
Converting A High Performance Application to an
Elastic Cloud Application

Dinesh Rajan, Anthony Canino, Jesus A Izaguirre, and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame

Notre Dame, Indiana 46556

Email: dpandiar@nd.edu, acanino@nd.edu, izaguirr@nd.edu, dthain@nd.edu

Abstract—Over the past decade, high performance applications
have embraced parallel programming and computing models.
While parallel computing offers advantages such as good uti-
lization of dedicated hardware resources, it also has several
drawbacks such as poor fault-tolerance, scalability, and ability to
harness available resources during run-time. The advent of cloud
computing presents a viable and promising alternative to parallel
computing because of its advantages in offering a distributed
computing model. In this work, we establish directives that serve
as guidelines for the design and implementation or identification
of a suitable cloud computing framework to build or convert
a high performance application to run in the cloud. We show
that following these directives leads to an elastic implementation
that has better scalability, run-time resource adaptability, fault
tolerance, and portability across cloud computing platforms,
while requiring minimal effort and intervention from the user.
We illustrate this by converting an MPI implementation of replica
exchange, a parallel tempering molecular dynamics application,
to an elastic cloud application using the Work Queue framework
that adheres to these directive. We observe better scalability and
resource adaptability of this elastic application on multiple plat-
forms, including a homogeneous cluster environment (SGE) and
heterogeneous cloud computing environments such as Microsoft
Azure and Amazon EC2.

I. INTRODUCTION

Scientists and developers have built several scientific and

high performance applications to study, simulate, investigate,

and evaluate scientific phenomena. With the advent of super-

and parallel computing, these high performance applications

have evolved to take advantage of dedicated hardware to

achieve scalability within the constraints of available resources

at startup time, and lower time to completion. They employ

parallel programming techniques such as Message Passing

Interface (MPI) to achieve these improvements over traditional

sequential implementations [1].

At the same time, new computing trends and paradigms

have continued to emerge. Recently, cloud computing has

emerged as a very popular computing paradigm offering on-

demand resource allocation and usage, lower costs, distributed

storage and backup, and a usage based pricing model [2],

[3]. With the advent of the distributed execution and run-time

environments offered in cloud computing, we argue that the

programming frameworks for scientific and high performance

applications need to shift away from parallel execution models

to distributed computing models to fully leverage the benefits

offered in cloud environments.

We first study the issues and disadvantages of using parallel

computing frameworks. We found that these frameworks have

poor fault tolerance and they leave the responsibilities of

providing failure recovery to the application developer. As a

result, scalability is limited and constrained by the availability

of dedicated and carefully controlled resources. In addition,

we find that parallel execution environments are inefficient

and ineffective in utilizing all available resources and any

resources that become available during run-time. Based on

these disadvantages, we determine that parallel computing en-

vironments cannot serve as a platform for building and running

elastic applications that can dynamically adapt to resource

availability and harness available resources, scale, progress

through failures and errors, and be portable across platforms.

In this paper, we explore and show cloud computing as a viable

platform for building and running elastic applications.

We present guidelines for the design and development of

cloud computing frameworks [4], [5], [6] that abstract under-

lying execution environments and distributed resources, and

provide an interface for building and deploying applications

in the cloud. We formulate these guidelines from the insights

gained in studying high performance applications implemented

using parallel computing interfaces and techniques.

We also present a case study in converting a high perfor-

mance application, a replica exchange molecular dynamics

application [7], [8] implemented using MPI, to an elastic

cloud application using a distributed computing framework

that adheres to the presented guidelines. We compare the MPI-

based high performance application with its corresponding

elastic cloud application and show the challenges in running

high performance computations, such as scalability, fault-

tolerance, failure recovery, are elegantly addressed with the

elastic application. We then deploy and run our elastic ap-

plication on different cloud computing platforms illustrating

its portability across multiple platforms. We also use our

experimental runs on the different platforms to demonstrate

the benefits of adherence to the guidelines.

The contributions of this paper are summarized as follows:

It proposes guidelines for the design, implementation, or

identification of a cloud computing framework used to convert

and run existing high performance applications or builds new

elastic applications in the cloud. The paper then proceeds to

describe a case study in the conversion of an existing high

performance application to an elastic implementation through

a framework that adheres to these guidelines.

The rest of the paper is organized in the following way:

We study the problems with parallel computing techniques,

such as MPI, as a framework in building high performance

applications and use the insights gained to formulate directives

for the design and use of a cloud computing framework in

Section II. In Section III, we describe the architecture of a

cloud computing framework that adheres to these directives. In

Section IV, we describe replica exchange molecular dynamics,

a high performance computation used in the study of protein

folding and typically implemented using MPI. We also study

its underlying computational logic and explain its conversion

from an MPI-based implementation to an implementation in

the cloud. In Section V, we present the evaluations and results

of running this cloud implementation of the high performance

computation. We describe related work in Section VI. We

conclude in Section VII and discuss directions and avenues

for future work.

II. MOTIVATION

Applications and software built with parallel programming

interfaces and techniques offer certain advantages, such as

better utilization of dedicated resources and lower time-to-

completion, over traditional sequential models. Most of these

applications are highly computation intensive and demand

excessive memory and resource availability due to the com-

plexities involved in studying scientific phenomena. Such

applications typically employ parallel programming interfaces,

such as MPI, to achieve parallelism in their execution and

take advantage of dedicated hardware to speed-up execution

and time-to-completion. Nevertheless, the excessive and high

demands for resources present significant obstacles to the

successful execution and completion of these programs. To

overcome the limitations of excessive resource requirements,

the simulations are typically run with expensive high per-

formance and supercomputing hardware components. While

this approach can satisfy resource requirements to a certain

degree, it offers poor scalability since resources are limited

by hardware costs and availability.

Further, such parallel computing based applications lack

the ability to harness any currently available resources to

proceed with execution and this often leads to poor produc-

tivity where valuable time is spent waiting for all requested

resources to be available. Also, while fault tolerance can be

achieved with checkpointing or other error recovery techniques

implemented at the application level, they inherently lack a

dynamic fault-tolerance and error-recovery mechanism that

will allow for executions to recover from multiple failures,

proceed execution or migrate seamlessly to another site in the

event of unrecoverable failures. The behavior and performance

of such applications vary with hardware, platform, network

characteristics and quirks [9], [10] and often need to be tuned

to suit the platform and hardware used in execution. These

factors further limit scalability and lead to poor portability

across platforms and, high development and deployment costs.

To overcome these shortcomings of parallel computing and

take advantage of the distributed programming and execution

models offered by cloud computing, these application need to

be converted to an elastic application in the cloud. However,

designing and rewriting these applications to run in the cloud

computing environments can consume extensive effort, time,

and cost, especially if these applications contain large amounts

of code. To lower the level of effort and cost required,

developers can take advantage of cloud computing frameworks

and engineer their applications to run in cloud environments

through their API and library interfaces. To help build, design,

identify, or use an existing cloud computing framework for

creating or modifying high performance applications for the

cloud, we establish a set of directives to follow, which are

presented below:

Directive 1: Scalability. The cloud computing framework

must allow applications to scale in size, complexity,

and resource usage without being constrained by the

need for dedicated hardware resources.

Directive 2: Resource Adaptability. The framework must

dynamically harness resources as they become avail-

able and allow applications to utilize these resources

to progress in their execution. It must also adapt to

loss or failure of allocated resources and still allow

the application to continue execution. This must be

done seamlessly and transparently to the application.

Directive 3: Fault tolerance. The framework must provide

robust fault-tolerance and error recovery at different

levels to the application. It must allow the application

to continue execution even in the presence of hard-

ware failures, communication failures, site failures,

and execution errors and failures. The framework

must dynamically rerun failed tasks or seamlessly

migrate them to other sites in the event of such

failures.

Directive 4: Portability. The framework must be able to

deploy and run the application on different cloud

computing platforms with minimal effort and inter-

vention from the user.

Directive 5: Platform independence. The framework must

be independent of platforms, operating environments,

and hardware and must be able to deploy and run

applications with minimal effort and intervention

from the user. It must also hide any platform, oper-

ating system, and hardware characteristics from the

application.

Directive 6: Application independence. The framework

must not be tied to any particular application ar-

chitecture, type, or implementation. In essence, the

framework should be able to execute any application

as long as the required dependencies and executing

environments are available or provided.

Directive 7:Ease of effort. The framework must allow users

to migrate their applications with minimal effort to

the cloud. It must offer easy to use API, libraries,

interfaces and facilitate quicker development and

deployment of their applications to the cloud.

With the establishment of the directives for the design

and/or use of a cloud computing framework, we proceed to

describe one such framework, Work Queue [4], developed at

the University of Notre Dame.

III. CLOUD COMPUTING FRAMEWORK

In this work, we utilize and employ a cloud computing

framework called Work Queue [4] to deploy and run elastic

implementations of high performance applications. The Work

Queue framework is based on the master-worker paradigm,

where multiple worker processes can receive and execute

workloads sent by the master. The master coordinates the

execution of a given application by assigning and schedul-

ing work units to each of the workers. Figure 1 illustrates

the master-worker architecture of Work Queue. The arrows

describe the communications between the master and worker.

The communications occur at the following times: (a) transfer

of input including application executables, binaries, input files

etc., from master to workers, (b) communication of the task

execution commands and their arguments by master to its

workers, and (c) transfer of output including output files and

logs from workers to master.

Fig. 1. Architecture of Work Queue.

The master in the framework can be considered as a

wrapper script around the application. This master script is

implemented by the user using the Work Queue API. The

input files to be sent to the worker site, the executables to be

run, the execution commands and arguments, the output files

that need to be retrieved from the workers are specified in the

master script using the appropriate API calls. The individual

units of execution of the application, referred from here on as

tasks, are also specified in the master and are dispatched to the

workers for execution. The master coordinates the executions

of the tasks and aggregates the results and specified output

files from their execution.

The workers are deployed as executables on the cloud

platform and they are invoked and run as jobs on these

platforms through their respective job submission interfaces.

The workers can be compiled, installed, and run on any

POSIX compliant environment. This implies that the worker

can virtually be deployed and run on any operating environ-

ment including Microsoft Windows based environments (using

cygwin).

The master script implemented by the user is often relatively

simple. This is because the master script only contains the

input file specifications, the executables required for task

execution, the output file specifications, and the task execution

command and arguments. The assignment and scheduling of

tasks to workers, transfer of input and output files, fault

tolerance and recovery in the event of any errors and failures

at workers are handled without application intervention. These

properties illustrate Work Queue’s adherence to Directive 7.

We proceed to describe a case study in converting an high

performance application into an elastic cloud application. The

high performance application considered is replica exchange

molecular dynamics, which accelerates the simulation of pro-

tein motion due to atomic interactions and is useful in studying

protein folding.

IV. CASE STUDY: ELASTIC REPLICA EXCHANGE

Proteins are molecular machines that need to move in order

to function. Nascent proteins must fold into a distinctive

shape that enables them to interact with other molecules and

carry several functions in the cell. Protein folding is a grand

challenge and has been simulated using molecular dynamics

(MD), which numerically integrates Newton’s equations of

motion for all the atoms in a protein. The potential energy

of the system dictates the probability of remaining in a given

geometric configuration, while the temperature provides en-

ergy to jump over barriers in the potential energy surface. Due

to the high dimensionality of the problem, MD simulations

often get trapped in local minima of the potential energy

surface. One way of overcoming energy barriers is to raise the

temperature of the system; however, the paths obtained from

high temperature simulations do not correspond to the paths

at the lower temperature. A technique used to improve the

sampling of the potential energy surface is parallel tempering,

also called replica exchange molecular dynamics [7], [8],

which has replicas at many temperatures. Many configurations

are visited by the high temperature replicas and then annealed

to lower temperature replicas by a Monte Carlo procedure

that achieves the correct statistical distribution. Particularly,

simulations are run by creating multiple replicas of a protein

molecule and executing each over several Monte Carlo steps

or iterations at different temperatures. At the end of every iter-

ation, an exchange is attempted between neighboring replicas,

where if certain criteria are met, the replicas are swapped with

regards to their temperature and the simulation is continued.

The simulations of replicas in each iteration are completely

independent and can be performed parallel to each other. The

communication between replicas only happens at the end of

each iteration when an exchange between replicas is attempted.

There are several simulation software packages, such as

ProtoMol, Gromacs, NAMD, that simulate the dynamics of

protein molecules and are used to study and perform replica

exchanges [11], [12], [13]. In this work, we employ ProtoMol

Fig. 2. Elastic implementation of Replica Exchange using Work Queue.

as the underlying software that performs simulations of the

protein molecules represented in each replica.

The replica exchange computations and simulations are

typically implemented using MPI. Some of the simulation

software such as ProtoMol and Gromacs offer built-in MPI

implementations for this purpose. However, as we discussed

earlier in Section II, such an MPI based implementation

exhibits several disadvantages and inefficiencies. To overcome

these shortcomings of an MPI based implementation of replica

exchange, we built an elastic implementation using the Work

Queue framework described above.

The implementation of elastic replica exchange required

the creation of the master script as detailed in Section III.

We built the master, which here is a wrapper script around

ProtoMol, using the Work Queue API. This master script

creates and specifies the configuration and input files required

for each iteration of the simulation in ProtoMol and gathers

the output files upon their completion by the workers. At

the end of each iteration, the master checks to see if an

exchange can be attempted between two replicas and if so

swaps the necessary parameters of those replicas. The master

then proceeds to generate the configuration and input files

for the next iteration. The master, therefore, coordinates the

entire simulation run across workers distributed and running

inside cloud infrastructures. Figure 2 illustrates the work flow

in the elastic implementation of replica exchange using the

Work Queue framework. Elastic replica exchange is available

as part of the cctools package that can be downloaded at

http://cse.nd.edu/∼ccl/software/download.shtml.

In the next section, we experimentally study and evaluate

this elastic implementation of replica exchange.

V. EXPERIMENTAL STUDY

In this section, we first study the performance of elastic

replica exchange in comparison to the MPI-based imple-

mentation. We then proceed to describe and compare our

experiences in running elastic replica exchange on different

cloud platforms including Amazon EC2 and Microsoft Azure.

A. Elastic Replica Exchange

We compare the performance of the elastic implementation

of replica exchange using Work Queue against its MPI imple-

mentation. For the experiments in this section, we deployed

and ran both implementations on the Sun Grid Engine [14] in-

frastructure at the University of Notre Dame. Each experimen-

tal run involved simulations over 100 Monte Carlo steps with

each step running 10000 molecular dynamics steps. Figure 3

compares the running time of the MPI- and Work Queue-based

implementations of replica exchange running simulations over

several replicas. The number of workers deployed and run was

equal to the number of replicas simulated in the experiment.

For example, a run with 30 replicas had 30 workers being

deployed and run. The running time of these experiments

were measured from the start of simulation to its completion.

Therefore, Figure 3 does not include the job queuing and

scheduling delays. In this figure, we observe that the Work

Queue implementation has a slightly higher running time than

the MPI implementation. This is attributed to two main factors:

(a) communication and data transfer overheads between the

master and workers that running remotely, and (b) recovery

from failures on the worker sites.

 0

 100

 200

 300

 400

 500

 0 24 48 72 96 120 144 168 192

R
u
n
n
in

g
 t
im

e
 (

m
in

u
te

s
)

Number of Replicas

wq
mpi

Fig. 3. Running time performance comparison of MPI- and Work Queue-
based implementations of replica exchange.

An important observation we make in this figure is that the

MPI runs do not scale well beyond 120 replicas. At the time of

 0

 100

 200

 300

 400

 500

 600

 700

 0 12 24 36 48 60 72

R
u
n
n
in

g
 t
im

e
 (

m
in

u
te

s
)

Number of workers

Fig. 4. Evaluation of running time performance with varying number of
workers for an experimental run with 72 replicas simulated over 100 Monte
Carlo steps.

 0

 5

 10

 15

 20

 25

 0 24 48 72 96 120 144 168 192

N
u
m

b
e
r
 o

f
fa

il
u
r
e
s

Number of Replicas

Fig. 5. Number of failures observed with Work Queue implementation of
replica exchange.

this writing, they were still queued and waiting to be scheduled

due to the lack of resources at this scale being available

simultaneously on the Notre Dame SGE infrastructure. We

also note that the Notre Dame SGE has a constraint on

the resources available to a user at any given time, thereby

limiting the scalability of the MPI implementation even with

the availability of more resources. On the other hand, we

see that the Work Queue implementation scales well due to

its ability to scavenge and utilize resources as they become

available. Experiments beyond 120 replicas were achieved by

deploying multiple workers on allocated resources with multi-

ple computing cores and invoking their execution on each core

through MPI. This illustrates better scalability of the Work

Queue implementation over the MPI-based implementation as

required by Directive 1.

In Figure 4, we plot the running times of simulations run

with 72 replicas over 100 Monte Carlo steps and 10000

molecular dynamics steps while the number of workers de-

ployed is varied. We observe the running time to increase

with a lower number of workers deployed. This is because

each Monte Carlo step of a replica in the simulation has to

be executed by a smaller set of workers and the parallelism

in executing the steps of several replicas simultaneously is

lowered. Nevertheless, we note the simulations successfully

run to their completion even with a smaller pool of workers.

This observation satisfies Directive 2 which requires the im-

plementation to adapt to varying resource availability, harness

available resources, and run to completion even with a limited

set of available resources.

Figure 5 illustrates the number of failures that occurred on

the worker sites during each of the experimental runs plotted in

Figure 3. These failures are attributable to a variety of factors

such as network errors, hardware failures, data corruption,

etc. With the MPI-based implementation, these failures will

stall the entire experiment and will need to be restarted and

rerun. The Work Queue implementation offers fault-tolerance

by rerunning only the failed task in the experimental run,

and in the event of any unrecoverable failures at a worker,

migrating its execution to a different worker. Thus the Work

Queue implementation satisfies Directive 3.

B. Deployment on different cloud platforms

We proceed to port and study the elastic implementation

of replica exchange on two other cloud computing platforms,

Amazon EC2 and Microsoft Azure. We describe the behavior

of our elastic implementation on these different platforms.

Our objective is not to compare the performance of the cloud

systems against each other, as they all offer different cost-

performance trade-offs using different hardware. Instead, our

goal here is to show that our system functions correctly and

portably across multiple different environments.

Campus SGE. The Sun Grid Engine (SGE) at the University

of Notre Dame is maintained as a dedicated platform for

running high performance scientific applications. The jobs are

submitted to the compute nodes via the SGE batch submission

system [14]. The compute nodes run Red Hat Enterprise

Linux (RHEL) as their operating environment. The compute

nodes here are typically composed of high-end hardware. The

workers were queued and submitted as jobs to this grid. Upon

being scheduled and run, the workers connect to the master

and execute the assigned workloads.

Amazon EC2. The Elastic Compute Cloud or EC2, built

by Amazon.com, is a platform that allows virtual machine

instances to be requested, allocated, and deployed on demand

by users. Different instance sizes are provided with varying

hardware configurations to satisfy different requirements and

workloads of the users [15], [16]. The instances allocated can

TABLE I
DESCRIPTION OF THE PLATFORMS USED.

Name System Processor I/O Cost
Platform A Amazon EC2 2*2 x 1.0-1.2 GHz 7.5 GB memory $0.34/hour
Platform B Notre Dame SGE 2*2 x 2.6 GHz 8-12 GB memory $0.0/hour
Platform C Microsoft Azure 2 x 1.6 GHz 3.5 GB memory $0.24/hour

be installed and run with different Linux operating system

flavors and kernels and their operating environments can

also be customized. Since the instances can be installed and

customized to run a Linux environment, the migration of our

implementation to EC2 was similar to SGE.

Microsoft Azure. The Windows Azure platform, from Mi-

crosoft, offers virtual instances running an image of the Azure

operating system. The virtualized instance is offered through

the Azure hypervisor and provides an operating environment

based off the Windows Server 2008 R2 VM system [17], [18].

There are two computational roles offered in the platform

- the web role that serves as the front end interface to the

allocated compute instances, and the worker role that serves

as the core computing unit that runs tasks and applications. As

a result of this two tiered architecture, we built wrapper scripts

that communicate to the web role and invoke workers on the

worker roles. We also used cygwin-compiled executables in

migrating our implementation to this environment.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 12 24 36 48 60 72 84 96

R
u
n
n
in

g
 t
im

e
 (

m
in

u
te

s
)

Number of Replicas

Platform A
Platform B
Platform C

Fig. 6. Comparison of running times on the three platforms described in
Table 1.

The above experiences in porting and deploying our imple-

mentation on different cloud computing platforms proves its

adherence to Directive 4.

We now study the behavior of our implementation on the

different cloud platforms. In the experiments described below,

the number of workers deployed were again equivalent to

the number of replicas involved in the simulation run. Each

experiment ran simulations performed over 100 Monte Carlo

steps involving 10000 molecular dynamics steps each. Figure

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350
P

ro
b
a
b
ili

ty

Step completion time [s]

Platform A
Platform B
Platform C

Fig. 7. Cumulative distribution function of the step completion times in the
experimental run involving 18 replicas on the three platforms.

 0

 10

 20

 30

 40

 50

 60

50 100 150 200 250 300 350

F
re

q
u
e
n
c
y
 o

f
o
c
c
u
rr

e
n
c
e

Step completion time [s]

Platform A
Platform B
Platform C

Fig. 8. Histogram plot of the step completion times in the experimental run
involving 18 replicas on the three platforms. The bins used in the plot were
of size 25 time units (seconds) and each bin consists of all values that are
greater than or equal to the corresponding bin label. The bin labels are plotted
on the x-axis.

6 shows the running times of experimental runs with varying

replica sizes on these platforms. The x-axis represents the

number of replicas involved in each run. Figures 7 and 8

plot statistical data on the completion time of the individual

Monte Carlo steps on the three platforms from experimental

runs involving 18 replicas. Figure 7 plots the cumulative dis-

tribution function of the completion time of each step. Figure

8 gives the corresponding histogram plotting the distribution

of completion times after being classified in bins.
From Figures 7 and 8, we notice significant variations in

the completion times of the Monte Carlo steps on one of

the platforms (Platform C) as compared to the other two

platforms. While these variations can be attributed to one

or more of several factors including network latencies and

jitter, virtualization effects, firewall, load balancing etc., this

is good evidence that our implementation is impervious to any

peculiar platform and network characteristics of a cloud com-

puting system. Our implementation demonstrates the ability

to hide differences in design, implementation, and behavior of

different cloud computing platforms from the application and

therefore satisfies the requirements in Directive 5.

 0

 25

 50

 75

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m

b
e
r

o
f
w

o
rk

e
rs

Time

 0

 200

 400

 600

 800

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000M
o
n
te

 C
a
rl
o
 s

te
p
 t
im

e
 (

s
)

Time

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
s
t
($

)

Time

Fig. 9. Illustration of a run across all three platforms described in Table 1.

We also demonstrate the execution of elastic replica ex-

change across multiple cloud platforms. We show this by

deploying workers across all three platforms in Table 1.

The experimental run involved 75 replicas simulated over

100 Monte Carlo steps running 10000 molecular dynamics

steps. Figure 9 presents the number of workers connected, the

completion time of each Monte Carlo step, and the running

cost during this experimental run. The experiment was started

with 25 workers being submitted and run on the Platform B.

Since there are 75 tasks, as a task corresponds to a simulation

step of one replica, it takes three round-trips of task execution

for these workers to finish a Monte Carlo step.
After an hour (around 4200 seconds in Figure 9), we deploy

and run 25 workers on instances in Platform A bringing the

total number of workers to 50. This addition of resources

lowers the completion time of Monte Carlo steps as it requires

only two round-trips of task executions across the workers. We

then deploy and run another 25 workers on Platform C after

two hours of run-time (around 7600 seconds). We immediately

observe a spike in the running time which we attribute to the

long transfer times in sending the executable of the simulation

program, Protomol, to the added workers. We also observe

from Figure 9 that the addition of these workers on Platform

C results in an increase in the running time of each step. This

is because the running time of simulation steps on Platform C

significantly varies from the other platforms as we observe

in Figure 6. We attribute these to differences in the hard-

ware, network, and system characteristics and specifications

of these platforms. As a result, adding workers on Platform C

negates any benefits gained from the parallelism in running 75

tasks simultaneously. We manually removed these workers on

Platform C after an hour of their deployment (around 10100

seconds) to speed up completion of the experimental run. This

results in the failure of tasks running on the removed workers.

The spike in the running time following the removal of these

workers is attributed to the failed tasks being scheduled and

rerun on the remaining workers.

Our future work will explore techniques that will measure

the benefits of adding more workers to an ongoing application

execution and automatically remove workers that have any

negative impact on the execution without requiring manual

intervention. This experimental run further illustrates adher-

ence of our framework to Directives 2 (resource adaptability),

4 (portability), and 5 (platform independence).

VI. RELATED WORK

There have been several efforts in studying the deployment

of scientific and high performance applications on various

cloud computing platforms [19], [20], [21]. Our work differs

by showing the deployment of a high performance applica-

tion on multiple cloud computing platforms through a cloud

computing framework. We also establish guidelines for the

design, implementation, and identification of cloud computing

frameworks in this work.

There have also been several efforts in building and mi-

grating bio-molecular applications to distributed computing

environments [22], [23], [24]. The work in [22] present a

framework that provides fault-tolerance and failure recovery

for running replica-exchange simulations on distributed sys-

tems. This is achieved through checkpointing and an external

interface that monitors the execution of distributed applica-

tions. Work Queue differs by offering these functionalities

inherently without overheads. The authors in [23] describe

their experiences in running a replica-exchange simulation

software, NAMD, on the Condor grid. They add a dedicated

set of resources to speedup slow replicas executing on the

grid and notice improvement in the efficient usage of available

resources. The authors go on to present a database architecture

for storing and retrieving bio-molecular simulation results.

The work in [24] describes experiences in using Legion, an

operating system that provides abstractions for managing and

utilizing grid resources, to run replica-exchange simulations

built using MPI. This work provides good insights on the

effectiveness of abstractions in providing a seamless transition

for users porting applications to run on grids.

The system in [25] provides shorter time-to-result of a

simulation of large protein systems. It uses a combination of

distributed and parallel computing techniques to achieve this.
Our work differs from related efforts by establishing guide-

lines and deploying an high performance application on multi-

ple cloud platforms. It illustrates the benefits of the guidelines

in providing enhanced scalability, fault tolerance, portability to

different platforms, and better resource harnessing and usage.

VII. CONCLUSION AND FUTURE WORK

We studied the disadvantages of parallel computing as a

platform to build and run build high performance and scientific

applications. We find that parallel computing is not conducive

to building elastic applications that can adapt to resource avail-

ability, recover from failures, scale, and are portable across

multiple platforms. On the other hand, distributed computing

provides mechanisms that can overcome the disadvantages

with parallel computing. We show cloud computing, which is

built on a distributed computing model, as a viable platform

for building elastic applications of high performance compu-

tations. To build or migrate applications to run in the cloud,

cloud computing frameworks and abstractions are employed to

lower cost and effort. In this paper, we established directives

to help in the design, implementation, and identification of

cloud computing frameworks for building and running high

performance applications. These directives were formulated

to overcome the disadvantages with parallel computing and

leverage the benefits of cloud computing. By converting an

existing replica exchange molecular dynamics application to

an elastic application using a framework that satisfies these

directives, we show the challenges of high performance com-

puting such as scalability, resource adaptability during run-

time, fault-tolerance, and failure recovery are more elegantly

addressed using cloud computing.
Our future work will consider scalability in terms of the

application complexity. We also plan on migrating high perfor-

mance applications from different scientific fields to the cloud

using our framework and thereby illustrating adherence to

Directive 6. Another direction we aim to explore is identifying

how our framework can be leveraged to optimize certain high

performance applications and allow computations that are not

possible in parallel computing environments to be performed.

VIII. ACKNOWLEDGEMENTS

We thank Jonathan Schuster for his contributions in porting

our implementation to the Microsoft Azure platform. We also

thank Connor Kennan for his help in running the MPI-based

implementation of replica exchange.
This work was supported by the National Science Foun-

dation under grants NSF-CNS-0643229, NSF-CNS-0855047,

and partially under grant NSF-CCF-1018570.

REFERENCES

[1] P. S. Pacheco, Parallel programming with MPI. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1996.

[2] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of
cloud computing,” in Grid Computing Environments Workshop, 2008.

GCE ’08, 2008, pp. 1 –10.

[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments

Workshop, 2008. GCE ’08, 2008, pp. 1 –10.
[4] L. Yu and et al., “Harnessing parallelism in multicore clusters with

the all-pairs, wavefront, and makeflow abstractions,” Journal of Cluster

Computing, vol. 13, no. 3, pp. 243–256, 2010.
[5] “The directed acyclic graph manager,”

http://www.cs.wisc.edu/condor/dagman, 2002.
[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in Operating Systems Design and Implementation, 2004.
[7] Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics

method for protein folding,” Chemical Physics Letters, vol. 314, no.
1-2, pp. 141 – 151, 1999.

[8] P. Brenner, C. R. Sweet, D. VonHandorf, and J. A. Izaguirre, “Accelerat-
ing the replica exchange method through an efficient all-pairs exchange,”
Journal of Chemical Physics, vol. 126, p. 074103, February 2007.

[9] K. Al-Tawil and C. A. Moritz, “Performance modeling and evaluation
of mpi,” Journal of Parallel and Distributed Computing, vol. 61, no. 2,
pp. 202 – 223, 2001.

[10] M. Resch, H. Berger, and T. Bönisch, “A comparison of mpi performance
on different mpps,” in Proceedings of the 4th European PVM/MPI Users’

Group Meeting on Recent Advances in Parallel Virtual Machine and

Message Passing Interface. Springer-Verlag, 1997, pp. 25–32.
[11] T. Matthey and et al., “Protomol, an object-oriented framework for pro-

totyping novel algorithms for molecular dynamics,” ACM Transactions

on Mathematical Software, vol. 30, pp. 237–265, September 2004.
[12] J. Phillips, G. Zheng, S. Kumar, and L. Kale, “Namd: Biomolecular

simulation on thousands of processors,” in Supercomputing, ACM/IEEE

2002 Conference, November 2002, p. 36.
[13] E. Lindahl, B. Hess, and D. van der Spoel, “Gromacs 3.0: a package

for molecular simulation and trajectory analysis,” Journal of Molecular

Modeling, vol. 7, pp. 306–317, 2001.
[14] W. Gentzsch, “Sun grid engine: Towards creating a compute power grid,”

in Proceedings of the 1st International Symposium on Cluster Computing

and the Grid, ser. CCGRID ’01, 2001, pp. 35–.
[15] Amazon.com, “Elastic compute cloud (ec2),”

http://www.aws.amazon.com/ec2.
[16] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “A performance analysis of ec2 cloud computing services
for scientific computing,” in Cloud Computing, ser. Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, vol. 34, 2010, pp. 115–131.

[17] Microsoft Corporation, “Microsoft windows azure platform,”
http://www.microsoft.com/windowsazure.

[18] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early ob-
servations on the performance of windows azure,” in Proceedings of the

19th ACM International Symposium on High Performance Distributed

Computing, 2010, pp. 367–376.
[19] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,

“Science clouds: Early experiences in cloud computing for scientific
applications,” 2008.

[20] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman,
and P. Maechling, “Scientific workflow applications on amazon ec2,”
in E-Science Workshops, 2009 5th IEEE International Conference on,
December 2009, pp. 59–66.

[21] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the use of cloud computing for scientific workflows,”
in eScience, 2008. eScience ’08. IEEE Fourth International Conference

on, 2008, pp. 640 –645.
[22] A. Luckow and et al., “Distributed replica-exchange simulations on

production environments using saga and migol,” in IEEE Fourth Inter-

national Conference on eScience, 2008, December 2008, pp. 253–260.
[23] C. J. Woods and et al., “Grid computing and biomolecular simulation,”

Philosophical Transactions: Mathematical, Physical and Engineering

Sciences, vol. 363, pp. 2017–2035, 2009.
[24] A. Natrajan, M. Crowley, N. Wilkins-Diehr, M. Humphrey, A. Fox,

A. Grimshaw, and I. Brooks, C.L., “Studying protein folding on the
grid: Experiences using charmm on npaci resources under legion,”
in Proceedings of the 10th IEEE International Symposium on High

Performance Distributed Computing, 2001, pp. 14–21.
[25] S. Pronk and et al., “Copernicus: A new paradigm for parallel adaptive

molecular dynamics,” in Proceedings of the 2011 ACM/IEEE Inter-

national Conference for High Performance Computing, Networking,

Storage and Analysis, November 2011.

