
Cacheable Decentralized Groups for
Grid Resource Access Control

Jeffrey Hemmes1 and Douglas Thain2

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana, USA

1jhemmes@cse.nd.edu
2dthain@cse.nd.edu

Abstract— Sharing data among collaborators in widely dis-
tributed systems remains a challenge due to limitations with
existing methods for defining groups across administrative do-
main boundaries with various file systems. Groups in traditional
systems are bound to particular domains or file systems using
centralized storage locations either beyond ordinary users’ ability
to manage, inaccessible outside a closed system, or both. We
present a method for users to independently create and manage
groups on any networked workstation using global user identities
and to control access to shared data and storage resources
based on group membership, regardless of domain boundaries or
underlying file systems. Decentralized groups are decoupled from
shared user databases and centralized authentication servers
through the use of a virtual user namespace. We describe
how owners of shared resources can define security policies
through the use of caching, and demonstrate how each caching
policy represents tradeoffs between performance, scalability, and
consistency.

I. INTRODUCTION

Today, grid users have access to a wide array of computing
resources, with volumes of disk storage space and network
performance allowing vast possibilities for sharing data and
local computing resources. Unfortunately, despite widespread
availability of hardware resources, the potential for large-scale,
dynamic collaborations is limited due to insufficient support
for defining access controls on shared data. It is still not easy
for users to share specific data or storage space with large
groups of collaborators without making it world-readable or
world-writable.

A number of existing methods permit large-scale collab-
orations with users from distinct, geographically separated
administrative domains. Virtual organizations [1] are com-
monly used to organize collaborative efforts among grid users.
Other systems such as Grid3 [2] allow group sharing by
mapping global identities to local Unix accounts or groups.
However, these approaches require an administrator to set up
and maintain. If none is available when a new user joins or a
new group is required, work is delayed. Additionally, remote
users typically do not have visibility into locally created
groups, making access controls at remote sites for these groups
difficult.

To efficiently share local computing resources in large-
scale collaborations, two issues must be addressed. First, users
should have have the ability to create and manage their own
groups and provide security policies for the resources they

share based upon such groups. Doing so permits short-term
or informal collaborations perhaps less suitable for traditional
approaches. Security policies can be set at the resource level
via access control lists (ACL), but referencing remote groups
in widely distributed systems is a nontrivial task. To be useful
in such a system, user-defined groups must be accessible
across administrative domains and accessible through a glob-
ally unique naming convention.

Part of the challenge lies with the authentication pro-
cess itself. Traditional systems tightly couple group mem-
bership with authentication. This approach requires a cen-
tralized authentication server that establishes group identity
once when validating user credentials. Groups are commonly
implemented using a centralized storage location to record
membership lists. For instance, Unix groups are defined in
the file /etc/group. Even in distributed file systems such as
AFS [3] that allow user-managed groups, group definitions are
stored in a protection database inaccessible outside the system.
Grids are often dynamic and loosely organized, spanning
heterogeneous file systems and domain boundaries. Assuming
the existence of a centralized file or database server for groups
may not be appropriate in all cases.

This paper presents a method for decentralized authorization
that allows every node in the system to host user-managed
groups using identities drawn from a global namespace with-
out requiring administrator intervention. Such decentralized
groups, created and maintained by end users, can be referenced
from ACLs on any shared resource, empowering users to
independently define security policies without elevated priv-
ileges. Furthermore, group membership is decoupled from
the authentication process so membership determinations can
occur only as needed. We described this approach in an earlier
workshop paper [4] but have only outlined the fundamental
ideas behind this work and shown the performance of an early
implementation. The purpose of this paper is to present a more
detailed description of the system architecture and caching
model.

Two underlying philosophies provide the basic framework
for our approach. First, resource owners should determine who
may access any data under their control on their workstations,
to include group membership information. Data belongs to an
individual in the same way physical property does. Second,
each user should have the ability to exercise such control

App

Adapter

Server
File

Shared
 Data

Server
File

Shared
 Data

Server
File

 Data
Shared

App

Adapter

App

Adapter

Group Alpha:
User A
User B
User C
User D

Group Beta:
User B
User E
User F

User C

User D

User A

User FUser E

Alpha
Group

Group Beta

User B

ACL:
Group:Alpha R
Group:Beta RW

ACL:
Group:Alpha RW
Group:Beta R

ACL:
Group:Beta R

Fig. 1. Distributed Access Control in a Grid-Enabled File System

This figure shows the many complex relationships possible with a fully decentralized access control mechanism. Users may
access any server from any machine, access controls may refer to groups defined on local or remote machines, and groups
may refer to arbitrary users. In this example, Users A-F are placed in overlapping groups Alpha and Beta defined at two
distinct machines. Access Control Lists (ACLs) on each server refer (shown via heavy lines) to Alpha, Beta, or both.

autonomously; changes to local security policies pertaining to
collaborations should not require tasks only an administrator
can accomplish. Arguments in favor of end-user control of
local security policies are certainly nothing new [5].

We have taken a tactical storage system (TSS) that allows
grid users to dynamically share local storage resources without
elevated privileges or kernel modifications [6], and added
primitives through which any system user can create and
manage groups on individual workstations rather than on
centralized servers. We handle performance and consistency
tradeoffs through caching any combination of group files,
membership lookup results, and the caching policies of remote
servers, but ultimately what to cache and for how long is
determined solely by each resource owner sharing data or
storage space. While a TSS provides a convenient platform
for proof of concept, we envision possible application of
decentralized groups to other systems such as GridFTP [7]
through an additional software layer.

Our experience with related systems indicates that users
are generally limited more by functionality than performance.
Therefore, our goal is to provide ordinary users with capa-
bilities typically reserved for administrators while still re-
maining bounded by the limits established for such users. In
this paper, we present our approach for user-defined groups,
followed by a detailed description of the caching model to
include a discussion of revocation semantics. We present
an evaluation of system performance under various caching
policies to demonstrate that our proposed model can still

provide acceptable performance, even with an entirely user-
level implementation. We conclude with a discussion of related
and future work.

II. DECENTRALIZED GROUPS IN TACTICAL STORAGE

A. Overview of Tactical Storage

In order to describe distributed group management, we must
briefly detour to describe the tactical storage system.

The foundation of a TSS is an array of user-level file servers.
The server depends on existing file systems for data storage
but exports a subtree of that file system to remote applications
via a Unix I/O interface. Any user can deploy file servers
on any machine without elevated privileges and may allow or
deny access to other users as they see fit. A TSS may be built
from personal workstations, cluster nodes, or large servers.
Applications connect to the TSS via an adapter that converts
file-server-provided system resources to a format more directly
accessible to applications, so developers need not write specif-
ically for the resource or collective layers. Our adapter is
Parrot [8], an interposition agent that connects applications to
file servers without requiring kernel modifications or special
privileges.

Authentication is done using existing infrastructure through
one of several possible methods negotiated between the server
and the connecting client, which must prove its identity using
the selected method. Clients can be identified by either the
hostname of the machine, the local Unix identity of the user,

or through credentials provided via Globus Grid Security
Infrastructure (GSI) [9] or Kerberos [10].

Identities are independent of any shared user database. Once
authenticated, a virtual namespace is used in which logical
identities are represented simply as free-form text strings
divorced entirely from their underlying implementations. This
decoupling enables cross-domain sharing without reliance on
mappings to local native accounts employed by systems such
as CAS [11].

With a virtual namespace, creating groups of global scope is
much simpler, as they are simply lists of strings representing
group members. An advantage of this approach is heteroge-
neous membership; a single group can include host names,
Globus identifiers, or any other identity the authentication
methods support, and can easily accommodate new types of
identities. For example, the following are all valid subject
names for one author of this paper:

globus:/O=NotreDame/CN=Hemmes
kerberos:jhemmes@nd.edu
hostname:bomber.cse.nd.edu

B. Group Implementation

The following begins the new contribution of this paper.
A TSS allows any machine to serve as a file server. In

the same spirit, any machine may serve as a group server,
avoiding centralized storage repositories and allowing users
to better manage their own sharing policies. While centralized
servers can create a performance bottleneck and single point of
failure for the system as a whole, such concerns can be handled
effectively in a variety of ways such as replication. However,
we believe users should not necessarily be compelled to store
their data on servers under a possibly unknown individual’s
control.

Security policy is enforced with directory ACLs similar to
those in AFS. Each entry contains a subject name and a list
of permissions for the subject within that directory. Entries
may be single subjects, subject patterns, or group references.
Consider the following ACL:

globus:/O=NotreDame/CN=Hemmes RWA
globus:/O=NotreDame/* R
group:bomber.cse.nd.edu/jhemmes/team RW

This ACL gives one user read, write, and administrator ac-
cess; all users from Notre Dame read access; and all members
of a remote group read and write access. Note that a wild
card may be used to implement a group, but only if the issuing
authority corresponds exactly to the desired membership. More
precise control requires explicit groups, which name a host
where the membership may be found.

Servers resolve the current user’s group memberships and
record all permissions granted for the directory, rather than
only checking for the specific right or set of rights the
requested command requires. Specifically, a subject belonging
to several groups, each with different associated permissions,
would possess the union of all sets of rights for those groups

regardless of what is needed to execute the command. The
implication is that every ACL entry must be read and every
group entry resolved. For security reasons ACL checking
should be as algorithmically simple as possible; thus, the
complexity of determining whether a user has only a specific
set of rights is not warranted. Figure 1 illustrates the use of
groups in a distributed file system.

In contrast to many traditional systems, group files may
be stored in any directory in the file system. Group creation
requires only write permissions for the group’s creator in that
directory. Because any file server can act as a group server,
references to the group must include the path from the root
directory of the server much like a web server’s URL-path.
To ensure uniqueness, group references consist of the fully
qualified domain name of the machine hosting the group; the
(optional) file server port, and the path to the group file itself.

Groups are implemented with GDBM [12], a commonly
available set of lightweight database routines. Each group
definition file is represented with its own database file. Mem-
bership lookups are accomplished by querying a group’s local
database for a record corresponding to the user identity. Our
concern is with global identities, which are convenient to use
as primary keys. To add a user to the group file, create a new
key with the user name, which can be any number of identities
the system supports, and insert a record. An example group
membership list would look like:

hostname:somehost.nowhere.edu
globus:/O=UnivNowhere/CN=Alice
kerberos:alice@nowhere.edu
globus:/O=UnivNowhere/CN=Bob
kerberos:bob@nowhere.edu
...

Regardless of implementation efficiency, on-demand group
resolution can eventually become a bottleneck as we expect
scalability to group sizes of tens of thousands of users. To
reduce the overall workload of servers in terms of lookup
RPCs and network bandwidth consumption, we implement
caching.

III. CACHING AND CONSISTENCY

Caching is intended to improve performance, but with some
consistency cost. Our goal is providing resource owners the
means to decide for themselves on acceptable tradeoffs and
implement a security policy that represents the result of such
decisions. We do so with three types of caching: group files,
membership lookup results, and caching policies of remote
servers. Resource owners specify which of these items in any
combination remote servers can cache and the duration caches
are valid. However, members may be added to or deleted
from the original file during the cache duration. Doing so
compromises consistency as the hosting server maintains no
explicit control over the cached files.

Cache control is handled by a server-specified expiration
similar to that of HTTP/1.1 [13] and set or modified by the
resource owner. During that duration, caches may be used by

Client

File
Server

A

File
Server

B

user D
user E
user F

File
Server

C

user A
user B
user C

shared
directory

Parrot

user A

open "mydata"

getfile getfile group_1

group_1group_1

mydata

shared data

ACL

group_1

group:server_B/group_1 rlx

group:server_C/group_1 rwl

Fig. 2. Overview of Group File Caching

This figure depicts the interaction between servers with file caching enabled. Group files are cached upon reading ACLs
referencing remotely defined groups. In this example, file server A retrieves group files hosted on servers B and C, referenced
by an ACL in server A’s shared directory structure.

requesting servers to resolve remote group lookups, and in
general they will unless a cached file is corrupted or deleted.
Servers do not track lookup resolution requests, and so are
unable to enforce a minimum time interval between remote
lookups.

Upon revocation, the cached copies retain the deleted mem-
ber until expiration, at which time they are brought into a
consistent state with the original data. While changes to a
group file are not immediately reflected in the caches, the
duration specified in the caching policy places an upper bound
on the lifetime of stale data. Such caching policies apply
individually to each group hosted on a particular server;
policies can be adjusted based on the preferences of each
resource owner, to include the system default policy of no
caching for cases in which data privacy is at a premium.

Poor consistency can be remedied by adjusting the cache
lifetimes appropriately, or in the case of highly volatile group
memberships, perhaps by disallowing caching altogether. Ad-
justing the expiration date is a common approach for dealing
with X.509 certificate revocation [14] and our approach is
similar in many respects.

A. Caching Group Files

In accordance with the caching policy of a remote group, a
server performing an ACL check caches the entire group file
for subsequent lookups, illustrated by Figure 2. Such caching
policies are mandatory; any references to remote groups on
a server with caching enabled will result in caching, and
the policy specifying the duration may be established by any
user with write permissions in the directory containing the
group file. Expired caches must be revalidated upon access
and refreshed if inconsistent with the original data.

Upon reading an ACL entry referencing a remote group,
the requesting server first checks the remote group’s caching
policy (which may itself be cached). It then checks for a
valid file cache by searching an index of all remote group
files cached locally. If a cache does not exist, the remote
server is contacted and the file is then saved in a designated
cache directory and an entry added to the index. The name
of the file is randomized to prevent namespace collisions
within the cache directory, but metadata about the file and
the remote group is maintained in the index. Expired caches
are revalidated by comparing the timestamp of the cache to
the last modification time of the original via RPC.

Each entry in the cache index contains the group name, the
remote hostname and port, and the local file name and cache
expiration time. An example list entry would be:

host:bomber.cse.nd.edu
port:9094
grp name:/jhemmes/team
file name:tmpJtcY19
expiration:1135793686

While caching files reduces interserver RPCs, lookups must
still be performed locally on a potentially large database file,
possibly imposing a performance penalty for operations requir-
ing multiple ACL checks or ACLs with many group entries. To
remedy this, policies can allow caching of individual lookup
decisions.

B. Caching Lookup Decisions

Even with a locally cached group, lookups may still im-
pose a performance penalty, particularly for large numbers of

File
Server

A

File
Server

B

shared
directory

user A
user B
user C

Client

Parrot

user A

open "mydata"

shared data

group:server_B/group_1 rwl

mydata

server_B/group_1/user A: yes

group_1
decision cache

ACL

Fig. 3. Lookup Decision Caching

In accordance with the caching policy set by the data’s owner, lookup results can be cached for subsequent ACL checks.
Lookups can be cached whether they were performed remotely, on a cached file, or on a locally hosted group. In this figure,
file server A determines user A’s membership in remote group group_1, defined on server B, and caches the result. Use of
the decision cache takes precedence over other group resolution methods for as long as the cache is valid.

group references in ACLs and large groups. Caching lookup
decisions is an effective way to avoid redundant lookups. It
is particularly important for groups to which a user does not
belong, since performing multiple lookups in that case is even
more of a waste of time than redundant confirmations.

Each server maintains a list of recently checked user/group
lookup results, but only for those groups whose policy allows
decision caching. If permitted, the list is checked for the appro-
priate group/user pair and if the entry is valid (determined by
comparing the expiration time of the cache against the current
system time) the stored decision is used. If the decision cache
has expired, the entry is removed and the stored result ignored,
and a lookup is performed either on a locally cached group file
or remotely on the hosting server, depending on the caching
policy and the validity of the cached group file, if it exists.
The result of that lookup is then placed in the list and a new
expiration time set. Figure 3 illustrates the use of decision
caches. Upon reading an ACL and detecting a group subject
name, the lookup index is checked and the cached result used.

Introducing a second level of caching poses additional
consistency challenges, but as with group files, cache controls
limit persistence of stale data. When a decision cache expires,
a lookup must be re-accomplished either on the cached group
file or remotely, depending on policy. If policy permits all
caching, use of cached decisions takes precedence over cached
files.

Such hierarchical caching mechanisms can create three
levels of inconsistency. As described above, a cached group
file can be inconsistent with the original data if the original is

modified before the cached copy expires. However, consider
the case of two concurrent users who are members of the
same remote group accessing the same server. User A opens a
directory protected with an ACL referencing a remote group.
File caching is allowed, so the file is fetched and a lookup
performed on the cache. Since decisions are also cacheable,
the result is saved for some duration separate from that of the
cached file. Later, user A performs another directory access
requiring a lookup just before the cached file expires.

User B also opens a directory with remote group permis-
sions. Since the cached group file is now expired, a new copy
is retrieved if the original had been modified. Any changes
to the original group after this retrieval but before user A’s
cached decision expires would result in two separate caches,
the file itself and user A’s lookup result, neither of which
are necessarily consistent with the original data. Consistency
is restored upon expiration of all concurrent users’ decision
caches and the cached file. Expirations for different caching
types are independent from one another and are based on data
access time rather than wall clock time.

C. Caching Policy

Primarily, mechanisms for caching group files and lookup
decisions were implemented for scalability and performance.
However, security policies may change so requesting servers
must verify the caching policy associated with the group on
each lookup. The caching policies of remote groups may be
cached as well; doing such prevents bottlenecks on servers
similar to those found in early implementations of NFS [15]
and improves performance over wide area networks.

Caching Exec Time (s) Standard
Configuration (mean) Deviation

None 91.912 1.392
File 12.536 0.486

Decision 10.470 0.083
No Groups 8.269 0.030

TABLE I
ANDREW BENCHMARK PERFORMANCE

The effect of caching on system performance for the Andrew benchmark.
Execution time is reduced significantly by caching group files and lookup
decisions, and is competitive with that of a system without remote groups.

 1

 10

 100

 1000

 10000

 100000

open/
close

statread
8KB

read
1B

write
8KB

write
1B

T
im

e
(µ

s)

no caching
file caching

decision caching
no groups

afs

Fig. 4. I/O Call Latency

The effect of caching on single I/O calls. Access control
is performed only on name lookups, so operations on file
descriptors are not affected by the mechanism. Operations on
names such as stat and open/close invoke the mechanism
and suffer serious overhead without caching.

Upon initial reference to a remote group in an ACL, servers
retrieve the caching policy from that server and inserts it
in an index. Subsequent references to that remote group
requires verification of policy before any other caches are
checked. Policy expiration is implicitly defined; the cached
policy expires when all of its cached components expire. For
instance, if a decision cache is expired, and a cached group file
cannot be checked because it too has expired, the policy is no
longer considered valid and must be reverified with the remote
server. Missing or expired policy data requires an RPC to the
appropriate server for either retrieval or revalidation. Included
in policy cache entries are the durations of either decision or
file caches, or both, for each remote group.

IV. EVALUATION
In this section, we demonstrate that a file system with

decentralized groups can provide reasonable performance,
comparable to similar systems without such groups, despite
the overhead associated with on-demand membership reso-
lution operations and user-level implementation. We do so
by demonstrating three points: that overall performance with
caching enabled is superior to remote lookups; that perfor-
mance using cached data is comparable to that of a system
without remote groups; and that lookups in very large groups
do not impose performance penalties aside from the additional
latency required to retrieve a larger file.

We evaluate caching performance by examining execution
time for remote I/O calls and common file system operations.
Experiments were run using 2.8 GHz Pentium 4 worksta-
tions running Red Hat Enterprise Linux connected via 1Gb/s
switched Ethernet. We chose LAN-based experiments since
current system deployment is limited to the University of
Notre Dame campus; further evaluation will occur as groups
are added to the larger storage pool employed over a wide
area. Since group membership resolution is a function of
the security architecture during ACL checking, we evaluate
performance using the simplest supported file system abstrac-
tion, a centralized file system similar to Figure 2, to avoid
unnecessary overhead from locating remote inodes in other
architectures. Additional servers are used only to host remote
group files.

Previous work evaluated performance of a TSS in compar-
ison to commonly deployed file systems such as NFS and
shown to be scalable and limited only by the capability of
the hardware [6]. In this paper we claim that the additional
overhead from remote groups is sufficiently small to provide
reasonable performance, and performance similar to that of
an unmodified system can be achieved with caching. Such
overhead is not intrinsic to a TSS; as mentioned earlier, the
mechanisms for remote groups could be applied to other
systems as well.

First, we examine the performance of a group-enabled
system as compared to both a similar system without remote
groups and unmodified AFS. Figure 4 shows the effects
of caching on network I/O operations using a file server
with remote groups. We compare the performance of 1,000
iterations of remote file operations to that of unmodified AFS.
While other file systems have buffer caching enabled and asyn-
chronous writes, neither of which are supported by the TSS
protocol, the purpose is to compare file systems as commonly
configured, even if the comparison is not necessarily equal.
In most cases, the charged overhead due to user-level imple-
mentation and on-demand group resolution increases average
execution time by approximately an order of magnitude of
AFS. Network latency dominates stat and open/close
calls, but caching improves performance by nearly two orders
of magnitude, and within an order of magnitude of the file
system without remote groups.

Note that the performance of read and write operations is
not affected by remote groups. Since the security mechanism
is triggered only by name lookups, the addition of remote
groups creates no performance degradation for operations on
file descriptors. The difference between the TSS and AFS
performance can be explained by both the user-level imple-
mentation of TSS and the file caching mechanism of AFS.

Table I shows the effects of different caching policies on
system performance for the Andrew benchmark [3], executed
using the Parrot adapter. Five trials were ran for each caching
configuration, and the table shows the mean execution time
for all five stages. With no caching enabled, each group
lookup requires spawning a new process and an interserver
RPC, which account for the bulk of the overhead. System

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 150 200 250 300 350 400 450 500
 0

 1

 2

 3

 4

 5

Lo
ok

up
 T

im
e

(s
)

F
ile

 R
et

rie
va

l T
im

e
(s

)

Group Membership Size (x1000)

Cache Retrieval
Cached Lookup
Remote Lookup

Fig. 5. Group File Lookups

Performance of a single remote lookup over a LAN is com-
parable to that of a cached file, and lookup times do not
increase substantially with the size of the group. If file caching
is enabled, the time to transfer a file dwarfs the lookup times,
and increases linearly with the size of the group.

performance with decision caching compares favorably to that
of a system without remote groups.

Both experiments demonstrate that by caching data, perfor-
mance may be improved in a hierarchical manner; caching files
improves performance over no caching, and caching lookup
decisions improves performance over file caching.

Next, both Table I and Figure 4 demonstrate that caching
data improves performance for file system commands that
depend on name lookups; all other operations are not affected
by remote groups. In the case of I/O calls, remote lookups
with operations invoking access controls is expensive, but
performance can be substantially improved by caching data.
Similarly, results for the Andrew benchmark show that a
caching policy, particularly one based on decision caching,
dramatically reduces the overall execution time.

Finally, in general the size of groups does not substantially
affect the overall performance of group resolution operations.
Figure 5 shows the time required to perform lookups remotely
and the time to retrieve an entry in a cached file for groups of
various sizes. Figures do not reflect additional latencies over
a wide area network, as the scope of system deployment is
currently limited to a LAN. In both cases lookup times are
dwarfed by the time to transfer and cache a large group file,
which increases linearly with the size of the group. However,
the file transfer time is a one-time penalty when caching
the entire group. If no changes occur in the original data,
revalidation at cache expiration is a simple RPC between
servers.

V. RELATED WORK

Many systems, both centralized and distributed, have imple-
mented some form of grouping within a closed administrative
domain. Most modern operating systems allow the administra-
tor to create arbitrary groups of local users, but do not afford
the end-user this facility. The Network Information Service
(NIS) allows multiple machines to share the same password

and group databases defined by a single administrator. The
AFS [3] distributed file system allows end users to create
arbitrary groups and ACLs using Kerberos principals in a
single realm. The NeST [16] storage appliance allows the con-
struction of user-defined groups local to one storage devices.
CURE [17] gives end users a graphical interface for construct-
ing and applying user groups. In each of these cases, there is
no facility for employing or sharing information outside of the
closed system. In addition, the tradeoffs between consistency,
availability, and performance are fixed by the administrator.
For example, the propagation delay of all information in NIS
is fixed by the master server, while group memberships in AFS
are determined at login and discarded at logout.

Many grid computing systems are designed to live within
the constraints of an ordinary Unix file system, and thus
require external grid identities generated by GSI [9] to be
mapped to a single local Unix identity. There are many ways to
accomplish this: Globus [18] relies on a “gridmap” file to map
grid identities to Unix accounts; Grid3 [2] maps multiple grid
identities to group-shared Unix accounts; Legion [19] maps
grid identities to fresh anonymous Unix accounts; In each case,
a grouping decision is performed once for a session, and then
the user is restricted to the (limited) sharing models available
in a Unix file system.

The grouping decision in many grid systems relies on
users (or the user’s agent) to present credentials to a distinct
authorization service, which then generates the local account
or new grid credentials to be used on the resource of interest.
Examples of this approach include CAS [11] and VOMS [20].
This notion is roughly equivalent to the ticket-granting service
in Kerberos [10]. Our work is compatible with this approach
to authorization: one may easily create an ACL that requires
the user to present a certificate created by an authorization
service. However, the sense of the control flow is different. In
the ticket-granting approach, the user must identify and consult
the authorization service before proceeding to the resource. In
our work, the user proceeds directly to a resource, which then
implicitly references one or more remote groups as needed.

Two systems are most closely related to our work. Kamin-
sky et al., describe additions to the Self-Certifying File
System (SFS) that allow for group definitions shared across
administrative boundaries [21]. Each organization in a system
operates a group server with a local policy for the modi-
fication of groups. Once per hour, all servers exchange all
data with each other. This system represents one design point
whereby system administrators choose the tradeoffs between
performance, consistency, and availability. Our work builds
upon this by empowering end users with abilities reserved
for administrators. Similarly, Grapevine [22] allows for the
construction of distributed expansion lists enabling the delivery
of mail to many recipients. As in SFS, the system designers
chose to emphasize availability over consistency in a fixed
manner.

VI. CHALLENGES AND FUTURE WORK

Currently, nested groups are not fully supported. Each group
should be able to contain any number of subgroups, to include
groups defined both locally and remotely. This approach
requires an efficient lookup mechanism as on-demand remote
lookups on an arbitrary number of nested groups can become
quite expensive. However, traversing all subgroups is not
necessary in all cases. Because all members of a group and its
subgroups share the same permissions, once a subject is found,
no further searching is necessary. However, there should be a
limit to the total time spent on each lookup. Furthermore, the
system must carefully handle loops in group references.

Failure semantics must be further defined. How does one
determine acceptable wait times when one server queries a
remote group, and who should make that decision? The end
user may control the application-level timeout via the adapter,
but one server may still become stuck waiting for another
to respond, even if the calling user gives up. These concerns
lead to the possibility of varying strictness in enforcing policy.
If a cached group file exists but is expired, we may be
able to continue to use it with a “best effort” approach if
the original data is unreachable when revalidating. A new
expiration time placed on it may be based on the original
policy or perhaps a separate policy. However, the resource
owner ultimately controls the mechanism and may demand
strict policy adherence.

VII. CONCLUSIONS

In this paper we have presented the mechanisms for im-
plementing security policies for user groups in a distributed
system. Policies are determined by resource owners and offer
several tiers of data protection. Policies can be enabled to
allow maximum data privacy and consistency, albeit with
a significant cost of performance and scalability, by only
allowing remote group lookups with no caching. Using remote
lookups with cached decisions trades off some privacy and
consistency to provide good performance, but may not be
scalable. Caching group files and lookup decisions costs more
in terms of privacy (due to the possibly widespread distribution
of group files to many servers) and consistency, but allows
for better scalability by reducing the overall average workload
on the servers hosting the group files. This is particularly
the case as the number of users connecting to those servers
simultaneously grows large.

Implementing groups in a grid-enabled file system relieves
resource owners from having to frequently maintain a large
number of possibly very large ACLs. More significantly,
however, it also provides flexible mechanisms for resource
owners to implement security policies. These security policies
facilitate the sharing of storage resources by giving owners
the ability to efficiently share a precise set of resources to a
precise set of collaborators from any location.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” to appear in International
Journal of Supercomputer Applications, 2001.

[2] R. Gardner and et al., “The Grid2003 production grid: Principles
and practice,” in IEEE Symposium on High Performance Distributed
Computing, 2004.

[3] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West, “Scale and performance in a distributed file
system,” ACM Trans. on Comp. Sys., vol. 6, no. 1, pp. 51–81, February
1988.

[4] D. Thain, C. Moretti, P. Madrid, P. Snowberger, and J. Hemmes,
“The Consequences of Decentralized Security in a Cooperative Storage
System,” in Proceedings of the 3rd IEEE Security in Storage Workshop,
San Francisco, CA (USA), December 2005.

[5] C. Ellis, S. Gibbs, and G. Rein, “Groupware: Some Issues and Experi-
ences,” Communications of the ACM, vol. 34, no. 1, pp. 38–58, January
1991.

[6] D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel, and J. Izaguirre,
“Separating abstractions from resources in a tactical storage system,” in
International Conference for High Performance Computing, Networking,
and Storage (Supercomputing), November 2005.

[7] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke,
“Protocols and services for distributed data-intensive science,” in Pro-
ceedings of Advanced Computing and Analysis Techniques in Physics
Research, 2000, pp. 161–163.

[8] D. Thain and M. Livny, “Parrot: Transparent user-level middleware for
data-intensive computing,” in Workshop on Adaptive Grid Middleware,
New Orleans, September 2003.

[9] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A security archi-
tecture for computational grids,” in ACM Conference on Computer and
Communications Security Conference, 1998.

[10] J. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authentication
service for open network systems,” in USENIX Winter Technical Con-
ference, 1988, pp. 191–200.

[11] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke, “A
Community Authorization Service for Group Collaboration,” in IEEE
Workshop on Policies for Distributed Systems and Networks, 2002.

[12] Free Software Foundation, Inc., “GNU dbm, Release 1.8,” 1999,
http://www.gnu.org/software/gdbm/gdbm.html.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol (HTTP),” Internet
Engineering Task Force Request for Comments (RFC) 2616, June 1999.

[14] C. Gunter and T. Jim, “Generalized Certificate Revocation,” in POPL
’00: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. New York, NY, USA: ACM
Press, 2000, pp. 316–329.

[15] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and Implementation of the Sun Network Filesystem,” in Proceedings of
USENIX 1985 Summer Conference, Portland OR (USA), 1985, pp. 119–
130.

[16] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-
Dusseau, R. Arpaci-Dusseau, and M. Livny, “Flexibility, manageability,
and performance in a grid storage appliance,” in Eleventh IEEE Sympo-
sium on High Performance Distributed Computing, Edinburgh, Scotland,
July 2002.

[17] J. Haake, A. Haake, T. Schümmer, M. Bourimi, and B. Landgraf,
“End-user Controlled Group Formation and Access Rights Management
in a Shared Workspace System,” in Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work, 2004, pp. 554–
563.

[18] I. Foster and C. Kesselman, “Globus: A metacomputing intrastructure
toolkit,” International Journal of Supercomputer Applications, vol. 11,
no. 2, pp. 115–128, 1997.

[19] M. Humphrey, F. Knabe, A. Ferrari, and A. Grimshaw, “Accountability
and control of process creation in metasystems,” in Network and
Distributed System Security Symposium, February 2000.

[20] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, Á. Frohner, A. Gi-
anoli, K. Lõentey, and F. Spataro, “VOMS, an Authorization System
for Virtual Organizations,” in 1st European Across Grids Conference,
February 2002.

[21] M. Kaminsky, G. Savvides, D. Mazieres, and M. Kaashoek, “Decen-
tralized user authentication in a global file system,” in Symposium on
Operating Systems Principles, 2003, pp. 60–73.

[22] A. Birrell, R. Levin, M. Schroeder, and R. Needham, “Grapevine:
An Exercise in Distributed Computing,” Communications of the ACM,
vol. 25, no. 4, April 1982.

