described in
Table 1.

In the experiments described below, the number of workers deployed were again

equivalent to the number of replicas involved in the simulation run. Each experiment

ran simulations performed over 100 Monte Carlo steps involving 10000 molecular

dynamics steps each. Figure 3.5 shows the running times of experimental runs with

varying replica sizes on these platforms. The x-axis represents the number of replicas

involved in each run. Figures 3.6 and 3.7 plot statistical data on the completion time

of the individual Monte Carlo steps on the three platforms from experimental runs

involving 18 replicas. Figure 3.6 plots the cumulative distribution function of the

33



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50  100  150  200  250  300  350

P
ro

b
a
b
ili

ty

Iteration completion time (seconds)

Platform A
Platform B
Platform C

Figure 3.6. Cumulative distribution function of the completion times of the
iterations in Replica Exchange using 18 replicas.

completion time of each step. Figure 3.7 gives the corresponding histogram plotting

the distribution of completion times after being classified in bins.

From Figures 3.6 and 3.7, we notice significant variations in the completion times

of the Monte Carlo steps on one of the platforms (Platform C) as compared to the

other two platforms. While these variations can be attributed to one or more of

several factors including network latencies and jitter, virtualization effects, firewall,

load balancing etc., this is good evidence that our implementation is impervious to

any peculiar platform and network characteristics of a distributed computing system.

Our implementation demonstrates the ability to hide differences in the characteristics

and behavior of different distributed computing platforms from the application.

We also demonstrate the execution of elastic replica exchange across multiple

distributed computing platforms. We show this by deploying workers across all three

platforms in Table 1. The experimental run involved 75 replicas simulated over 100

Monte Carlo steps running 10000 molecular dynamics steps. Figure 3.8 presents the

number of workers connected, the completion time of each Monte Carlo step, and

the running cost during this experimental run. The experiment was started with 25

workers being submitted and run on the Platform B. Since there are 75 tasks, as a
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Figure 3.7. Histogram of the completion times of the iterations in Replica
Exchange using 18 replicas.

The bins used in the plot were of size 25 time units (seconds) and each bin consists
of all values that are greater than or equal to the corresponding bin label. The bin

labels are plotted on the x-axis.

task corresponds to a simulation step of one replica, it takes three round-trips of task

execution for these workers to finish a Monte Carlo step.

After an hour (around 4200 seconds in Figure 3.8), we deploy and run 25 workers

on instances in Platform A bringing the total number of workers to 50. This addition

of resources lowers the completion time of Monte Carlo steps as it requires only two

round-trips of task executions across the workers. We then deploy and run another

25 workers on Platform C after two hours of run-time (around 7600 seconds). We

immediately observe a spike in the running time which we attribute to the long

transfer times in sending the simulation program, ProtoMol, to the added workers.

We also observe from Figure 3.8 that the addition of these workers on Platform C

results in an increase in the running time of each step. This is because the running

time of simulation steps on Platform C significantly varies from the other platforms as

we observe in Figure 3.5. We attribute these to differences in the hardware, network,

and system characteristics and specifications of these platforms. As a result, adding

workers on Platform C negates any benefits gained from the parallelism in running
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Figure 3.8. Illustration of a run across all three platforms described in
Table 1.

75 tasks simultaneously. We manually removed the workers on Platform C after an

hour of their deployment (around 10100 seconds) to speed up the completion of the

experiment. This results in the failure of tasks running on the removed workers. The

spike in the running time following the removal of these workers is attributed to the

failed tasks being scheduled and rerun on the remaining workers.

We continue with an evaluation of the work queue implementation of replica

exchange focused primarily on its ability to adapt to resource availability. In this

experiment, we run a replica exchange simulation with 400 replicas over 100 Monte

Carlo steps. Figure 3.9 plots the time to complete the simulation of a Monte Carlo

step over all replicas. The master script was run from a workstation inside the Notre

Dame campus network. We note that the master can be run from any site including

distributed computing platforms, but we chose this setup to illustrate ease of building

and deploying the master.
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Figure 3.9. Running time of Monte Carlo steps run over 400 replicas with
workers running on multiple distributed computing systems.

TABLE 3.2

DESCRIPTION OF THE EVENTS SHOWN IN FIGURE 3.9

Event Description Total workers after event

A Start of experiment with 100 workers in
ND SGE

100

B Addition of 150 workers in Condor 250

C Addition of 110 workers in Condor and 40
workers in Amazon EC2

400

D Removal of 100 workers in ND SGE 300

E Removal of 125 workers in Condor and 25
workers in Amazon EC2

150
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We utilize workers on three different platforms: our 4000-core campus cluster

managed by SGE, our 1200-core campus grid managed by Condor, and the Ama-

zon EC2 service. Over the course of the experiment, the computing resources varied

dynamically as compute nodes were requested, allocated, and terminated. The spe-

cific instances at which the available resources changed is labeled in the figure and

described in Table 3.2.

We make the following observations from Figure 3.9. The work queue implemen-

tation of replica exchange is elastic in dynamically adapting to resource availability.

We observe this at each of the described events in Table 3.2. At Events B and C,

where the addition of workers to the existing pool results in the running time of the

Monte Carlo steps being lowered. At Events D and E, the termination and removal of

workers only leads to an increase in the running time without stalling the simulation

run. We also observe that the work queue implementation is fault tolerant and recov-

ers from failures. We observe this at Events D and E, where workers where removed

while they were executing tasks corresponding to the Monte Carlo simulations of the

replicas. This resulted in the failure of tasks being executed by the removed workers.

Work Queue dynamically rescheduled these failed tasks on the remaining workers for

handling failures resulting from tasks being killed or terminated. We attribute the

spike in the running time following Events D and E to the failed work units being

rerun on the remaining workers as they finish execution of their assigned tasks.

Finally, we make the observation that the simulations completed with individ-

ual tasks executing at resources provisioned from different distributed computing

platforms. The Work Queue implementation of replica exchange is oblivious to the

underlying execution platform and environment and thus enables multiple cloud plat-

forms to be leveraged at the same time. This is especially useful, when the user is

constrained by policies on the number of running processes inside a cloud platform,

access to limited set of resources in commercial cloud platforms due to monetary
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constraints, etc. In summary, the evaluations performed on different distributed

computing platforms in Figures 3.8 and 3.9 show the portability of the Work Queue-

based implementation of replica exchange.

3.8 Conclusion

This chapter showed that elastic applications are well-suited for operation on

distributed computing systems by their ability to adapt to resource availability, re-

cover from failures, scale, and portability across multiple execution environments.

The adaptability of elastic applications to the available resources allows operators to

scale up and down the resource allocations based on their evolving needs and cost

constraints. Their fault-tolerance enables progress in execution even in the pres-

ence of multiple simultaneous failures. The platform-independent operation and the

portability of these applications allows operators to easily migrate or extend their ex-

ecution to a different platform or infrastructure of choice without having to redesign

or rewrite the application. Further, these characteristics enable elastic applications to

achieve scalability in a single platform or across multiple platforms through federation

while eliminating the need for dedicated and sophisticated hardware.

This chapter also showed the elastic implementation of replica exchange can be

slower compared to its MPI-based implementation. A contributing factor is the

overheads of the transfer of the inputs and outputs between the master and its workers

and the use of a global synchronization barrier. In the next chapter, we analyze the

construction and operation of the elastic replica exchange application and a few

other applications used in different scientific fields. The analysis is used to identify

the bottlenecks in operation and build techniques to eliminate those bottlenecks.
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CHAPTER 4

CASE STUDIES OF ELASTIC APPLICATIONS

4.1 Introduction

This chapter presents experiences and observations in designing and implement-

ing a selection of elastic applications on clusters, clouds, and grids: Elastic Sort (E-

SORT), Elastic MAKER (E-MAKER), Elastic Replica Exchange (REPEX), Folding

At Work (FAW), Accelerated Weighted Ensemble (AWE), and Elastic Bowtie (E-

BOWTIE). Table 4.1 summarizes the properties of these applications. This chapter

also describes the challenges encountered in the construction and operation of these

elastic applications in heterogeneous and dynamically changing environments. It

presents and explains the techniques applied in each application to overcome the

challenges. The chapter concludes by establishing six broad guidelines derived from

the presented techniques and other observations from building and operating these

applications: (1) Abolish shared writes, (2) Keep your software close and your de-

pendencies closer, (3) Synchronize two, you make company; synchronize three, you

make a crowd, (4) Make tasks of a feather flock together, (5) Seek simplicity, and

gain power, and (6) Build a model before scaling new heights.

The applications in this chapter are built using the Work Queue [26] framework,

but the guidelines presented in this chapter apply to many other elastic applications

constructed using other programming frameworks.
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TABLE 4.1

PROFILE OF THE STUDIED ELASTIC SCIENTIFIC APPLICATIONS

Application Function Input Kernel
Work Queue

Code Size

Logical

Structure

E-Sort Data processing
File containing

integer records
GNU Sort ∼ 750 lines

E-MAKER
Annotate genome

sequences

Anopheles

gambiae genome
MAKER ∼ 1150 lines

REPEX

Sample

conformational

space of proteins

WW protein

domain
ProtoMol ∼ 700 lines

FAW
Study of protein

dynamics

Alanine Dipeptide

molecule
Gromacs ∼ 600 lines

AWE Protein folding
WW protein

domain
Gromacs ∼ 1000 lines

Bowtie Genome alignment

Culex

quinquefasciatus

genome

Bowtie2 ∼ 250 lines

4.2 Elastic Sort (E-SORT)

Operations on large sizes of data has traditionally been one of the driving factors

behind the push for greater compute capacity and storage. These operations typically

involve processing, analyzing, or mining for patterns in data. In this dissertation, I

consider the sorting of records in a file as a representative workload of many data

processing and analysis applications.

Function. The sorting of large datasets can be accomplished within a reason-

able time duration by partitioning the dataset, sorting the partitions individually, and

merging them in sorted order. This approach is very similar to the merge sort algo-

rithm. Elastic Sort or E-Sort, built using Work Queue, provides an implementation

for the sorting of large data sets using resources in distributed computing systems.

E-Sort partitions the N data records and dispatches each partition to a remote worker
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instance where it is sorted. The sorted partitions are then aggregated and merged at

the master-coordinator to produce the final sorted sequence. The sorted partitions

are merged using a simple k-way merge. The merge algorithm iteratively compares

the records in the K partitions and selects them in sorted order to produce the final

output. The asymptotic running time of the algorithm is O(N ∗K). It is important

to note that the goal here is not to build an optimized implementation of the sort

algorithm but to demonstrate and study the elastic application. The logical structure

of E-SORT is illustrated in Figure 4.1.

Figure 4.1. Logical structure of E-SORT.

Construction and scale of operation. The implementation of E-Sort using

Work Queue consists of about 750 lines of code in the C programming language.

E-Sort has been successfully used to sort over 20 billion integer records totalling 111

GB in size. To limit long execution and wait times for results, I perform experiments

using a smaller data size consisting of 2 billion integer records that total 11 GB in

size. When this data was sorted sequentially using the GNU Sort kernel, it took more

than 2 hours to complete on a 64-bit machine with 12 GB of physical memory. In

contrast, E-Sort using carefully determined operating parameters sorted this data in

less than 50 minutes using 18 cores.
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The distributed sorting of records using E-Sort is also a good example of a work-

load that stresses the compute, I/O, and networking subsystems during operation.

The sorting operation is I/O bound since the integer records are read from the file

stored in disk and loaded into memory. The sorting of the records in memory involves

the execution of arithmetic comparison instructions at the CPU. The sorted values

are then written back to disk and transferred to the master where they are merged to

produce the sorted sequence. The transfer of the partitioned inputs and outputs to

and from the master happen over the network, and therefore the operation of E-Sort

also heavily utilizes the network resources.
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Figure 4.2. Running time of distributed sorting (E-Sort) and sequential
sorting.

The experiments were performed on medium-size instances in Microsoft Azure.

Observations. The number of partitions created by E-Sort during operation

determines the runtime performance and operating costs. Figure 4.2 presents the

running time of E-Sort with different partitions when sorting 2 billion integer records.

In this figure, we observe the presence of an optimal partition size at 18 partitions

that achieves the fastest running time. Further, the figure shows that a poorly chosen
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partition size can result in a running time that is worse than the sequential execution

of the GNU Sort kernel in sorting the same data. These observations illustrate the

need for the careful determination of the number of partitions in each operation of

E-Sort. We encounter this challenge in all the elastic applications studied in this

chapter.

To correctly determine the partitions for sorting the specified inputs in the de-

ployed operating environment, we need to know the trade-offs between the gains and

overheads of operating with a certain number of partitions. This requires a model

that formulates the overheads of operation in the deployed environment. The parti-

tioning can then be effectively determined using estimates of the runtime performance

obtained from the model for the current operating environment.

4.3 Elastic Replica Exchange

Protein folding is a grand challenge and has been simulated using molecular dy-

namics (MD), which numerically integrates Newton’s equations of motion for all the

atoms in a protein system. The potential energy of the protein system dictates the

probability of remaining in a given geometric configuration, while the temperature

provides energy to jump over barriers in the potential energy surface. Due to the

high dimensionality of the problem, MD simulations often get trapped in local min-

ima of the potential energy surface. One way of overcoming energy barriers is to raise

the temperature of the system; however, the paths obtained from high temperature

simulations do not correspond to the paths at the lower temperature.

A technique used to improve the sampling of the potential energy surface is par-

allel tempering, also called replica exchange molecular dynamics [25, 107], which has

replicas at many temperatures. Many configurations are visited by the high tem-

perature replicas and then annealed to lower temperature replicas by a Monte Carlo

procedure that achieves the correct statistical distribution.
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Figure 4.3. Elastic implementation of Replica Exchange using Work Queue.

Function. Replica exchange molecular dynamics simulations are run by creating

multiple replicas of a protein molecule and executing each over several Monte Carlo

steps or iterations at different temperatures. These replicas are independent of each

other and therefore, can be simulated concurrently. At the end of every iteration,

an exchange is attempted between neighboring replicas, where if certain criteria are

met, the replicas are swapped with regards to their temperature and the simulation is

continued. The simulations of replicas in each iteration are completely independent

and can be performed parallel to each other. The communication between replicas

only happens at the end of each iteration when an exchange is attempted.

Construction and Operation. The previous chapter described the construc-

tion of the replica exchange simulations as an elastic application using Work Queue.
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(a) Global synchronization (b) Localized synchronization

Figure 4.4. Logical Structure of REPEX.

The architecture of the elastic implementation of replica exchange is outlined in Fig-

ure 4.3.

Similar to the native MPI implementation, elastic replica exchange was imple-

mented using global synchronization barriers. That is, the entire set of simulated

replicas were synchronized at the end of each time step when an exchange is at-

tempted. Each time step, therefore, served as a global barrier. These barriers were

used to ensure the two random neighboring replicas chosen to attempt an exchange

were at the same time step in the simulation. Figure 4.4a illustrates the logical

structure of replica exchange with global barriers.

These global barriers were needed in ensuring correctness of the replica exchange

in parallel computing environments to ensure the replicas were in lockstep. Due to

the homogeneity in these environments, the performance impact of using each time

step as a global barrier was minimal and often overlooked.

Observations. In the heterogeneous operating environments of distributed com-

puting systems, global barriers introduce delays and overheads which adversely im-

pact the overall performance of the application.

Therefore, to run replica exchange simulations efficiently as elastic applications,

the presence of global barriers must be removed. So, we replace the global barrier

at each time step with barriers spanning two neighboring replicas. We pre-compute
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the pairs of replicas used for an exchange attempt at each step, and require only

those pairs to synchronize at their exchange step. That is, the barriers span a replica

pair and occur at the exchange step of that pair. Figure 4.4b illustrates the replica

exchange logical structure with localized barriers.
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Figure 4.5. Comparison of the running time and transfer overheads of the
global and localized barrier version of REPEX.

The use of local barriers resulted in improvements in the run-time performance

over the globally synchronized version as illustrated in Figure 4.5. Figure 4.5a plots

the running time of experiments involving 150 replicas averaged over 10 runs. It shows

the average running time as the number of workers allocated on the Condor grid at

Notre Dame is varied. We observe that the running times of the local barrier version

were faster in the presence of shared resources, heterogeneous hardware, resource

failures (these factors are also the reasons behind the uneven run times observed for

both versions).

The use of localized barriers also enabled the workload to be partitioned such that

the tasks within a partition share data and generate outputs that serve as inputs for
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other tasks in that partition. This avoids the transfer of input and output files at

every time step and makes better use of the available storage capacities at allocated

resources. Figure 4.5b illustrates the lower transfer overheads of the localized barrier

version compared to the global barrier version.

4.4 Genome Annotation (E-MAKER)

Genomic annotation is the process of identifying various cellular entities, such

as genes, exons, mRNA, in the genome of an organism. Additionally, genomic an-

notation seeks to assign functional information to these components by assessing

similarity to known genomic components of other organisms. Genomic annotation

often utilizes genome prediction as well as comparison against a reference genome to

find similarities for use in annotation of the input genome.

Function. MAKER [60] is a commonly used toolchain for genomic annotation.

The genomes processed by MAKER are comprised of contigs, or large contiguous

sequences in a genome. MAKER operates by running a series of tools that process

and annotate the input genome. It produces the final output by implementing a

consolidation stage at the end that aggregates the outputs of the various tools and

extracts the annotations on which consensus is observed. MAKER can be run either

sequentially or in parallel using MPI.

Construction and Operation. Elastic MAKER or E-MAKER is an elastic

implementation of the genome annotation process that is built using Work Queue.

It partitions and dispatches the genome sequences for concurrent annotation on allo-

cated resources. It uses the MAKER tool [60] as the kernel for annotating the par-

titioned sequences. The detailed construction of the Work Queue based E-MAKER

is provided in [113]. Figure 4.6 describes the logical structure of E-MAKER.

Observations. E-MAKER inherits most of the techniques and mechanisms in

the native MAKER implementation. However, the native MAKER implementation
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Figure 4.6. Logical Structure of E-MAKER

used MPI to operate in parallel. As a result, its design and development was heav-

ily influenced by the execution environment in parallel computing systems that is

homogeneous and consistently available across multiple resources.

For instance, MAKER writes the outputs of its tasks to a common shared file.

This allowed outputs to be continuously aggregated in a single file. However, this

setup incurs the overheads of file locking mechanisms that enable concurrent and

consistent write accesses. Further, MAKER requires a shared filesystems to store

and manage its inputs and outputs. Such techniques and requirements limited the

ability and performance of E-MAKER on heterogeneous resources.

To improve the performance of E-MAKER, we made the following modifications.

First, we modified the tasks to write their outputs in their local execution environ-

ment. On completion of the tasks, we gathered these outputs from their execution

sites to produce the final output. Second, we explicitly specify the inputs and out-

puts for tasks to be transfered to and from the resources chosen for task executions.

This eliminated the assumption or requirement of a shared filesystem spanning the

allocated resources, which is impractical when resources are derived from multiple

platforms. In addition, such operating environments include resources that fail or

are terminated during run-time. Hence, dedicated and distributed write accesses
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avoid scenarios where resource failures corrupt the data stored in a shared filesystem.

Figure 4.7 compares the failures observed in the E-MAKER implementations using

shared file system and dedicated accesses when running on the Condor grid at Notre

Dame. The failures in Figure 4.7a are due to (1) failures in write accesses due to

locks and (2) failures due to Condor terminating jobs. The dedicated access version

of E-MAKER eliminates the failures in write accesses thereby lowering overall failures

and improving stability.
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(a) Failures of E-MAKER using the shared file
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(b) Failures of E-MAKER using distributed &
dedicated accesses.

Figure 4.7. Comparison of failures in the E-MAKER versions using shared
file system and dedicated data access.

Figure 4.7b shows the number of failures to be lower during run time. We also

notice that, despite the lower failure overheads, the overall completion time is longer

compared to Figure 4.7a. From our investigation, we attribute this to two factors:

(1) overheads from explicitly transferring input and output data, and (2) use of

shared and heterogeneous resources. In studying the transfer overheads, we found

E-MAKER to operate by simply creating a task for each contig in the input set.

This manner of uninformed decomposition often resulted in high transfer overheads

50



leading to sub-optimal run-time performance.

Finally, the native implementation of MAKER utilized a global logging and fail-

ure recovery mechanism. This mechanism restarted MAKER at the last successfully

logged global state on encountering a failure. We modified E-MAKER to use the fail-

ure recovery mechanisms offered in Work Queue. This allowed E-MAKER to isolate

failures to individual tasks or resources, migrate tasks from failed resources, validate

task outputs, and resubmit tasks with erroneous outputs. With this modification,

E-MAKER eliminates the overheads and costs of global logging and recovery in the

presence of failures.

We also noticed that the software executables of the tasks in E-MAKER required

libraries, such as BioPerl, for their execution. Since the operating environments of

the allocated resources are diverse and are not guaranteed to include these software

dependencies, we explicitly specify the executables along with their required libraries

as the inputs of each task. This allowed the operating environment for each task to be

transferred and correctly setup at the allocated resources. This modification enabled

E-MAKER to (1) harness resources irrespective of the suitability of their native

operating environment to task executions, and (2) handle heterogeneous operating

environments by transferring the version of the software components compatible with

those environments.

4.5 Folding@Work

A number of biologically significant events in proteins happen at very small

timescales (micro-seconds to femto-seconds). To capture these events at such small

resolutions, the sampling of these systems has to happen at unprecedented speeds

and scales. This requires the use of sophisticated or supercomputing hardware and

therefore is constrained by costs and access to these resources. As a result of this

limitation, biomolecular scientists have developed alternative approaches that run on

51



commodity hardware. These approaches leverage parallelism in the analysis and sim-

ulations techniques of such systems. Specifically, these approaches decompose long

trajectories in the protein folding studies into smaller and parallel trajectories that

are close approximations.

Figure 4.8. Logical Structure of FAW.

Function. The Folding@home project is one such framework that applies paral-

lelization to capture the protein folding phenomenon by running on idle commodity

hardware [102]. We build on the Folding@home project to create a framework, called

Folding@Work or FAW, that is customizable and flexible to suit the needs of the

users and their studies. In FAW, we allow users to specify and customize the simu-

lation environments and the nature of their analysis. We also allow resources from

multiple sources and platforms such as Amazon EC2, Microsoft Azure, Condor, etc.,

to be federated by users to achieve the scale and performance they desire in their

experiments.

Construction and Operation. The FAW framework is built using Work Queue

to run as an elastic application. This framework is invoked with the specification of
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Figure 4.9. Plot comparing the throughput of the prioritized and
round-robin approaches in FAW.

several experimental parameters such as molecular structure, temperature, etc. FAW

applies these specifications to construct and decompose its workflow into tasks. Our

work in [26] describes in detail the construction of FAW using Work Queue. In this

paper, we focus on studying and improving the performance of the FAW framework.

Observations. We begin by observing that a typical FAW workflow involves a

collection of clones called trajectories that are simulated in parallel. Each trajectory

represents the path taken by a protein molecule in achieving a folded state. A fully

formed trajectory contains the path taken by a protein molecule to reach folded

state. The goal of such workflows is to aggregate and study as many fully formed

trajectories as possible. As a result, the number of fully formed trajectories dictates

the throughput of an experimental run in FAW.

We now describe the technique used to improve the performance of FAW in terms

of its throughput. FAW decomposes its workflow into a set of tasks corresponding

to each trajectory in the simulations. It uses a round-robin approach in creating

and submitting tasks for each trajectory. By replacing the round-robin approach
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with a mechanism that clusters and prioritizes tasks corresponding to a trajectory

closer to achieving fully folded state, the throughput of FAW can be enhanced. Using

this insight, we modified the design of FAW to cluster tasks such that trajectories

closer to completion are prioritized during execution. The benefit of this approach is

illustrated in Figure 4.9 where we compare the throughput, which is the percentage

of completed trajectories, with and without prioritization. The experiments in this

figure involved 100 clones each running 20 simulations using 50 workers on the Notre

Dame SGE cluster. We observe that the clustering and prioritization approach yields

fully folded trajectories throughout its run time. This provides opportunities to

analyze and gather scientific data much earlier in the runs. This also implies that

users can quickly achieve scientific output in running FAW, even with smaller or

shorter resource allocations.

4.6 AWE

Function. Accelerated Weighted Ensemble (AWE) [8] is a method for enhancing

the sampling accuracy of the molecular dynamics simulations of protein systems. It

partitions the conformational space of a protein into cells and creates a fixed number

of simulation tasks or ”walkers” in each cell. Every walker is assigned a probabilistic

weight such that they provide an unbiased sampling of the conformational space. The

sampling efficiency is further improved by utilizing a large number of short simulation

steps. The logical structure of the workload in AWE is outlined in Figure 4.10.

Construction and Operation. The work in [8] describes the implementation

of AWE using the Work Queue framework and demonstrated its scalability in har-

nessing 3500 cores from heterogeneous resources in multiple distributed computing

platforms [8]. AWE was run on the WW protein domain using 20 walkers, resulting

in 12,000 tasks per iteration. There was 40.5MB of common data and each task’s

unique input files totaled 75KB.
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Figure 4.10. Logical structure of AWE.

The AWE implementation involved the construction of a Work Queue master

program that contained the sampling algorithm and logic for (1) preparing walkers,

(2) assigning walkers to cells, (3) dispatching walkers to Work Queue workers for

parallel execution, (4) extracting statistics from the outputs of completed walkers,

(5) determining if additional sampling is required, and (6) determining if walkers

need to split or merged for the next iteration of sampling. Figure 4.11 outlines the

workings of the implementation of AWE using Work Queue.

Observations. The AWE framework was deployed on heterogeneous resources

aggregated from a variety of platform to achieve the scale needed to produce the

desired throughput. The platforms used were the HPC clusters maintained at Notre

Dame and Stanford, the Condor pools at Notre Dame, Purdue, and University of

Wisconsin-Madison, the Microsoft Azure cloud platform, and the Amazon AWS EC2

platform.

The resources allocated for the operation of AWE in [8] were heterogeneous in their

availability (on-demand vs queued), processing hardware (CPU vs GPU), processor

architecture (x86 vs x86 64), and operating systems (Windows vs Linux). The impact

of the heterogeneity on the operation of AWE is observed in Figure 4.12 that plots
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Figure 4.11. Overview of the AWE algorithm and its implementation using
Work Queue

the distribution of the task execution times on the deployed platforms. In addition,

AWE handed the variation in resource availability by harnessing resources as they

become available and being fault tolerant to resources being terminated.

AWE handled operation on heterogeneous hardware, processor architecture and

operating system by explicitly specifying its dependencies (libraries, scripts, and pro-

grams) and providing compatible versions of the dependencies for each of the op-

erating environments of the deployed resources. This required support from the

underlying middleware, Work Queue, to implement the transfer of the version of the
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Figure 4.12. Distribution of the execution time of AWE as presented in [8].

dependency based on the operating environment reported by the workers running on

the resources.

At the same time, the explicit specification of all the dependencies enabled Work

Queue to implement and manage the caching of the dependencies at the workers. This

caching strategy enabled AWE to minimize the data transfer costs from the AWE

master to the workers which involves the transfer of 34 MB of program files (task

initialization) and 100 KB of input files (task allocation) for each task. Specifically,

the caching of data at each Work Queue worker lowers the large cost of transferring

the program files for task initialization only when a new worker must be initialized.

In our operation, we observed that less than 2% of all the tasks sent required task

initialization, while the remaining 98% were task allocations. In addition, the overall

transfer overhead was found to be small due to caching: the total transfer time (9.3

hours) was about 2.1% of the overall runtime (433 hours).
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Figure 4.13. Logical structure of Work Queue implementation of the
workload operated using Bowtie.

4.7 Elastic Bowtie

The alignment of sequenced reads of genomes is an important process in the

field of genomics. This is because the sequence alignment enables genomes to be

compared and contrasted in their evolved and current evolved functions and structure.

Alignment refers to the process of arranging the sequenced reads of the genomes such

that this comparison can be correctly performed. The alignment of a query sequence

is typically performed by comparing against a reference genome such as the human

genome.

Function. A number of computer science techniques have been applied in pro-

viding optimal solutions to performing alignment of a given query sequence. One of

the well-known techniques applies string matching using the Burrows Wheeler Trans-

form (BWT) [28] that originally presented a lossless algorithm for data compression.

The BWT based alignment tools are well-suited and optimized with low memory

footprint for the alignment of short reads against large reference genomes.

Construction and Operation. Bowtie is a bioinformatics tool that applies
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BWT in aligning genomes [69]. Elastic Bowtie is a Work Queue based implementa-

tion that partitions and distributes the alignment of sequencing reads to a multiple

nodes. Elastic Bowtie is essentially a wrapper script around Bowtie that manages

the partition, submission, and aggregation of the tasks that perform alignment. It

delegates the alignment of the sequencing reads of the genome to the Bowtie tool

which gets invoked as part of the tasks run at the Work Queue workers.

Observations. We ran Elastic Bowtie on a query data that was a subset of

the Culex quinquefascaiatus mosquito genome using resources in the HPC cluster

maintained at Notre Dame. The query data consisted was about 6GB in size while

the reference genome was 400 MB in size.
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Figure 4.14: Comparison of the running time and memory footprint of Bowtie with
different number of threads when operating on a set of sequences in the Culex

quinquefasciatus genome totalling 6GB.

In our operation of Elastic Bowtie, we found the Bowtie tool can leverage thread-

level parallelism during execution to improve runtime performance. This implies that

Elastic Bowtie exhibited multi-level parallelism where the individual tasks partitioned

from the workload can be exhibited in parallel, and in turn each of the individual

tasks can be executed using multiple threads running in parallel.
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We observe the following in the operation of Elastic Bowtie:

• Similar to other elastic applications in this chapter, as the number of tasks
created for operation increases, the operating time first decreases due to the
increase in parallelism and then increases due to the startup, partition, and
merge overheads. This effect is studied in detail in the next chapter.

• As the number of cores used by the tasks increases, the operating time decreases
due to the increase in parallelism but the memory footprint increases from the
execution of multiple threads. This effect can be observed in Figures 4.14.

• Given the configuration of the instances (number of cores and RAM), there
lies a sweet spot in the decomposition of the workload into multi-core tasks.
The presence of the sweet spot is due to the trade-offs between (1) increased
thread-level parallelism and thread-level overheads such as increased memory
consumption, and (2) increased task-level parallelism and task-level overheads
such as the overheads in the partitioning and merging of tasks.

• As the number of instances allocated for operating the multi-core tasks in-
creases, the operating time first decreases due to the increase in parallelism
and then increases due to the data transfer overheads. This effect is studied in
detail in the next chapter.

• There lies a sweet spot in the operation of the workload as multi-core tasks
on multiple compute instances due to the trade-offs between the increase in
task-level parallelism and increase in the overheads of data transfer and task
initialization.

4.8 Lessons Learned

From our experiences in building the elastic applications described in this chapter,

we derive general guidelines for the design and development of elastic applications.

While these guidelines are not exhaustive, we believe they are a necessary and useful

first step in helping developers build efficient elastic applications.

Abolish shared writes. The use of a shared file to write and aggregate the

outputs of tasks during execution are prone to locking overheads and failures as

shown in Section 4.4. Elastic applications must therefore implement dedicated and

distributed write accesses where files are created and written locally at the site of

the task execution. These files can then be transferred from the execution sites
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(allocated resources) and aggregated at the controller (master). This also allows

the storage capabilities at the allocated resources to be utilized effectively. Further,

distributed write accesses isolate the performance characteristics and failures of the

individual resources thereby minimizing their impact on the overall performance of

the application. We showed the benefits of dedicated and distributed write accesses

in lowering failures in E-MAKER in Section 4.4. In addition, such accesses simplify

the execution environment by avoiding the requirement of a shared file system, and

hence improve the ease of deployment.

Keep your software close and your dependencies closer. Elastic applica-

tion are often deployed on resources with diverse operating environments. To effec-

tively utilize these allocated resources irrespective of their operating environments,

elastic applications must transfer and setup the execution environment of each task

on the allocated resources. That is, the software components and dependencies of

each task, such as executables and libraries, must be encapsulated in the task inputs

transfered to its execution site. We applied this technique in the elastic applications

to successfully harness resources without imposing any assumptions or requirements

on their operating environments. Further, this results in high ease of deployment

since the user can deploy and run the application on resources or environments of his

choice without any additional effort.

Synchronize two, you make company; synchronize three, you make a

crowd. Elastic applications with dependencies between iterations or sets of tasks re-

quire synchronization mechanisms to maintain these dependencies. One such mech-

anism is the global synchronization barrier that span the entire set of concurrent

tasks in the application. However, such global barriers introduce inefficiencies in the

presence of heterogeneous resources with diverse performance characteristics and ad-

versely impact the time to completion. Therefore, elastic applications must diligently

isolate the synchronization requirements to the smallest feasible set of tasks. The use
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of this technique and its effects in lowering the time to completion were described in

Section 4.3. We also observed from the evaluations in Section 4.3 that removing the

global barrier yields other benefits, such as lower transfer overheads.

Make tasks of a feather flock together. Ensemble workflows, where a set

of independent simulations or computations are run and aggregated as part of a

scientific study, can be implemented as elastic applications. In such instances, the

outputs of each task or a cluster of tasks contribute directly to a scientific result

or output. Elastic applications of ensemble workflows must therefore cluster and

prioritize the execution of sub-workflows or tasks that immediately contribute to

the scientific output expected during their execution. We showed the application

of this technique in the FAW framework (in Section 4.5) to enhance its scientific

throughput. Another benefit of improving the scientific throughput through such

techniques is that it allows useful scientific output to be obtained quickly even with

resource allocations of smaller sizes or shorter durations.

Seek simplicity, and gain power. The choice of the programming abstraction

for elastic applications plays a significant role in achieving scale and good perfor-

mance. In our construction of the elastic applications presented in this chapter, we

employed Work Queue that offers a simple and essential set of interfaces to implement

and run programs in a master-worker framework. The simplistic and minimalist de-

sign of Work Queue requires applications to explicitly (i) decompose workflows into

tasks, (ii) specify the inputs to be transferred to the workers for each task, and (iii)

aggregate the outputs of completed tasks. However, these explicit requirements al-

lowed applications to harness heterogeneous operating environments, manage and

cache data across the allocated resources, and isolate failures. In other words, the

sophistication in fault-tolerance, elasticity, handling heterogeneity, and data manage-

ment directly follows the use of a simple and minimalist interface.
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TABLE 4.2

SUMMARY OF THE ESTABLISHED GUIDELINES AND THEIR

EFFECTS ON PERFORMANCE

Guideline Improves

Abolish shared writes Time to completion

Cost of failure

Ease of deployment

Keep your dependencies closer Ease of deployment

Synchronize two, you make company; synchronize
three, you make a crowd

Time to completion
Transfer Overheads

Make tasks of a feather flock together Scientific throughput

Seek simplicity, and gain sophistication Transfer overheads

Cost of failure

Ease of deployment

Model before scaling new heights Time to completion

Ease of deployment

Build a model before scaling new heights. Elastic applications run large

computations by decomposing them into tasks. The decomposition of tasks allows

concurrent execution but incurs transfer overheads. This decomposition also dictates

the size of resources that achieve optimal running time. Therefore, it becomes im-

perative to formulate a model that captures the effects of task decomposition on the

run-time performance of the application as shown in Section 4.2. This model must be

incorporated in the application and used to (i) drive the decomposition of the work-

flow into tasks, (ii) inform the user of the estimated performance for a given input,

and (iii) guide the user in allocating resources for execution with a given input. Such

models are especially useful when the applications are designed to achieve scale and

are deployed on resources that incur monetary costs to the user.

Table 4.2 summarizes the presented guidelines and their effects in improving the

operation and performance of elastic applications.
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4.9 Conclusion

We studied a cross-section of scientific applications constructed and operated as

elastic applications. Across all the studied applications, we noticed the primary

challenge to their efficient operation was in the decomposition of the workload into

tasks. The decomposition determines the concurrency in the task executions, the

costs to partition and aggregate tasks at the master, and the transfer overheads

associated with the tasks. These runtime components, in turn, dictate the overall

performance of the application. In other words, the manner of task decomposition

directly impacts the runtime performance of the elastic applications.

The second challenge observed across the studied applications was in the alloca-

tion of the right size of resources. Currently, there does not exist a clear mechanism

to describe the resource requirements of the application. This affects the users of

these applications who are left to predict or assume the resource requirements of the

application for the given workload and deploy an appropriate size of resources. This

in turn results in either overprovisioning of resources leading to enormous cost over-

runs or underprovisioning resulting in poor runtime performance. To overcome these

inefficiencies in their deployment and operation, elastic applications must provide

guidance on their resource requirements and runtime performance.

These challenges in the design and operation of elastic applications can be sum-

marized as the following:

• What is the decomposition strategy in terms of the number of tasks that
achieves time- and cost-efficient operation?

• What is the scale of instances that must be provisioned for achieving time- and
cost-efficient operation?
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CHAPTER 5

MIDDLEWARE TECHNIQUES

5.1 Introduction

In this chapter, I explore techniques in the middleware to improve the perfor-

mance and cost-efficiency of elastic applications and support the application-level

techniques in achieving these goals. In doing so, I argue against common wisdom that

has required middleware to be designed such that they completely hide the details

about the underlying execution environment from the applications. I demonstrate

how applications can actually benefit from selective information about the execution

environment being exposed by the middleware. At the end of this chapter, I also

show how techniques that improve the data transfer and management semantics in

the middleware help improve the overall cost-efficiency and performance of elastic

applications.

Middleware are abstractions that simplify the design and operation of applica-

tions by hiding the complexities in the underlying execution environment. They are

considered an integral part of most software stacks primarily due to their role in

enabling application developers and operators to build, deploy, and operate applica-

tions without concern for the details and complexities of the execution environments,

such as scheduling, failures, and heterogeneity of resources.

The origins of middleware can be traced to the earliest batch computing systems,

such as mainframe computers, that used abstractions to manage centralized pools of

resources shared across multiple users and processes. Middleware became a necessary
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component in multi-core and -threading environments for handling the low-level I/O

and resource management. This trend continued with the advent of parallel and

high performance computing that resulted in the birth of middleware that managed

a network of several machines. The middleware provided communication primitives

for coordinating computations across the networked machines. An example is MPI

that provided interfaces and mechanisms to manage the execution of a group of

communicating processes over distributed resources.

Over the last two decades, the role and functions of middleware have expanded

in distributed computing systems to include the transparent handling of the unpre-

dictable failures, latencies, scheduling, placement of data, and locality. Figure 5.1

describes the outline of the functionalities offered by middleware for the operation

of elastic applications in distributed computing environments. The middleware in

distributed computing systems can appear in many forms such as batch submis-

sion and scheduling systems (e.g., Condor [111], Maui [63]), distributed execution

frameworks (MapReduce [40], Dryad [62]), and data processing and storage abstrac-

tions(Spark [129], DynamoDB [41]).

5.2 Current approaches and drawbacks

Middleware in parallel and distributed computing systems [53, 62] offer facilities

that enable developers to delegate the runtime decisions, such as the concurrent ex-

ecution of the workload, to the middleware. The use of such facilities has proved

beneficial in environments such as batch processing systems and supercomputers,

where the pool of allocated resources are fixed, shared across multiple processes and

users, tightly controlled and monitored, and entirely administered by the middle-

ware. In such shared operating environments, the goals of operation are to provide

availability, reliability, and fairness in resource allocations for competing processes

and users. The middleware help achieve these goals by scheduling, managing, and
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Figure 5.1. Outline of the architecture and operation of applications using
middleware in distributed computing environments.

directing the operation of the processes submitted for execution.

The goals and characteristics of these environments also resulted in the widespread

adoption of the following principles in the design of middleware: (1) information

about the underlying resources were completely hidden from applications since the

middleware were tuned to manage the operation of applications on the resources

they administered in a manner that was optimal to the operators of the resources,

and (2) the data transfer costs were considered inconsequential and ignored since the

resources for operation were provisioned at a single site and often networked using

high-bandwidth communication links.
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However, the above principles of design for middleware translate poorly to envi-

ronments characterized by exclusive, dedicated, and metered deployments for every

execution. These environments are common in the current generation of distributed

computing where the operators and end-users can deploy the applications on any cur-

rently accessible resources from a variety of distributed computing platforms. This

implies that middleware cannot be tuned to a particular class or type of resources

for operating the applications. Further, the cost of data transfer becomes significant

since resources can be deployed across geographically distributed networks connected

by low-bandwidth and metered communication links.

Consider Hadoop [53], a widely adopted middleware for executing concurrent and

data-intensive workloads expressed using the MapReduce paradigm [38]. Hadoop re-

lies on a distributed file system, such as Hadoop Distributed File System (HDFS) [103],

for managing data during operation. HDFS partitions the input data and stores the

partitions across the nodes provisioned for operation. HDFS arbitrarily partitions

the data into blocks (default size of 128 MB) regardless of the workload and the con-

currency feasible during its operation. HDFS leaves the optimal tuning of the block

sizes to the operators (and not the users) of the cluster based on the characteristics

of the resources in the cluster and the expected characteristics of the workloads that

will be executed. It does not however provide guidance on an optimal partitioning

strategy for executing the defined workload.

Hadoop is also designed with the principle that the movement of computations to

data is cheaper and faster. However, it does not optimize the transfer and movement

of data. Instead, it assumes the resources are provisioned within a single network

boundary and that data transfers are cheap, fast, and without failures. As a result, it

recommends and relies on copying and moving every input data to multiple resources

to achieve replication and guard against loss of data.

In summary, the partitioning strategy in Hadoop is fixed, globally enforced on
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every application, and based on the assumption that data migration can happen

without incurring costs and overheads. The use of arbitrary and global policies for

operation results in cost-inefficiencies in environments where each instance of the

application is deployed on resources exclusively dedicated for their operation. In-

stead, the workloads must be partitioned and the resource requirements must be

estimated according to the characteristics of the deployed operating environment.

These decisions must be made in every deployment of the application since the op-

erating environment can vary between deployments. Further, these decisions must

be revised and adapted during operation since the characteristics of the operating

environment, such as network bandwidth, are liable to dynamically change.

5.2.1 Solutions

In this chapter, I argue that middleware must expose selective key information

about their operating environment to the applications. That is, middleware should

gather and expose information on key resources, such as the number of cores, the size

of memory, and the network bandwidth in the operating environment. By exposing

such information, I show that middleware can enable applications to make intelligent

decisions on their operating parameters that will achieve efficient operation in the

currently deployed environment.

I then evaluate a technique focused on minimizing the costs and overheads asso-

ciated with data transfer. The technique uses a hierarchical configuration and mini-

mizes the transfer costs when data movement spans across network boundaries and

involves resource failures when data is in transit and at rest. I evaluate the benefits

of this technique using an experimental run of the AWE elastic application at scale

on over 4500 cores provisioned from multiple geographically distributed platforms

containing commodity hardware.
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5.3 Expose selective information about resources

In the previous chapter, I argued and demonstrated that runtime performance and

cost-efficiency are maximized when applications directly exert and regulate control

over the partitioning of their workload. This is because the applications explicitly

know the characteristics of the workload, such as data dependencies, transfer require-

ments, and partitioning overheads. In addition, this approach provides flexibility to

the users in deploying and operating the applications on resources for their choice

without being tied to a particular platform or operating environment.

The performance and operating costs of applications are primarily determined by

the size of the partitions of the workload and the cost of distributing these partitions

for concurrent execution. I show that the decisions on these parameters benefit from

knowledge of the resource capacities, particularly CPU, memory, and network band-

width. First, the number of available CPU cores dictates the physical concurrency

achievable in executing the workload. Second, the size of memory at the available

instances determines the thresholds that incur minimal I/O overheads during exe-

cution. Finally, the network bandwidth determines the costs incurred by the data

transfers required to setup concurrent execution. Therefore, knowledge of the avail-

able CPU, memory size, and network bandwidth enable applications to determine the

overheads and costs of partitioning and distributing their workload using a certain

configuration.

To enable the applications to partition appropriately for the deployed environ-

ment, we propose that middleware must provide interfaces through which the infor-

mation about the resource capacities are exposed to the applications. This approach

preserves the benefits and portability advantages of using middleware to manage

the complexities of distributed execution environments. We note that the informa-

tion exposed through the interfaces in the middleware must be limited specifically

to resource capacities. Other significant details and information about the execution
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environment such as the heterogeneity, failure, and performance characteristics of

resources must remain hidden by the middleware.

5.3.1 Evaluation

To study the benefits of middleware exposing selective information about the

cores, memory, and network bandwidth, I consider their impact on the performance

of E-Sort and E-MAKER.

We begin by considering the impact of the size of memory on the performance

of E-Sort. The performance of E-Sort is impacted by the size of the memory since

it determines the amount of data that can be processed at a single instance without

incurring I/O overhead related to hard disk usage. On the other hand, the network

bandwidth does not impact the performance of E-Sort with different partition sizes

since the amount of data to transfer remains the same for any partition size.

Figure 5.2 compare the estimated and actual running time of E-Sort on an instance

with 12GB memory. As the size of the data sorted in the instance increases beyond

12GB, the overheads from swapping to the hard disk increases resulting in an increase

in the overall running time. This effect can be observed in the actual running time

trending above the estimated values.

In order to avoid the effects of I/O overheads on the runtime performance of E-

Sort, the partitioned tasks must only sort data that is smaller than the size of the

memory available at the execution sites. To achieve this behavior, the middleware

must first expose information about the size of the available memory at the instances

provisioned for operation. E-Sort can apply this information as a bound on the size

of the partitions to use in operation. Note that the size of the available memory only

serves as a bound and that the partitions for operation must be determined based on

the measured overheads of partitioning of inputs, execution of the partitioned tasks,

and the merging of the outputs. Figure 5.3 shows the lower bounds on the partitions
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Figure 5.2. The estimated and actual running time of GNU Sort for various
input sizes on an instance with 12GB RAM running in the Notre Dame

SGE platform.

Note the actual running time incurs I/O overheads when the size of the data
processed at the instance exceeds 12GB. This effect can be observed in the actual

running time deviating away from the estimated values at 12GB.

determined based on the size of the memory at the provisioned instances and the

partitions estimated to achieve optimal running time for two different input data.

On the other hand, E-MAKER is impacted by the resource capacities differently

than E-Sort. In E-MAKER, the query data set of genomes is partitioned for con-

current operation while the reference data set is fixed and transferred without being

partitioned to each instance where the partitioned query set is annotated. This was

done to avoid the complexity associated with merging the outputs of tasks when both

the query set and reference set are partitioned. As a result, the reference set - being

larger than the query set - dominates the memory consumption. Therefore, the size

of memory does not impact the runtime performance of E-MAKER in a discernible

manner like in E-Sort.

The network bandwidth affects the performance of E-MAKER in the transfer

of the reference data set and the software dependencies to every instance used for

operating the concurrent partitions. The network bandwidth impacts the running

time of E-MAKER since it determines the time spent in the transfer of the data to

the instances. For example, when the network bandwidth is high, E-MAKER can
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Figure 5.3: Illustration of the choices on the partitions for sorting records in a file of
size 1 GB.

In this figure, Size A corresponds to the partitions chosen when only information
about the number of cores is available. Size B corresponds to the partitions when
information about the task execution times and the merge overheads are available.
Here Size B represents the optimal number of partitions for the considered execution

environment.

utilize a higher the number of partitions and instances since the overheads of data

transfer are minimal. Therefore, E-MAKER must have access to information about

the network bandwidth in its deployed environment to determine the partitions for

operation. Figure 5.4 illustrates the choices made based on whether information

about the network bandwidth is available. Figure 5.5 shows the impact of different

network bandwidth values on runtime performance. This figure emphasizes the need

for measuring the network bandwidth and providing this information to E-MAKER

so it can determine the partitions that achieve efficient operation.

5.4 Hierarchical Data Distribution

The previous chapter described the implementation of AWE using the Work

Queue framework and its scalability in harnessing 3500 cores from heterogeneous

resources in multiple distributed computing platforms [8]. While we found Work

Queue to provide the support and controls for operating elastic applications, we also

noticed a few limitations in its flat master-worker architecture. First, the master
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Figure 5.4. Illustration of the choices on the partitions for annotating 200
contigs of the Anopheles gambiae genome.

In this figure, Size A corresponds to the partitions chosen when only information
about the number of cores is available. Size B corresponds to the partitions when

information about the network bandwidth and the task execution times are available.
Here Size B represents the optimal number of partitions for the considered execution

environment.

must transfer the input and output data of the tasks to and from its workers. As a

result, scalability is constrained by the network bandwidth available at the master.

Further, if the data transfer between the master and the workers happen over metered

communication channels (e.g., data transfer in commercial cloud platforms such as

Amazon AWS is metered), it adds to the monetary costs incurred by the operators

of the applications. Second, the master must handle the failures and terminations of

the worker and spend bandwidth transferring data and re-establishing the execution

environment at workers with transient failures. Finally, the number of workers that

can connect to a master can get dictated by administrator policies on resource usage,

such as the number of TCP connections that can be maintained by any one individual

process running in a system.

To address these limitations of the traditional flat master-worker architecture,

Work Queue was redesigned to provide a hierarchical configuration where a single

master can be served by multiple levels of sub-masters with the workers connected to

74



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  20  40  60  80  100  120

R
u
n
n
in

g
 t
im

e
 (

s
)

Number of tasks

10MB/s
50MB/s

250MB/s
500MB/s

1000MB/s

Figure 5.5. Estimated running times for annotating 200 contigs of
Anopheles gambiae genome shown for different network bandwidth values.

the sub-masters at the lowest level. The sub-masters are referred to as foreman in the

Work Queue hierarchy. Figure 5.6 presents an outline of the hierarchical configuration

using multiple foreman in Work Queue.

The foremen in Work Queue receive files from the master and cache them at their

execution site. The workers deployed on the provisioned resources are programmed

to connect to a foreman that is usually deployed in the same platform as the workers.

The workers treat the foreman as their master and connect to the foreman to receive

tasks to run. The foreman dispatches tasks by transferring the input files received

from the master and cached at its execution site. The foreman reduces data transfer

overheads by leveraging the well-provisioned intra-platform bandwidth and eliminat-

ing the repeated transfer of common data between the master and the workers. It also

eliminates these overheads in environments with high worker volatility (e.g., workers

in Condor often get shut down and migrated elsewhere when a higher priority user

starts using the resources) by getting rid of the traffic between the master and the

workers that reconnect after failure. A detailed description and analysis of the Work

Queue hierarchy can be found in [13].

The key takeaway from the use of the hierarchical Work Queue architecture is that
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Figure 5.6. Outline of the hierarchical configuration in Work Queue.

middleware must consider the costs and overheads of data transfer and implement

mechanisms to minimize them. In Work Queue, we show that the use of a hierarchical

configuration of masters achieves this goal in minimizing the cost and overheads of

data transfer during operation of the application.

We proceed to show the hierarchical Work Queue in action and evaluate the

improvements it enables in the operation of the applications.

5.4.1 Case study using AWE

We use hierarchical Work Queue to improve the scale and fault-tolerance in the

operation of AWE. In this study, we ran AWE on the WW protein domain using 20

walkers, resulting in 12,000 tasks per iteration. There was 40.5MB of common data

and each task’s unique input files totaled 75KB. Table 5.1 describes the input data

and parameters used in our experimental study.
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TABLE 5.1

PARAMETERS USED FOR THE EXPERIMENTAL AWE RUN

AWE Parameters WW domain

Iterations 3

Walkers 20

States 601

Common input size per task 40.5MB

Unique input size per task 75KB

Output size per task 82KB

Tasks per iteration ∼12000

Task Execution Time ∼30 minutes

We used resources from four clusters - Notre Dame’s High Performance Cluster,

the ND Condor pool, FutureGrid’s Sierra cluster (at San Diego Supercomputer Cen-

ter), and FutureGrid’s India cluster (at Indiana University, Bloomington). At each

independent cluster (ND-HPC, Sierra, and India), we ran a single foreman on the

head node and set up single-slot worker processes for every core in our allocation:

200 workers at ND-HPC and 800 workers across the two FutureGrid sites.

We submitted 5000 workers to the ND Condor pool of which approximately 3400

were seen over the course of the experiment. Due to a department policy there is a

limit of 1024 simultaneous TCP connections on each Condor node, so we allocated one

foremen for every thousand Condor workers. Each foreman ran on its own machine

at the same data center as the majority of the Condor pool.

Scale. We ran the experiment for about 15 hours, completing three iterations.

Figure 5.7 shows the concurrency we achieved during the experiment. The valleys

correspond to synchronization barriers at the end of each iteration, while at our
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Figure 5.7. Busy workers over the duration of the AWE run.

peak (around hour 6) we saw 3862 workers simultaneously executing AWE tasks.

The drop in concurrent workers at hour 8 occurred because of the termination of

allocated resources in FutureGrid (due to limits on resource usage) and Condor (due

to contention for resources). Table 5.2 shows our measurements of this experiment,

including the number of tasks dispatched by the master and each foreman, the total

failures of foreman and its workers, the average bandwidth observed between each

component, and the cumulative data sent by each entity.

Failures. Over the course of a 15-hour experiment using thousands of resources

spanning multiple locations some number of failures are inevitable. Causes may

include network disruptions, local disk failures, and scheduling policies. Examining

the results in Table 5.2 we noticed the number of tasks dispatched by the master to a

foreman was often higher than those dispatched by that foreman: this indicates that

the foreman failed before being able to dispatch all the tasks assigned to it. On closer

inspection we found that the foreman failed multiple times in a very short timeframe,

indicating a short-term resource failure rather than transient network fluctuations.

Worker failures had a much more varied set of causes, including resource failures,

network disruptions, and terminations due to cluster scheduling policies.
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Bandwidth and Data Usage. Table 5.2 shows the average bandwidth mea-

sured between the master and foremen, as well as between each foreman and its

workers. The master to foreman bandwidth is consistently smaller than the foreman

to worker bandwidth. The difference was especially pronounced in the case of our

foreman running at the Sierra site in San Diego, over 1800 miles away.

Table 5.2 also shows the data sent by the master and foremen, as well as an es-

timate of the data a master in a flat configuration would have sent when running

the same experiment. This estimate was derived by adding the data sent by each

foreman and removing the data resent due to foreman failures, since those retrans-

missions do not exist in a flat configuration. In comparison to the hypothetical flat

master configuration, we see on average a 96% reduction in data transmitted by the

hierarchical master.
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5.5 Conclusion

In this chapter, we argued against the time-tested principle that advocates mid-

dleware must hide all complexities and details about the underlying execution envi-

ronment from the applications. We argued this by showing how selective information

exposed by the middleware to the applications enables efficient operation. The ex-

perimental illustrations also highlight and support the key idea presented in this

work that applications must directly determine the parameters that impact their

runtime characteristics and behavior. These parameters must be determined using

the information exported by the middleware about the underlying execution environ-

ment. It might also benefit to clearly demarcate the management boundaries of the

middleware when building elastic applications. Middleware must be involved only

in the management of the resources and the execution environments (such as han-

dling failures and maximizing the utilization of resource capacities) while leaving the

management of the operation of the workloads to the respective applications.

We also showed that middleware cannot neglect the costs and overheads of data

movement and must incorporate techniques to minimize them. We experimentally

evaluated a hierarchical data distribution technique in the middleware that mini-

mized the costs of data transfers and showed how this translated to better runtime

performance and efficiency of the applications.

In the next chapter, we explore application-level techniques that utilize the in-

formation exposed by the middleware about the underlying operating environment

and determine the operating parameters for running their workloads in a time- and

cost-efficient manner.
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CHAPTER 6

APPLICATION-LEVEL TECHNIQUES

6.1 Introduction

In this chapter, we study and build techniques in the application layer to address

the challenges to the efficient operation of elastic applications. We consider effi-

ciency in terms of the runtime performance and the monetary costs incurred during

operation. In the past, runtime performance was often considered as an important

metric for evaluating the efficiency of large applications. However, the considera-

tion of the monetary costs of applications has become a necessity only since the

emergence of cloud computing platforms as a viable operating environment for large

scale applications. Cloud platforms charge for the usage of resources using a metered

“pay-as-you-go” model often rounded to hourly boundaries. Therefore, deployments

on cloud platforms demand cost-efficient operation.

As we described earlier, we consider the deployment and operation of applica-

tions using resources exclusively dedicated to each instance of the applications. The

applications can be deployed and operated on any distributed computing platform

accessible to the operators. As a result, the characteristics of the target operating

environment (such as execution speed and network bandwidth) are unknown and

unpredictable prior to deployment.

In the past, application designers would tune a concurrent application for specific

hardware and operating environment (such as supercomputers and high performance

clusters) and require the application to be operated in those environments. But if
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the target hardware is unknown or variable when the application is designed, the

application must be self-tuning at runtime. In other words, elastic applications in

distributed computing environments must be self-tuning to be time- and

cost-efficient.

6.2 Analysis of the Challenges to Efficient Operation

The time and cost of operation of elastic applications are determined by the gains

achieved in the concurrent execution of tasks and the overheads incurred in the split,

merge, and data transfer phases. The gains and overheads are determined by the

number of partitions and resources chosen for operation. They are also influenced

by the characteristics of the operating environment. For instance, the network band-

width influences the transfer overheads while the size of the RAM at the provisioned

instances influences the overheads of executing the map functions on the partitions.

In this chapter, we focus on operation using the on-demand instances in dis-

tributed computing platforms. These instances can be provisioned and terminated

at convenience and are metered to incur charges only for the duration of use. To

simplify exposition, we assume the instances cost $1 per hour and incur $0.01 for

every gigabyte of data transferred to and from the instances2. Like many metered

platforms, we compute the operating costs by rounding the operating times to the

nearest hour.

Figure 6.1 illustrates the impact of the partitions and the characteristics of the op-

erating environment on the time and costs of operating E-MAKER on the Anopheles

gambiae genome. The plots assume the number of partitions and the instances pro-

visioned for operation are equivalent. From Figure 6.1, we observe the running time

and operating costs exhibit varying trends for different network bandwidth. Further,

2Our observations remain the same with the prices in commercial platforms such as Amazon
EC2.
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Figure 6.1: Estimated running time (in minutes) and operating costs (in $) of
E-MAKER for annotating the Anopheles gambiae genome.

The estimations are shown for different network bandwidth in this figure.

Figure 6.1b shows the operating costs for various partitions exhibit irregular patterns

due to the effects from the use of the hourly boundaries for calculating costs. The

operating costs drop at partitions where the time of operation falls to the next low-

est hourly boundary. In summary, Figure 6.1 shows that the choice of the number

of partitions and instances to provision are critical to the cost-efficient operation of

applications.

Figure 6.2 plots the partitions that achieve the minimal operating time and the

lowest operating costs in Figure 6.1. It demonstrates that performance and cost

cannot always be optimized simultaneously, and so the partitioning must take into

account the differing objectives of each user.

Further, the workloads must be partitioned and the resource requirements must

be estimated according to the characteristics of the deployed operating environment.

This need is illustrated in Figure 6.2 where the partitions that achieve minimal oper-

ating costs vary depending on the operating environment. This effect can be inferred

from Figure 6.2 where the partitions that achieve minimal operating costs vary de-

pending on the network bandwidth in the operating environment. To achieve cost-

efficiency, the workloads must be partitioned and the resource requirements must be

estimated according to the characteristics of the deployed operating environment.
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Figure 6.2. Illustration of the optimal partitions that achieve minimum
running time and operating costs for annotating the Anopheles gambiae

genome under different network bandwidth values.

The running time is denoted by T and the operating costs are denoted by $.

These decisions must be made in every deployment of the application since the op-

erating environment can vary between deployments. Further, these decisions must

be revised and adapted during operation since the characteristics of the operating

environment, such as network bandwidth, are liable to dynamically change.

6.2.1 Overview of Application-level Techniques

The performance and costs of elastic applications are determined by the (logical)

expression and (physical) realization of concurrency during their operation. The

expression of concurrency pertains to the number of partitions of the workload while

its realization involves the simultaneous execution of the partitions. In this chapter,

we argue that applications must be self-modeling in order to determine and tune

their logical and physical concurrency at runtime. The applications must incorporate

a model of their operation formulating the gains and overheads of concurrency. We

also argue that cost-efficient operation requires applications to explicitly exert control

of the partitioning of the workload to tasks, the binding of data to tasks, and the

submission of tasks for simultaneous execution.
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Using the model and control of the parameters of concurrent operation, the appli-

cations tune and adapt their operation according to the characteristics of the deployed

environment. The applications first measure the characteristics of the environment

that influence their transfer overheads, processing overheads, and I/O overheads, and

thereby, their cost-efficiency. The measurements are applied in the model to estimate

the overheads of operating the defined workload under the current operating con-

ditions. Using these estimates, the applications determine and adapt their logical

and physical concurrency during runtime to achieve cost-efficient operation in the

deployed environment.

In summary, we argue and demonstrate the following principles for correctly de-

termining the operating parameters for cost-efficient operation:

1. Applications must be self-modeling by formulating and incorporating a model
of the performance and overheads of their runtime components.

2. Applications must be self-tuning by exerting control over the partitioning
and concurrent operation of the workload and dynamically adapting the operation
according to the observed operating environment.

6.3 Application-level Modeling

The runtime performance of split-map-merge based elastic applications are de-

termined by the partitioning, task execution, data transfer, and merge components

described in Section 3.3. Accordingly, we model the operating time of elastic appli-

cations as follows:

Toperation = Tpartition + Ttasks + Tdata + Tmerge. (6.1)

Note this model of the running time differs from Amdahl’s law [19] in that Tpartition

and/or Tmerge at the coordinator increases with the number of partitions.

The overheads of the partition Tpartition depend on the size of the input data N
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and the number of partitions K. We model this as a linear relationship:

Tpartition = (a ∗N) + (b ∗K), (6.2)

where a and b are constants that reflect the costs of reading (input) data and creating

a partition respectively.

As we noted in Section 3.3, the merge overheads Tmerge can vary based on the

implementation and characteristics of the workload. Therefore, these overheads are

formulated and discussed individually in Section 6.6.1.

The execution time of the tasks Ttasks is determined by the size of the input and

the partitions. If input N is partitioned into K tasks, the execution time of a task is

Ttask = T (
N

K
). (6.3)

If R is the number of instances provisioned for operation, the execution of K tasks

is prolonged by a factor of ⌈K/R⌉ (as only R tasks can be executed simultaneously).

Thus, the total execution time of tasks is

Ttasks = Ttask ∗ ⌈
K

R
⌉. (6.4)

The data overheads Tdata collectively represents the input Tinputs and output

Toutputs transfer overheads. The inputs consists of the software and unique data

dependencies of the tasks. The software dependencies include executables, scripts,

and libraries are required for execution and are common across tasks. These depen-

dencies can be transfered once and cached for subsequent tasks. In contrast, the

unique data dependencies are specific to each task and must be transferred for every
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execution. These dependencies specify the data for operation in each task.

Tdata = (Datain +Dataout)/BW, (6.5)

Datain = size(N) +R ∗ size(software), (6.6)

Dataout = size(N), (6.7)

where BW represents the available network bandwidth.

The model in Equation 6.1 is applied to determine the number of partitions K and

the number of instances R to provision for operating the defined workload. Further,

the estimations from the model enable the applications to tune and adapt the parti-

tions according to the characteristics of the deployed environment, such as network

bandwidth, physical memory allocated at the resources, and the processing capacity

for operation.

Assumptions: The model in Equation 6.1 assumes a scheduling strategy that

operates in the following order: dispatch tasks submitted for execution to the pro-

visioned instances (this includes transfer of input data), wait for tasks to finish ex-

ecution, retrieve the outputs and results of the executions, and so forth. It is also

assumed that all the instances for operation are provisioned at the same time and the

workers running on them are connected to the master before the dispatch of tasks

begins.

The model for task executions in Equation 6.4 assumes the instances provisioned

for operation are homogeneous in their hardware and processing capabilities. In cloud

platforms, this assumption is satisfied by provisioning instances of the same size (e.g.,

in Windows Azure the sizes are small, medium, etc). Further, it assumes that each

task consumes a single CPU core.

Finally, the model of the data overheads in Equation 6.5 assumes single-threaded
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communication where data is transferred to one worker at a time. A multi-threaded

mode is helpful when communicating with heterogeneous instances with wide differ-

ences in their processing capabilities. Otherwise, we expect the impact from multi-

threaded communication on the estimations to be minimal since the bandwidth re-

mains the same while being shared across multiple threads.

6.3.1 Cost-efficiency Metrics

We formulate the operating cost C$ of the applications using the time of operation

modeled in Equation 6.1, the instances provisioned for operation R, and the data

transfered during operation.

C$ = $IH ∗R ∗Hoperation + $GB ∗ (Datain +Dataout), (6.8)

where Hoperation is Toperation rounded to the nearest hour. $IH represents the cost

incurred per instance per hour of use while $GB represents the cost charged per

gigabyte of data transfer to and from the instances. To simplify analysis and provide

a general context, we assume $IH to be $1 and $GB to be $0.01.

We note that favorable trade-offs often exist between the time and cost of op-

eration. For example, in Figure 6.1b, the lowest operating cost ($60.16) under a

bandwidth of 100Mbps is achieved when operating with 4 partitions. However, ac-

commodating a 0.33% increase in the operating cost ($60.36) for operation with 9

partitions leads to a 50% decrease in the operating time. This is because operation

with 9 partitions increases the gains from concurrent executions and lowers the time

of operation such that it matches the gains in cost when operating with 4 partitions.

The small increase in cost for the operation with 9 partitions results from the increase

in the transfer costs for the software dependencies.

In our evaluations, we find it useful to compute and use a metric called Cost-Time
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product to consider these trade-offs and assign equal importance to the time and cost

of operation.

Cost-T ime product = C$ ∗ Toperation. (6.9)

We note this metric is only one of several ways of expressing cost-efficiency since

different weights may be assigned to the time and cost of operation based on the

preferences of the operators. At the same time, we note the model can be easily

extended to provide estimations on the cost-efficiency metrics preferred by operators.

6.4 Application-level Control

The application-level model in Section 6.3 provides estimations on the perfor-

mance and overheads of the runtime components. However, to regulate the over-

heads and achieve cost-efficiency, the application must explicitly direct and control

the following actions using estimates from the model.

Partitioning workload into tasks: The applications must define the partition-

ing of the workload into tasks using estimates from the model. The number of tasks

created for operation also dictates the overheads associated with the task executions,

data transfers, and merge operations. As a result, control over the number of tasks

enables applications to lower the running time and minimize the incurred overheads

in their deployed environments.

Binding data to tasks: The applications must explicitly bind the data depen-

dencies to the created tasks. This control enables the application to manage the data

transfer overheads of the tasks. The control over the binding of data is also necessary

for the adaptations during operation that adjust the partitioning of the workload

according to the observed conditions.

Merging outputs of tasks: The application-level control of the partitioning

requires similar control over the merge operations so the outputs of tasks created
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from the partitions are correctly aggregated to produce the final results. This control

also helps correctly estimate the overheads associated with the merge phase.

Submitting tasks for execution: The applications must direct the submission

of tasks for execution and thereby, the number of simultaneous executions. This

control enables applications to manage the overheads associated with transferring the

common software dependencies. For example, when the transfer overheads associated

with the software dependencies are large, the application can regulate the number of

simultaneous executions so the transfer of these dependencies is minimized. This is

because the common dependencies are cached for subsequent tasks after their initial

transfer.

6.5 Application-level Adaptation

Elastic applications cannot assume, predict, or control the characteristics of the

operating environment in which they are deployed. Therefore, the applications must

adapt their operation to the characteristics of the deployed environment. We focus

on adaptations of the two parameters that dictate the time and cost of operation:

the number of partitioned tasks and the number of instances used for operation.

A simple approach for determining the number of tasks and resources to provision

involves the global enforcement of default values, or requiring the operators or users to

manually determine them. This approach is employed in Hadoop [53] and illustrated

in Figure 6.3a. While this approach provides operators with the ability to define and

control the runtime behavior, it requires detailed knowledge of the characteristics

of the workload and the overheads of operation in the deployed environment. In

addition, the effectiveness of this approach requires tight control over the operating

environment to provide consistent characteristics throughout operation.

We present two techniques to determine the number of partitions and resources for

operating the defined workload in the deployed environment without operator inter-
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(a) The manual approach to partitioning using
user-specified partition sizes.

(b) The sample execution-based approach that
performs an assessment of the operating

environment before operation.

Figure 6.3. Illustration of the current strategies for partitioning the defined
workload in elastic applications.

vention. The first technique performs an initial assessment of the operating environ-

ment using a sample execution and resource allocation. It applies the measurements

in the model to determine the operating parameters that achieve cost-efficient opera-

tion. This enables the optimal operation of applications in any deployed environment

and operating conditions. This technique is also similar to the approach suggested

by cloud providers for determining the right type of hardware and instances for run-

ning a workload [6]. Figure 6.3b illustrates this technique for adapting the operation

according to the characteristics of the deployed environment. The effectiveness of

this technique requires the operating conditions that impact the performance of the

applications to remain unchanged during operation.

However, the operating conditions in distributed computing platforms, especially
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Figure 6.4. The adaptive approach that continually measures and adapts to
the characteristics of the operating environment.

network bandwidth, are prone to vary during operation due to multi-tenant effects

such as congestion, varying load on the shared network links, and oversubscription

of the networking hardware. This impacts the cost-efficient operation of applications

whose overheads of operation are influenced by these conditions. In this work, we

focus on the adaptations to changes in the network bandwidth during operation.

To handle changes in the operating conditions during runtime, the second tech-

nique periodically measures the operating conditions and dynamically adapts the

number of partitions and instances chosen for operation. This technique progressively

partitions the workload, measures the conditions during operation of the submitted

set of partitions, and applies the measurements in determining the number of par-

titions and instances for operating the remainder of the workload under the current

conditions. The technique can also be similarly applied in applications with multiple

iterations of the map operation or the split-map-join phases. Figure 6.4 illustrates
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this approach. While the dynamic adaptations can react to changes in the operat-

ing conditions, they can be disadvantageous when the changes in the conditions are

incessant, short-lived, or prone to frequent spikes.

The operating conditions measured in both adaptation techniques include the

execution overheads of the tasks, the network bandwidth and the local overheads of

partition and merge. The measurements are incorporated in the model expressed

in Equations 6.1, 6.8, and 6.9 to estimate the parameters that achieve cost-efficient

operation of the defined workload.

The measurements on the operating conditions are obtained using API calls in

Work Queue that return information on the network bandwidth, the execution time

of completed tasks, and the size of the physical memory measured by the workers at

the instances on which they run.

6.6 Experimental Evaluations

We apply the presented techniques in building two self-tuning applications - Elas-

tic Sort (E-Sort) and Elastic MAKER (E-MAKER).

As we noted earlier, the merge overheads for E-Sort and E-MAKER differ due to

the workload and the implementation of the merge algorithm. In E-Sort, the parti-

tions are merged using a k-way merge algorithm that iteratively compares the records

in the partitions and aggregates them in sorted order. The asymptotic running time

of the algorithm is O(N ∗K). The merge overheads of E-Sort are modeled as

Tmerge = (c ∗N ∗K) + (d ∗N), (6.10)

where c represents the cost of the comparisons in the merge algorithm and d is

the cost associated with reading the sorted records in the partitions. On the other

hand, the merge in E-MAKER is trivial since the results of the tasks - the annotated
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sequences - are simply concatenated in a output directory. Hence, we model the

overheads of merge to be constant and negligible.

Organization: We begin our analysis of self-tuning applications by observing

the effects of the number of partitions on the operating time and cost. We observe

differences in the effects of the number of partitions on the overheads of partition,

merge, data transfer, and task executions in E-Sort and E-MAKER. The application-

level models in E-Sort and E-MAKER provide estimates on the time and cost of

operation considering these effects. We experimentally validate these estimations

with the goal of not showing estimations that perfectly match with the observed

values, but to show the effectiveness of the model in providing information about the

overheads of operation and their impact on time and cost.

The validations enable us to utilize the model in studying the effects of the charac-

teristics of the workload and operating environment on the time and cost of operation

using different partitions. The study establishes that decisions on the number of par-

titions and instances for cost-efficient must be made considering the characteristics

of the workload and operating environment. We then experimentally demonstrate

the self-tuning capabilities of E-Sort and E-MAKER in determining the number of

partitions and instances to provision for cost-efficient operation. The applications

utilize the application-level model and control to determine these parameters.

Our analysis considers the number of instances provisioned for operation to be

equivalent to the number of partitions chosen for operation as it enables the simul-

taneous execution of the partitions. However, it may be useful to create smaller par-

titions to achieve faster failure recovery, manage resource consumption, and obtain

measurements on the operation at smaller intervals. Therefore, we study the effects

of over-partitioning where the number of partitions is greater than the instances de-

termined for cost-efficient operation. We observe the impact of over-partitioning to

be negligible when the partition and merge overheads are minimal. In such cases,
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over-partitioning can be useful for adapting to changing operating conditions without

incurring additional overheads. We evaluate the dynamic adaptation technique that

progressively over-partitions and operates the workload when the characteristics of

the deployed environment, such as network bandwidth, vary during operation.

Experimental platforms and inputs: Our evaluations are done using on-

demand instances from Microsoft Azure [3] - a commercial cloud platform, Future-

Grid [7] - a national infrastructure that provides an IaaS testbed for building large-

scale applications, and Notre Dame CRC - a campus-wide infrastructure at the Uni-

versity of Notre Dame that offers access to IaaS instances.

The E-Sort runs in our evaluations operate on 2 billion records that total 11GB

in size. The E-MAKER runs operate on 800 contiguous sequences of the Anopheles

gambiae PEST strain which amount to 7.5MB. The software overheads for E-Sort

consist of the transfer of the GNU Sort executable which is 100KB. In E-MAKER,

the software overheads include the reference dataset and the libraries required for the

execution of the MAKER tool and are 4GB in size.

6.6.1 Validation of the estimations from the model

We validate the application-level model by comparing the estimations from Equa-

tions 6.1, 6.8, and 6.9 against the values observed in operation. Figure 6.5 presents

the comparison of the estimated and actual time, cost, and cost-time product of

operation for E-Sort and E-MAKER. The observed values for E-Sort were recorded

during operation on Microsoft Azure instances when the network bandwidth was

measured at 800 Mbps. On the other hand, E-MAKER was observed in operation on

FutureGrid instances when the network bandwidth was 200 Mbps. As we described

earlier, the cost of operation on these platforms is computed after rounding the time

of operation to the nearest hour.

The estimations from the model use the same values for the execution time of a
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Figure 6.5. Comparison of the observed values during operation with the
estimations from the model for E-Sort and E-MAKER.

The run times in this figure were averaged over 3 runs and the error bars describe
the observed minimum and maximum values.

task in Equation 6.3 and the constants in Equations 6.2 and 6.10 as the measurements

made from the execution of the sample partitions by the respective applications. As

before, we maintain the instances (R) for operation to be equivalent to the number

of partitions (K ) in Figure 6.5.

The model correctly estimates the overheads of concurrent operation and their

impact on the time and cost of operation. Figure 6.5 shows the estimations from the

model on the time, cost, and cost-time product of operation reflect the values observed

during operation. The validation of the model enables us to use the estimations from
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Figure 6.6. Comparison of the overheads of the partition, task execution,
data transfer, and merge operations during operation of E-Sort and

E-MAKER.

the model in analyzing the operation of applications with different characteristics

of the workload (such as higher task execution times), operating parameters (such

as number of partitions), and operating environments (such as network bandwidth).

Further, the estimations from the model can be applied in correctly identifying the

optimal number of partitions and instances to provision for operation.

We experimentally observe the impact from the number of partitions on perfor-

mance and break down the impact on each of the runtime components. Figure 6.6

plots the individual runtimes of the partition, task execution, merge, and data trans-

fer components of E-Sort and E-MAKER. In this figure, the number of instances

provisioned for operation is equivalent to the number of partitions.

Figure 6.6a shows the operating time of E-Sort for different partitions is dictated

by the task execution times and merge overheads. The task execution times decrease

exponentially while the merge overheads increase linearly as the number of partitions

increases. The opposing trends in the task execution and merge overheads results in

a running time that decreases with increasing partitions until the merge overheads

outweigh the decrease in the task execution times.

In contrast, the operating time of E-MAKER, plotted in Figure 6.6b, is deter-
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Figure 6.7: Estimated operating time, operating costs, and cost-time product of
E-Sort for sorting 2 billion records totaling 11GB under various characteristics of

the operating environment.

mined by the data transfer overheads and the task execution times. In E-MAKER,

the data overheads increase linearly due to the software dependencies being trans-

ferred to each compute instance where the tasks are executed. As a result, the

increase in the data overheads offset the gains in the concurrent executions as the

partitions increase.

In summary, we observe two distinct patterns in the impact of the partitions on the

operation of the two applications. The concurrency in operation is counteracted by

the partition and merge overheads in E-Sort and the data overheads in E-MAKER.

The model formulated in Section 6.3 provides estimations on these overheads and

their impact on the time and cost of operation.
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Figure 6.8: Estimated operating time, operating costs, and cost-time product of
E-MAKER for annotating 800 contiguous sequences of the Anopheles gambiae

genome for various characteristics of the operating environment.

6.6.2 Effects of the characteristics of the workload and operating environment

We study the choice of the number of partitions by considering the impact of the

characteristics of the workload and operating environment on cost-efficient operation.

In this study, we compare workloads with different task execution overheads that

incur the same partition, merge, and data overheads. That is, we vary the gains

in concurrency by increasing the execution times of the tasks relative to the other

overheads of operation. These configurations are analogous to applications with

similar but complex workloads where the task execution overheads are dominant in

the overheads of operation.

We also consider operation under different network bandwidth (which impacts

the transfer overheads) as it can vary between deployments due to differences in
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the platform configurations and hardware. Further, the network resources are often

shared among multiple tenants of IaaS and PaaS platforms resulting in variations of

the bandwidth from traffic patterns, congestion, and demand for resources.

Figures 6.7 and 6.8 illustrate the effects of the characteristics of the workload and

network bandwidth on the operating time, costs, and cost-time product for various

partitions in E-Sort and E-MAKER respectively. In these figures, each row plots the

operation for different execution times of the tasks varied relative to those observed in

Figure 6.6. The overheads of partition and merge operations are the same as plotted

in Figure 6.6.

The increase in the execution time of the tasks relative to the partition, merge,

and data overheads leads to an increase in the gains realized from concurrent opera-

tion. Therefore, the number of partitions that achieve lower operating times increases

with higher task execution times as observed in Figures 6.7 and 6.8. Similarly, an

increase in network bandwidth lowers the data transfer overheads and increases the

gains realized from operation with higher number of partitions. This effect is seen in

Figure 6.8 for E-MAKER due to the large transfer overheads from software depen-

dencies.

As we noted in Section 6.2, the operating costs exhibit irregular trends due to the

rounding of the operating time to the nearest hour. That is, the cost and cost-time

product of operation with increasing partitions in Figures 6.7 and 6.8 are influenced

by the magnitude of the decrease in the operating time and if the decrease results in

a drop to the next lowest hourly boundary.

In summary, the determination of the number of partitions and instances to pro-

vision must be made in conjunction with measurements of the characteristics of the

workload and operating environment.
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6.6.3 Adaptations to the characteristics of the workload and operating environment

In this section, we show the application-level adaptations of the number of parti-

tions and instances used in operation based on the initial assessment of the overheads

of operating the workload in the deployed environment. The adaptations measure

the characteristics of the workload (such as task execution times) and operating en-

vironment (such as network bandwidth) by operating a sample partition on a sample

allocation. The sample partition comprises about 1% of the defined workload in the

applications. The sample allocation consists of a single instance in the same envi-

ronment in which the application will be operated. This sample allocation is further

used in operating the remainder of the workload to prevent wastage as instances in

metered platforms incur charges to the nearest hour.

The measurements using the sample partition and allocation provide information

on the network bandwidth and the overheads of task execution, partition, and merge.

Based on these measurements, the applications determine the number of partitions

and instances to provision for cost-efficient operation using estimates from the model.

Figures 6.9 and 6.10 show the chosen partitions along with the actual cost-time

product observed when operating with those partitions. The overheads of operating

the sample partitions are minimal compared to the overall time of operation. This

can be observed in Figures 6.9 and 6.10 where the actual cost-time product closely

tracks the cost-time product estimated by the model. In summary, these figures

show that the applications achieve cost-efficiency by tuning their operation to the

operating conditions in the deployed environment.

6.6.4 Over-partitioning of workload

Our analysis so far considers the number of partitions and instances provisioned

for operation to be equivalent. The over-provisioning of instances relative to the num-

ber of partitions chosen for operation results in resource wastage and high costs. In
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Figure 6.9: Illustration of the partitions determined for sorting 2 billion records
totaling 11GB using the application-level model and measurements of the operating

environment.
The lines represent the estimated values for sorting 2 billion records under different

bandwidth. The individual points plot the partitions dynamically chosen during
operation by measuring the operating environment.

this section, we consider the over-partitioning of the workload relative to the number

of instances provisioned for operation. The over-partitioning is useful when smaller

partitions or tasks are desired for faster detection and re-execution of failed tasks,

limiting the consumption of resources by tasks, and quickly adapting the operation

to varying operating conditions measured from the execution of tasks.

Figure 6.11 describes the effects of creating partitions greater than the number of

instances determined for cost-efficient operation. The over-partition factor represents

the multiplicative factor applied on the number of instances determined for cost-

efficient operation.

In E-Sort, over-partitioning incurs higher partition and merge overheads without

recording any increase in the gains from the increased concurrency. This is because

the number of partitions that can be simultaneously executed is limited by the number

of instances available for operation. As a result, the time and cost of operation of E-

Sort increases with over-partitioning as seen in Figure 6.11a (at over-partition factor

of 6, the time of operation increases to the next hourly boundary resulting in a sharp

increase in the cost-time product).

In E-MAKER, the effects of over-partitioning on the time and cost of operation
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Figure 6.10: Illustration of the partitions determined for annotating 800 sequences
of Anopheles gambiae using the application-level model and measurements of the

operating environment.
The lines represent the estimated values for annotating the sequences under different

bandwidth. The individual points plot the partitions dynamically chosen during
operation by measuring the operating environment.

are marginal. This is because the partition and merge overheads are negligible and

the data transfer overheads only increase with the number of instances used for

execution of the tasks. In the next section, we utilize over-partitioning in E-MAKER

to enable the measurement of varying operating conditions at shorter intervals and

the adaptation of the operating parameters to the measured conditions.

6.6.5 Adaptations to varying operating conditions

In this section, we demonstrate the dynamic adaptations when the characteristics

of the operating environment that impact the overheads and performance of the

applications vary during operation. We consider changes in the network bandwidth

since it is prone to vary due to multi-tenant effects. We show the dynamic adaptations

in E-MAKER where the impact from changes in the bandwidth are pronounced due

to the large common data transfer overheads.

Figure 6.12 shows the dynamic adaptations by E-MAKER to the operating condi-

tions observed during runtime. It plots the number of partitions and instances chosen

for operation based on the observed bandwidth. The adaptations in E-MAKER op-

erate by progressively partitioning and allocating the instances for operation based
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Figure 6.11. Illustration of the effects of over-partitioning in E-Sort and
E-MAKER.

The actual values were observed with the same experimental setup and inputs as
Figure 6.5.

on the observed conditions. It also over-partitions the workload by a factor of 2 to

enable measurement and adaptation at shorter intervals without incurring additional

overheads. In our setup, E-MAKER measures the operating environment after the

dispatch of every task and recomputes the operating parameters.

We observe in Figure 6.12 that when the bandwidth drops after 300 seconds of

operation, E-MAKER recomputes its operating parameters and lowers the number of

partitions and instances it uses for operation. This minimizes the transfer overheads

which become pronounced at low bandwidth. When the bandwidth increases again at

2100 seconds, E-MAKER determines that it can achieve cost-efficiency by continuing

operation with the current scale of instances rather than increasing the instances in

the deployment. In the experiment show in Figure 6.12, the overheads of progressive

partitioning and re-computation of the operating parameters was less than 5% of the

time of operation.

For comparison, Figure 6.12 also plots the operation of E-MAKER using the mea-

surements from the operation of sample partitions in the same operating environment.

From the comparisons of the two techniques, we note the dynamic adaptations are
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better positioned to handle variations in the operating environment while incurring

low overheads. However, the dynamic adaptations can incur large overheads and

prove disadvantageous when the variations are spurious and frequent.

6.7 Conclusion

We considered the deployment and operation of concurrent applications in dis-

tributed computing platforms using resources exclusively provisioned for each in-

stance of the applications. The cost-efficient operation in these environments is de-

termined by the number of partitions and compute instances chosen for operation.

We show the scale of partitions and instances that achieve cost-efficient operation vary

significantly depending on the characteristics of the workload and the environment

in which they are operated. Further, these operating parameters must be correctly

determined in diverse, unknown, and often unpredictable operating environments in

which the applications are deployed. In order to determine the number of partitions

and instances for cost-efficient operation in the deployed environment, we argue that

applications must be self-modeling and self-tuning. In this chapter, we considered the

class of applications operated using the split-map-merge paradigm and demonstrated

application-level techniques for realizing self-modeling and self-tuning applications.

In addition to enabling time- and cost-efficient operation, self-tuning applications

also provide the following benefits to their operators: (1) relieve them from the bur-

den of determining and maintaining the operating environment that enables efficient

operation, and (2) enable them to deploy on resources in any distributed computing

platform accessible to them.
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Figure 6.12. Dynamic adaptations of the operating parameters in
E-MAKER according to the observed network bandwidth.

For comparison, the operation using the parameters chosen from the initial sampling
of the environment is also plotted.
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CHAPTER 7

CONCLUSION

7.1 Recapitulation

The current and future generations of concurrent scientific applications will in-

creasingly be deployed on-demand by their end-users on currently accessible, feder-

ated, and heterogeneous pools of resources. As a result, the platform, hardware, and

operating environment of the applications will vary from one user to another and

from one invocation to another. To efficiently operate in such scenarios where the

operating environment is unknown and prone to vary, I argued and demonstrated the

need for elastic applications.

An elastic application can execute with an arbitrary and varying set of available

resources during runtime. These applications can seamlessly adapt their execution

to operate with the currently available resources. That is, elastic applications can

operate without any restriction on the size, reliability, hardware, and performance

characteristics of their resource allocation. The end-users can deploy elastic applica-

tions on any infrastructure or platform of choice, and allocate and remove resources

during execution based on their needs and constraints.

I presented an in-depth study of six elastic applications in terms of their con-

struction, operation, and overheads. The experiences and observations in building

the above applications were distilled into six high-level guidelines: (1) Abolish shared

writes, (2) Keep your software close and your dependencies closer, (3) Synchronize

two, you make company; synchronize three, you make a crowd, (4) Make tasks of a
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feather flock together, (5) Seek simplicity, and gain power, and (6) Build a model

before scaling new heights.

Next, I showed that the direct deployment and operation of elastic applications

on the current generation of distributed computing systems such as clouds incurs

monetary costs to the end-users. Elastic applications therefore must achieve cost-

efficient operation in the environment deployed by their end-users. The cost-efficient

operation in these environments is determined by the number of partitions and com-

pute instances provisioned for operation. I also showed that the scale of partitions

and instances that achieve cost-efficient operation vary significantly depending on the

characteristics of the workload and the environment in which they are operated.

I started with techniques in the middleware for improving the efficient opera-

tion of elastic applications. I presented two key techniques in the middleware that

(1) exposed selective information about the operating environment (such as the net-

work bandwidth) to the applications, and (2) utilized a hierarchical data strategy

for distributing the data to the resources provisioned for concurrent execution of the

application. The first technique defies conventional wisdom and shows applications

can benefit from key information about the underlying execution environment when

determining the parameters and resources for operation. The second technique ar-

gues for better data transfer and management mechanisms in the middleware in order

to lower the overheads and costs of operation on distributed computing systems.

I continued the search for techniques for achieving efficient operation by mov-

ing my focus to the application layer. The applications hold fine-grained knowledge

of the characteristics and the current and future needs of the workloads they run.

To effectively harness and apply this knowledge towards improving the efficiency

of applications, I proposed and demonstrated three techniques. First, the applica-

tions must be self-modeling. The applications must incorporate a model of their

workload characteristics, structure, and operating parameters that influence their
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execution. Second, the applications must explicitly control and direct the expression

and operation of the concurrent units of their workload. Third, the applications must

implement self-tuning mechanisms that adapt their behavior and operation during

runtime according to the characteristics of their deployed environment.

Finally, I provided evaluations of self-operating elastic applications built using

the proposed techniques. The evaluations showed that self-operating applications

achieve high efficiency in terms of their running time and monetary costs incurred

during operation despite the overheads. This is due to the applications being able

to make effective decisions on their operating parameters during execution using

measurements of the operating conditions during runtime.

7.2 Operators, Agents, and Abstractions

Members of my research group have successfully argued and shown that the com-

plexities of operation on distributed systems are best addressed by agency [110] and

abstractions [81]. The agents shield applications from having to navigate the intri-

cate web of different interfaces, protocols, and services in various distributed systems.

They handle the negotiation of access and usage of various resources in the distributed

systems and coordinate the functions of multiple components (e.g., remote storage,

data transfer) to provide a seamless and productive operation of the applications.

Abstractions, on the other hand, help applications express and execute their work-

load without having to deal with the heterogeneities in the hardware, performance

variations, and failures prevalent in distributed systems. They simplify the construc-

tion of applications and enable their developers to focus in the design of algorithms to

operate on the inputs without having to worry about the semantics of operation. In

summary, agency and abstractions enable the applications focus on executing their

workload correctly and efficiently without concern for the underlying details of their

operating environment.
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In the ecosystem comprised of agents and abstractions, my work defines and

casts the role of operators. It shows applications as the operators who determine and

direct the decisions for efficient operation. The self-operating applications seek and

apply the functions offered by the agents and abstractions for their construction and

operation on distributed computing systems.

This model is not unlike the system found in modern society where human beings

employ agents (e.g., travel agent, financial agent) for handling the complexities and

the details of carrying out an operation (e.g., traveling to a destination, investing

money). The human beings at the same time also use various abstractions (e.g., air-

lines, banks) to perform the operations or accomplish the desired work. The agents

and abstractions enable human beings to navigate the complex tasks and interfaces

(e.g., finding available flights with favorable times, finding investment options with

the high risk-to-reward ratio). However, in the end, human beings maintain control

over the work carried out by the agents and abstractions on their behalf, make the

decisions regarding the work being performed, and act on the decisions at their dis-

cretion in a manner that suits their circumstances and goals. This dissertation can be

considered to extend this analogy to software applications operating on distributed

computing systems and demonstrate it in practice.

7.3 Impact

The application-level techniques presented in this work can be considered to ex-

tend the well-known end-to-end principle of system design [97] to large-scale dis-

tributed computing. The presented techniques reside at the end-points (applications)

of the distributed computing software stack and enable cost-efficient decisions during

operation.

The application-level model introduced and described in this work is being utilized

in accurately predicting the resource consumption of application and the configura-
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tion of the resources for the operation of large data-parallel scientific applications.

The model is applied in building mathematical techniques that find optimal values

for multiple variables such as the number of instances, size and type of instances, and

the number of partitions.

In addition to the presentation of the principles for the design and operation of

large-scale concurrent applications, this dissertation also included the construction

of applications that were used actively in scientific work in their respective fields.

This work extended Elastic Maker [112] by incorporating a model of the runtime

components and dynamic adaptation mechanisms for self-operation. The Elastic

Replica Exchange was used in biomolecular research at Notre Dame for examining

the movements of protein molecules across their conformational spaces at a finer

granularity. The feedback from their use showed the replica exchange to be slow

and severely affected by the presence of heterogeneous hardware and failures due

to the use of the global synchronization barriers. This resulted in the work on re-

moving the global barrier and improving the runtime performance in the presence of

heterogeneous hardware and failures.

The Accelerated Weighted Ensemble (AWE) was built as part of a collaborative

effort with scientists involved in biomolecular research at Notre Dame. This work

extended AWE to use a hierarchical data distribution model enabling it to scale using

federated resources. This setup also minimized the impact from failures and lowered

the data transfer overheads. Finally, the Elastic Sort implementation was useful

to the broader community as a model implementation highlighting the components,

benefits, and overheads of elastic applications.

All the elastic applications presented in this work are now shipped as part of

the CCTools software package [4] with the exception of AWE which is shipped as a

standalone product [2].
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7.3.1 Publications

The characteristics of elastic applications and the conversion of a concurrent scien-

tific application to an elastic application was published at IEEE CloudCom 2012 [92].

The case studies of elastic applications and the lessons learned from their construc-

tion and operation were published at IEEE CCGrid 2013 [93]. The demonstration

and evaluation of the hierarchical data distribution model in the operation of AWE

was presented at IEEE Cluster 2013 [13]. The techniques for self-operating applica-

tions, namely application-level modeling, control, and adaptations, were presented in

a journal paper that was accepted for publication in the IEEE Transactions on Cloud

Computing in January 2015.

7.4 Future Work

The ideas and techniques presented in this work can be considered to establish

important and useful steps in the realization of fully autonomous distributed com-

puting applications operating at scale using thousands of resources spread across

multiple platforms. In other words, this work makes contributions towards a future

where applications fully control and direct their operation in the deployed environ-

ment without requiring any effort from their operators. These applications, when

invoked, automatically determine the execution parameters, provision the resources

that will enable optimal operation of their workloads, and adapt to any changes in the

deployed environment that impacts prior estimations on efficient operation. To offset

the changes in the operating conditions, the applications will alter their execution as

well as the size, type, and scale of the allocated resources. Further, the applications

will let the end-users specify their desired operational goal for the current invoca-

tion in terms of optimal time, cost, or both and allow these goals to be modified

runtime while incurring a minimal penalty. To fully realize this goal of autonomous
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distributed computing, the following work remains to be accomplished.

7.4.1 Application-level techniques

The applicability and usefulness of the techniques presented in this work are

currently limited to applications that conform to the split-map-merge execution

paradigm. Applications with workloads expressed in the form of Directed Acyclic

Graphs (DAG) are growing in their size and popularity [62, 84, 109] and might ben-

efit largely from the extension of the techniques presented in this work. The earlier

work in Pegasus [42] presented techniques for the partitioning of the DAG to achieve

optimal scheduling and mapping of the computations to available resources. In a

similar way, techniques must be established for the partitioning or aggregation of the

nodes expressed in the DAG in order to achieve time- and cost-efficient operation.

It might also be worthwhile to build techniques and solutions that determine the

size of the data or computation that must be distributed for remote execution. As

the capacities and capabilities of resources at an individual execution site continue to

grow, it might prove efficient to leverage the local resources at the master-coordinator

to run a piece of the computation. Further, the pipelining of the local execution with

the data transfer and execution of the tasks on the allocated resources may result in

substantial gains in efficiency.

Finally, the partitioning of the workloads can be improved by considering the

failure rates and the probability of the termination of instances in grids and spot-

price instances in cloud platforms. These events are common and expected in these

platforms due to their operating principles and business models. The failures and

premature terminations of resources can impact the performance and efficiency of the

applications with a certain partition size since the cost of migrating and re-executing

a partition increases with the size of the partition.
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7.4.2 Resource selection

The efficient operation of applications can be improved by considering the size

(e.g., large vs small instances in cloud platforms) and type (e.g., dedicated- vs spot-

instances in cloud platforms) of instances to provision for their operation. It might

be useful to start by considering the operation of the individual partitioned tasks

as multi-threaded processes at the execution sites. This work showed the trade-offs

that exist in the overheads between the partitioning of the workload into multiple

tasks and the operation of each task as multi-threaded programs on multiple cores.

Techniques that determine the partitioning and configuration of tasks and threads

where the overheads are minimal are required. These techniques can then be extended

to also compute the number of instances and the capacities of the resources (cores,

memory, disk) to provision at each instance.

Recently, hardware accelerators (e.g., Intel Xeon processors) and GPUs have been

adopted in the operation of large scale and resource intensive computations [70, 118].

The overheads of partitioning, data movement, and execution on these hardware

accelerators need to studied and evaluated. Further, the differences with their CPU

counterparts need to be modeled so they can be applied in operating environments

that include a mix of CPU, GPU, and hardware accelerators in the operation of

applications such as AWE.

Finally, the federation of resources across multiple platforms presents challenges

to the estimation and selection of resources. The use of the hierarchical configuration

of masters in the form of foremen described in Chapter 5.4 was a good first step

in managing resources derived from multiple platforms. However, challenges still

remain unaddressed on how applications should determine the size, type, and scale of

resources to provision in each platform. Further, it is also important for applications

to account for the differences in the characteristics and performance of the resources

and isolate their effects.
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7.4.3 Cost optimization

The cost-efficient operation of applications requires further sophistication in the

techniques at the application layer. An useful sophistication of the presented tech-

niques will provide the capability to switch to a different platform, or a different type

or size of instances if the operating conditions vary enough to warrant such a migra-

tion during execution. Another direction will consider terminating and migrating the

currently running computations to newly allocated instances that can complete the

computations at a cheaper cost or at a faster rate.

Such sophistication during runtime requires mechanisms that can communicate

and interface with the applications to allocate and manage resources based on the

requirements communicated by the applications. The Work Queue Pool tool [126]

developed by my research group is a step in this direction. This tool can be extended

to terminate instances when the applications do not find them useful during runtime,

allocate new instances that the applications determine to be necessary for achieving

efficient operation, and manage the resources at the desired scales especially in the

presence of failures and terminations.
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