
A RICH METADATA FILESYSTEM

FOR SCIENTIFIC DATA

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Hoang Bui,

Dr. Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

May 2012

A RICH METADATA FILESYSTEM

FOR SCIENTIFIC DATA

Abstract

by

Hoang Bui

As scientific research becomes more data intensive, there is an increasing need

for scalable, reliable, and high performance storage systems. Such data reposi-

tories must provide both data archival services and rich metadata, and cleanly

integrate with large scale computing resources. ROARS is a hybrid approach to

distributed storage that provides both large, robust, and scalable storage and ef-

ficient rich metadata queries for scientific applications. This dissertation presents

the design and implementation of ROARS, focusing primarily on the challenge of

maintaining data integrity and achieving data scalability. We evaluate the per-

formance of ROARS on a storage cluster compared to the Hadoop distributed file

system. We observe that ROARS has read and write performance that scales with

the number of storage nodes. We show the ability of ROARS to function correctly

through multiple system failures and reconfigurations. We prove that ROARS is

reliable not only for daily data access but also for longtime data preservation. We

also demonstrate how to integrate ROARS with existing distributed frameworks

to drive large scale distributed scientific experiments. ROARS has been in pro-

duction use for over three years as the primary data repository for a biometrics

research lab at the University of Notre Dame.

CONTENTS

FIGURES . v

TABLES . vii

ACKNOWLEDGMENTS . viii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: RELATED WORK . 9
2.1 Local Filesystem . 10
2.2 Distributed Filesystem . 13
2.3 Databases . 17

CHAPTER 3: ARCHITECTURE AND IMPLEMENTATION 22
3.1 System Design . 22

3.1.1 Data Model . 22
3.1.2 User Interface . 24
3.1.3 System Management . 27

3.2 Implementation . 29
3.2.1 MDS Structure . 32
3.2.2 Storage Nodes . 35

3.3 ROARS as a Storage System for Daily Use and Long Term Data
Preservation . 36
3.3.1 Robustness . 36
3.3.2 Reliability and Availability 37
3.3.3 Transparent Fail Over . 39
3.3.4 Three Phase Updates . 41
3.3.5 Asynchronous Audit and Repair 41
3.3.6 Active Storage . 43

ii

CHAPTER 4: SYSTEM EVALUATION 45
4.1 System Environment . 45
4.2 Basic Data Storage Operations 46
4.3 ROARS vs. Hadoop: Data Import and Metadata Query 48

4.3.1 Data Import . 49
4.3.2 Metadata Query . 50

4.4 ROARS Data Read Performance 52
4.4.1 Filesystem Access . 52
4.4.2 ROARS Concurrent Access 54

4.5 Integrity Check & Recovery . 56
4.6 Metadata Logging . 59
4.7 Dynamic Data Migration . 60

CHAPTER 5: ROARS AND BIOMETRICS DATA 63
5.1 Biometrics Research . 64
5.2 Overview of Acquisition . 67

5.2.1 Acquisition Setup . 67
5.2.2 Data Acquisition . 68
5.2.3 Pre-ingestion Assembly of Data 68
5.2.4 Data Ingestion and Data Storage 69
5.2.5 Data Validation . 69
5.2.6 Data Enrollment . 70

5.3 Improve Biometrics Data Quality 72
5.3.1 Issues That Can Affect Data Quality 72

5.4 Recent Data on Failure Rates and Recovery Mechanisms 76
5.5 Current status of BXGrid . 78

CHAPTER 6: ROARS INTEGRATION WITH WORKFLOWS 82
6.1 Distributed Computing Tools . 82
6.2 Abstractions for Biometrics Research 83

6.2.1 Select Abstraction . 84
6.2.2 Transform Abstraction . 86
6.2.3 All-Pairs Abstraction . 87
6.2.4 Analyze Abstraction . 88

6.3 Biometrics Workflow . 88
6.3.1 BXGrid Transcode . 90
6.3.2 BXGrid Auto Validation 93
6.3.3 BXGrid All-Pairs . 95

iii

CHAPTER 7: CONCLUSION . 105
7.1 Impact . 105
7.2 Lessons Learned . 106
7.3 Future Work . 108

BIBLIOGRAPHY . 110

iv

FIGURES

3.1 Example Materialized View . 26

3.2 State Machines for Storage Nodes and Replicas 29

3.3 ROARS Architecture . 30

3.4 MDS Structure . 33

3.5 Expected Failure Rate for Replicated Data 38

3.6 Performance of Transparent Failover Techniques 39

4.1 Screen, Import, Export, View, Query, Delete Performance 10,000
files 17.9GB of data . 47

4.2 Screen, Import, Export, View, Query, Delete Performance, 10,000
files 3.0GB of data . 48

4.3 Import Performance for ROARS and Hadoop filesystem 50

4.4 Query Performance . 51

4.5 Latency of Filesystem Operations 53

4.6 Concurrent Access Performance (10K x 320KB) 55

4.7 Concurrent Access Performance (1K x 5MB) 56

4.8 Cost of Calculating Checksums 57

4.9 Metadata Logging . 60

4.10 Dynamic Data Migration . 62

5.1 Sample Face Image and Metadata 65

5.2 Examples of the Web Portal Interface 66
5.3 Data Life Cycle. Metadata changes during validation process. New

metadata is assigned when data is enrolled. 71

5.4 Example of problem recordings. 73

5.5 System Growth Jul 2008 - Jan 2009 79

5.6 Filesize Distribution in BXGrid 80

v

5.7 BXGrid Data Migration To A New Cluster 81

6.1 Workflow Abstractions for Biometrics 84
6.2 Export and View performance . 85
6.3 All-Pairs on 4000 Faces . 87
6.4 DAG Workflow for comparing two irises 89
6.5 Makeflow code that creates two iris template and compare the tem-

plates . 89

6.6 Makeflow Architecture[4] . 91
6.7 BXGrid’s Browser Page . 92

6.8 Weaver code that compiles to Makeflow rules that generates missing
thumbnails . 92

6.9 Iris Images Validation Page . 94

6.10 Auto Validation Workflow . 96

6.11 All-Pairs Workflow . 97

6.12 All-Pairs Result Matrix M . 98
6.13 All-Pairs runtime(only comparison stage) 99
6.14 100Kx100K All-Pairs experiment timeline 100
6.15 Score distribution of 10Kx10K All-Pairs experiment using irisBEE

function . 101
6.16 Score distribution of 58Kx58K All-Pairs experiment using Ham-

ming distance function[43] . 102
6.17 Histogram of All-Pairs experiments 104

7.1 Sharing Datasets for Cooperative Discovery 109

vi

TABLES

3.1 TRANSCODING IN ACTIVE STORAGE 44

4.1 NUMBER OF DATABASE QUERIES PER OPERATION 49

4.2 AUDIT RUNTIME FOR 50,000 DATA OBJECTS, 300KB EACH 59

5.1 SUMMARY OF PROBLEMS AND SOLUTIONS 75
5.2 AUDIT AND REPAIR TIMELINE 77

vii

ACKNOWLEDGMENTS

This work could not be completed without the help and support of a number

of individuals to whom I owe a great deal of gratitude.

First of all, I would like to thank my advisor, Dr. Douglas Thain. During my

time at the University of Notre Dame, his guidance and motivation helps me grow

as a researcher and as a person. His patience and dedicated mentoring has been

extraordinary and irreplaceable. I will forever be grateful for what he has done

for me.

I want to thank my committee members – Dr. Patrick Flynn, Dr. Scott Emrich

and Dr. Brian Blake – for being very supportive throughout this process. I very

much appreciate their help and counsel which led to the completion of this work.

Additionally, I want to express my gratitude towards my friends and col-

leagues at Notre Dame. In particular, I must thank Christopher Moretti, Deborah

Thomas, Peter Bui, Patrick Donnelly, Michale Albrecht, Li Yu, Dinesh Rajan,

Clarence Helm and Diane Wright.

I also would like to thank my parents for the sacrifices they have made to give

me this opportunity, my wife Thuy Nguyen for being patient and understanding,

my son Leo for teaching me the meaning of life.

Finally, I wish to dedicate this dissertation to my late father, Dr. Hue Bui.

viii

CHAPTER 1

INTRODUCTION

The first decade of the 21st century has witnessed a paradigm shift in scientific

research. Powerful supercomputers and large-scale distributed systems provide

scientists with a seemingly unlimited computational resource. Moreover, the foun-

dation of data collection from late 19th century paved the way for a new research

era, moving from data exploration to data explosion. Armed with improved data

collection methods and advanced devices, scientists, in many fields around the

world, have the ability to observe and collect an unheard amount of data for their

research. This growth, however, poses new questions and challenges to scientific

data management paradigm. As the scientists have changed the way they col-

lected new data, posed new hypothesises, and explored new theories, the data

management process also needs to change.

Dealing with suddenly new found data is not easy. Scientists are constantly

scrambling to find storage space for the newly collected data. There are questions

such as: Where should I put my data? Should I add new hard drives to my storage

system? Do I need a whole new storage system to cope with the data tsunami?

As newly data is collected every second, scientists simply dump everything to a

hard drive. When the hard drive is full, another one can be easily added.

However, expanding capacity of the storage system is not the only challenge.

The huge growth in data and storage comes with the unwanted burden of managing

1

a large data archive. As an archive grows, it becomes significantly harder to find

what data items are needed, to migrate the data from one technology to another,

to re-organize as the data and goals change, and to deal with equipment failures.

In other words, the complexity of the problem grows exponentially and can be

very overwhelming.

Another challenge is that scientific data is hardly static, in fact it is very

active. If the data is kept in a shelf and rarely looked at, the simple solution of

expanding storage system’s capacity seems to make perfect sense. However, in

scientific research that scenario is very unlikely. Data is useless without being

shared, analyzed, processed, and fed into a computationally intensive cycle to

confirm a new hypothesis or to evaluate new algorithms. If all data is stored

in one location and is accessible to everyone, when more people try to access the

traditional storage system at the same time, it is possible to bring the system down

to a crawl. Storage systems can become a bottleneck that slows down everyone.

A quick solution is to replicate and store the data at multiple locations, thus

increasing the availability to users. However, keeping multiple copies of the same

data increases the complexity of the storage system and burdens scientists with

more tasks unrelated to their research. They need to keep track of the location of

each replica and to make sure to update every copy when changes are made.

Scientific data usually contains associated metadata that describe various at-

tributes about the data. This usually includes traditional filesystem metadata such

as file size, ownership, and creation time, along with higher level information such

as metadata regarding the measurements or the instruments used, information

about the subjects or objects being studied, and other domain-specific knowledge

deemed useful to the researchers. A challenge arises when you have not tens or

2

hundreds but tens of thousands and millions of data objects. You want to able to

store and share data with your colleagues. You want to query data with certain

metadata constrains. However, as quickly as data grows, the task of finding the

right set of data becomes more difficult. If the dataset gets too big, it is not

feasible to search for needed data by scanning the whole repository. Clearly there

is a need for a storage system that supports both storing and querying metadata.

Therefore, scientific repositories are not only a large capacity storage system, but

a facility for searching data quickly.

The two canonical models for data storage – the filesystem and the database

– are not well suited for long term data preservation. Both concepts can be made

parallel and/or distributed for both capacity and performance. The relational

database is well suited for querying, sorting, and reducing many discrete data

items, but requires a high degree of advanced schema design and system admin-

istration. A database can store large binary objects but is not highly optimized

for this task [60]. On the other hand, the filesystem has a much lower barrier

to entry, and is well suited for simply depositing large binary objects as they are

created. Still, as a filesystem becomes larger, data querying, sorting, and search-

ing can only be done efficiently if they match the chosen parallel structure. As

a data repository grows, no single hierarchy is likely to meet all needs. So while

end users prefer working with filesystems, current storage systems lack the query

capabilities necessary for efficient operation.

With all these challenges and demands, there is a clear need for a comprehen-

sive solution to store and manage scientific data both efficiently and effectively. To

allow a scientist to solely focus on their important task which is doing research and

to save them from the burden of mingling with data management, this work will

3

propose a distributed storage solution that provides both large, robust, scalable

data storage with fast, reliable data query.

As a first attempt to take on the challenges, we built a prototype repository

named BXGrid. BXGrid is a solution for a data repository that focuses on bio-

metrics data. The goal of BXGrid is to help biometrics researchers at Notre Dame

manage and query data in an efficient and consistent manner. BXGrid includes

three main components: a database, an active storage cluster, and a computing

grid. Users access BXGrid through a command line tool. During the ingestion pro-

cess, BXGrid automatically replicates and store each data item in three difference

fileservers. Users also use the command line tool to interact with the system using

options such as export, query, and audit/repair. Beside the command line tool,

a web portal provides a facility for users to browse, validate, share and manage

data. Since 2008, BXGrid has been used by Computer Vision Research Labora-

tory (CVRL) at the University of Notre Dame to manage over ten terabytes of

biometrics data and has proved to be a reliable data repository for daily usage.

However, BXGrid has its limitations. BXGrid is tailored specifically to manage

biometrics data. BXGrid database schema has been manually modified several

times in order to accommodate changes in the initial metadata schema design.

Ideally, a multi-purpose repository would be able to adjust itself when new types

of metadata is ingested. BXGrid also needs improvement to keep track of meta-

data changes since metadata often changes throughout the life cycle of scientific

data. BXGrid provides a very limited means of logging metadata changes by only

recording changes which are made through the web-portal. Users can also make

metadata changes using command line tool which are not recorded.

To address BXGrid’s limitations, this work presents ROARS (Rich Object

4

ARchival System), a rich metadata filesystem for scientific data. ROARS is in-

spired by BXGrid’s design; it is a hybrid system that leverages the strengths

of both distributed filesystems and relational databases to provide fault-tolerant

scalable data storage and efficient rich metadata manipulation. ROARS consists

of a Metadata Server (MDS) running MySQL [44] and multiple Storage Nodes

running Chirp [72]. Although there exist a number of designs for scalable stor-

age [6, 9, 27, 29, 31, 67, 80] ROARS occupies an unexplored design point that

combines several unusual features and principles that together provide a powerful,

scalable and manageable scientific data storage system:

1. Discrete object storage. Each data object is stored as a single, discrete

object on local storage, replicated multiple times for safety and performance.

This allows for a compact statement of locality needed for efficient batch

computing.

2. Rich searchable metadata. Each data object is associated with a user

metadata record of arbitrary (name,type,value) tuples, allowing the system

to provide some search optimization without demanding elaborate schema

design.

3. Transactional metadata update. Metadata can be changed and updated

through the life cycle of each data objects. These changes need to be handled

carefully in a transactional model. Because metadata is stored at several

levels, any change made needs to be propagated from top to bottom, and it

is not considered committed until all locations of metadata are updated.

4. Materialized filesystem views. Rather than impose a single filesystem

hierarchy from the beginning, fast queries may be used to generate materi-

5

alized views that the user sees as a normal filesystem. In this way, multiple

users may organize the same data as they see fit and make temporal snap-

shots to ensure reproducibility of results.

5. Transparent, incremental management. ROARS does not need to be

taken offline, even briefly, in order to perform an integrity check, to add,

to decommission servers, or to migrate data to new resources. All of these

tasks can be performed incrementally while the system is running, and even

be paused, rescheduled, or restarted without harm.

6. Fault Tolerance. Storage nodes operate independently. Each storage node

in the system can fail or even be destroyed without affecting the behavior or

performance of the other nodes. The metadata server is more critical, but

it functions only as an (important) cache. If completely lost, the metadata

cache can be reconstructed by a parallel scan of the object storage.

The contribution of this work is the design, implementation and evaluation of a

scientific data repository, which would behave like a regular distributed filesystem,

while providing the fast querying abilities of a database.

Chapter 2 discusses a literature review of previous works relating to data stor-

age in general. The first section of this chapter will compare and contrast between

traditional filesystems, network filesystems and databases. It also provides the key

properties of each system, which lead to the discussion of their advantages as well

as their disadvantages. It then addresses the state of more current distributed

storage systems with the emergence of NoSQL.

In Chapter 3, I describe the design and implementation of ROARS. The first

section details ROARS’ architecture. Each part of ROARS’ architecture is equally

6

important and affects ROARS’ key attributes including: transactional database-

like features, searchable metadata, and data object storage. I also discuss the

key design decisions making process. While some decisions were trivial to make,

others were carefully considered after many lengthy debates.

Chapter 4 provides a set of experiments, which were used to evaluate the per-

formance of ROARS. Experiments include fundamental activities such as import,

export, query and delete data. Another set of experiments exam the correctness

of ROARS’ properties such as failure transparency, incremental data migration,

divide and conquer auditing. Chapter 4 also compares the performance of ROARS

to the Hadoop [29] filesystem, a widely popular distributed filesystem. Although

ROARS and Hadoop has their similarities, ROARS differentiates with Hadoop in

key areas such as the way ROARS replicates raw data and handles metadata.

Chapter 5 discuses how ROARS is used in BXGrid to manage a multi-terabytes

repository of biometrics data. The first section briefly introduces biometrics re-

search and biometrics data. Then we describe the data acquisition, archival pro-

cess, and common errors which can affect data quality. The next section em-

phasizes the importance of maintaining data integrity to improve the quality of

biometrics research. The chapter concludes with steps we have taken to maintain

data quality and data integrity.

Data is not very useful if it stays idle. ROARS was designed with that principle

in mind. It is understandable that data would be moved around, fed into a

scientific workflow and used to produce interesting and important results. The

Cooperate Computing Lab at the University of Notre Dame provides users an

array of tools that assist them with distributed workflows.

Chapter 6 will give an insight into how ROARS fits into the Cooperative

7

Computing Lab (CCL) distributed eco-system. In brief, Chapter 5 discusses the

integration of ROARS in workflows using abstractions and distributed application

building tools including Weaver, All-Pairs, Work Queue and Makeflow.

Chapter 7 summarizes the main contribution of this dissertation. Mainly, this

work provides frameworks for a distributed storage system that can accommodate

terabytes of data and can also support fast metadata query. The ability to find

what you want quickly is crucial to the productivity of the system as a whole. This

work takes in a number of difficult and important decisions during the design

process of a distributed storage system. Data replication, metadata structure,

data provenance [61], and data integrity are the common questions faced by any

system architect. This work discusses some of the techniques and principles which

are used to make the system more reliable and more resilient against hardware

failure. The last chapter also discusses interesting lessons learned through-out

the design and the implementation of ROARS so the system can be improved in

future works. This work lays a distributed storage framework for researchers in

other fields and encourage them to use distributed systems to further advance

their study.

8

CHAPTER 2

RELATED WORK

A storage system for scientific data needs to satisfy dual goals. A scientific

data repository is required to provide both scalable fault-tolerant data storage and

efficient querying of the rich domain-specific metadata. Unfortunately, traditional

local filesystems, network filesystem distributed filesystems and databases fail to

meet both of these requirements simultaneously.

Decades ago, scientist often stored data in a local hard drive and share data

through floppy disc or simple remote access protocols such as HTTP[24] or FTP[51].

However, as data grows sharply and the demand for data collaboration increases,

local filesystems become a bottleneck very quickly. To increase the storage and

sharing capability, scientists look to take advantage of network filesystem such as

NFS [56] and AFS [31]. Network filesystems make sharing data easy, still, they

also becomes a bottleneck when data is accessed repeatedly by multiple users si-

multaneously. Moreover, because of the lack of data replication, when an AFS or

a NFS storage node goes down, the data is not accessible until the node is back

online.

While most distributed filesystems such as the Hadoop filesystem provide ro-

bust scalable, and fault tolerant data archiving, they fail to adequately provide for

efficient rich metadata operations. In contrast, database systems provide efficient

querying capabilities, but fail to match the workflow of scientific researchers. The

9

next sections exam several storage systems and their properties and discuss why

they could not satisfy the dual-goals requirement for a scientific repository.

2.1 Local Filesystem

There are a wide variety of UNIX Local Filesystems such as: Ext2, Ext3, Ext4,

XFS, JFS, ReiserFS, ZFS [16], [34], [39], [7], [10], [53],[2]. This subsection briefly

discusses Ext2, Ext3 and ZFS.

Ext2 or the Second Extended File System was developed to correct some of the

problems of the First Extended File System (Ext). Ext2 introduced several new

filesystem features which have become the standard for many future Linux file

systems. Ext2 supports files with 255 characters in the file name. The maximum

file system size is 4TB. The maximum file size is 2 GB. A file is associated with

an inode. An inode contains attributes of the file such as type, size, access rights

and most important, pointers to data blocks. The block size is chosen when the

filesystem is created, and can be 1024, 2048 or 4096 bytes. Depending on the

size of the file, an inode’s pointers may point to direct blocks or indirect blocks,

which can point to other indirect blocks. Choosing a big block size will reduce

the number of I/O requests but will increase the amount of wasted space due to

block fragmentation. Symbolic links are stored in the inode itself, thus a symbolic

link does not use any data blocks; the link operation is fast because it reads the

information directly from the inode.

An Ext2 file system is divided into a number of block groups. One of the

advantages of Ext2 is that it provides several redundant copies of critical file

system information. Each block group holds a copy of this information (such

as superblock and file system descriptors), followed by a block bitmap, inode

10

bitmap, inode table and data blocks. In case of the system crashing, super block

and file system descriptors can easily be restored. Ext2 also implements some

performance optimization techniques, such as readahead: when a block is read,

several contiguous blocks are also read. In addition, when data are written to a

block, up to 8 adjacent blocks will be pre-allocated.

Ext3 (Third Extended Filesystem) is the third interation of Ext. Ext3 was

introduced in 1999 [75] and soon became the default file system for many popular

Linux distributions [74]. Being both forward and backward compatible with Ext2

is one reason that led to the success and of de adoption of Ext3 [76]. An Ext2

file system can be mounted as Ext3 and vice versa. Ext3 inherited all the great

features from Ext2 and also added a journal to increase the level of data consis-

tency. There are three levels of data integrity in Ext3. Journal mode forces both

the metadata and the contents of data blocks to be written to the journal before

changes are committed. This approach imposes a hit on performance because the

data are written twice, however, improves reliability tremendously. Ordered mode

is the default mode, which force data blocks to be written to the disk before the

metadata are changed in the journal. Writeback mode only keeps metadata in the

journal. This approach is fast but high risk because the metadata are committed

before actual data are written to disk.

ZFS was developed by Sun in 2002 to address shortcomings of other Unix

filesystems. The design of ZFS focuses on simplifying multi-disk management and

detecting data error [11]. ZFS allows multi disks to join together in a virtual

storage pool. A ZFS filesystem is decoupled from physical storage disks and

can be expanded or shrunk on the fly. ZFS can support storage-pool up to 256

quadrillion zettabytes (ZB). In ZFS, data is stored in blocks and checksum of

11

each block is kept in a parent indirect block (pointer block) using 64-bit Fletcher

checksum [25]. Pointer blocks are also checksummed and the checksum is store

in the next level pointer block. This checksum mechanism propagates all the way

to the top of the filesystem. When data is written to a block, a new checksum

is calculated and an update is made to the pointer block. Whenever a block is

read, the checksum is calculated, then compared with the checksum on record to

detect data corruption. Although modern disk drives have built-in error detection

mechanisms, a fraction of errors is still gone undetected by either by the disk

or the operating system. Checksum also allows ZFS to repair corrupted data

automatically if ZFS is configured with redundancy (mirrored or RAID). ZFS

provides a tool called scrub to check and repair corrupted data block. Unlike other

tools like fsck, system administrator can run scrub in the background. There is

no need to take a whole filesystem offline to run integrity check. Scrub can work

on a working filesystem.

Local filesystems can provide a safe storage space for raw scientific data. Read

and write data to a local filesystem is convenient and fast because it does not have

to take in account of external factors such as network bandwidth and network

latency. Data can be read as fast a HDD can spin. Users can use RAID [48] to

to increase local filesystem storage capacity and add ability to recover from data

corruption. However, to get good performance, users may only process, analyze

and run scientific workloads using only local machines. In addition, sharing data

is naturally difficult without a network connection.

12

2.2 Distributed Filesystem

In order to facilitate sharing of scientific data, scientific researchers usually

employ various network filesystems such as NFS [56] or AFS [31] to provide data

distribution and concurrent access.

NFS was developed by Sun Microsystems in 1983. It has gone on to become

the most common distributed filesystem in the Linux/UNIX world. It was devel-

oped with four primary goals in mind [57]. First of all, NFS is machine and OS

independent. The protocols in NFS are simple so that they can theoretically be

implemented on any kind of machine, not just UNIX machines. Secondly, NFS

is stateless. The NFS server does not maintain any state between Remote Pro-

cedure Calls (RPC). This way, if the client or server crashes, no state needs to

be recovered. Thirdly, NFS is transparent. To applications, an NFS filesystem

appears like a local hard drive mounted on VFS. Files can be accessed using reg-

ular pathnames, and no extra work is needed to retrieve data over the network.

Lastly, NFS is designed for performance. The original idea was to make an NFS

filesystem have comparable speed to a local disk on a SCSI interface.

The NFS protocol is implemented using synchronous RPCs. Essentially, the

client makes a request to the kernel using the standard OS API, which then sends

an RPC request to the server. The client then blocks until the server processes

the request and sends back another RPC with the reply.

The server in the NFS protocol does not maintain any state regarding its

interactions with the client. This means that the client must send all contextual

information needed for a request each time it sends one. The reason for this is

to aid in trivial crash recovery. If the server crashes, the client can simply repeat

requests until it receives the data it needs. If the client crashes, the server needs

13

to do no work at all, and the client can be in charge of its own crash recovery

without having to interact with the server. In newer version of NFS, statelessness

is not maintained as stringently as when it was originally implemented in order

to implement things like better cache coherency protocols and file locking [35].

To maintain consistency when multiple clients are using the same file, the

NFS protocol requires clients to use a method called close-to-open consistency.

Basically, this means that the client must commit any changes to the file when it

closes, and that when a client opens a file it must always retrieve file attributes

from the server. By using this method, clients know that their data will at least

be consistent between opening and closing.

The Andrew File System (AFS) is a network file system developed by Carnegie

Mellon University. AFS supports various popular operating systems such as

UNIX, Windows, and Mac OS. Like NFS, AFS allows users to access files across

the network as if they are in a local storage device. One of advantage AFS has

over NFS is security. By using Kerberos authentication, users not only can access

their files, but can also share their files with other users or other groups. There

are two components of AFS: Venus and Vice [62]. Venus runs on the client ma-

chine and makes requests to the AFS server on behalf of the clients. Vice runs

on the server side, and serves requests from Venus. When a file is opened, Venus

makes a request to fetch the whole file from the server. This local copy is called

a snapshot. Any file operation such as a read or write is done on the snapshot.

Network filesytems provides an easy and convenient way for scientists to share

data across the network. However they have drawbacks. First of all, network

communication does not scale very well in term of data throughput. Performance

of data access is bounded by the filesystem’s data consistency policy, physical

14

network bandwidth and network latency. Users who request the same file or

dataset at the same times could put a strain on the file server as well the network.

More importantly, systems like AFS and NFS do not provide any means to deal

with hardware failure. No matter how often the system is backup, only one copy

of the data is available for all users. If a fileserver goes down, all the files in the

server are not accessible until the fileserver is restored.

To get scalable and fault tolerant data storage, scientists may look into dis-

tributed storage systems such as Ceph [80] or Hadoop [29]. Most of the data in

these filesystems are organized into sets of directories and files along with associ-

ated metadata. Since some of these filesystems perform automatic data replica-

tion, they not only provide fault-tolerant data access but also the ability to scale

the system. Therefore, in regards to the need for scalable, fault-tolerant data

storage, current distributed storage systems adequately meet this requirement.

Google developed GFS to handle an enormous amount of data. GFS is de-

signed to store very large files, which are regularly generated by the Google Search

Engine. Files are divided into chunks of 64MB, similar to clusters in a traditional

local filesystem. Chunks are replicated and stored in multiple Chunkservers. The

number of data replications varies. High demand data have more replicated chunks

than low demand data. A single Masterserver manages the GFS namespace,

mapping files to chunks and enforcing file access control. Data modification is ap-

pended at the end of file rather than being overwritten. Applications issue a read

request through the Masterserver. The Masterserver then passes the location of

the chunk to the application. The application then accesses the chunk directly

from the Chunkserver.

HDFS is an open source implementation of GFS by Apache Software Foun-

15

dation. HDFS is a distributed filesystem written in Java. It is designed to run

on commodity hardware to store big files that traditional local filesystems do not

support. The HDFS architecture includes a Namenode and multiple Datanodes.

The role of the Namenode is to manage the HDFS namespace while the Datanodes

are in charge of storing actual data. Namenodes can be in the same Local Area

Network (LAN) or they can span in multiple data centers. In HDFS, files are

broken into chunks of a fixed size. The default chunk size is 64MB but it can be

manually changed. For fault tolerance, data files are replicated at the chunk level.

Datanodes communicate to the Namenode through a Heartbeat and BlockReport

in order to maintain load-balancing [13]. HDFS employs a locality awareness read

policy to improve data read performance. A read request for a chunk will be

served by the same rack of Namenodes where the request originates. If the chunk

is not stored in the same rack as the reader, the request will be served by the local

data center before trying any remote chunk.

Where filesystems such as GFS and HDFS still fail, however, is in providing

an efficient means of performing rich metadata queries. Since filesystems do not

provide a direct means to perform these metadata operations, export processes

usually involve a complex set of ad hoc scripts, which tend to be error prone,

inflexible, and unreliable. More importantly, these manual searches through the

data repository are also time consuming since all of the metadata in the repository

must be analyzed for each export. Although some distributed systems such as

Hadoop provide programming tools such as MapReduce [19] to facilitate searching

through large datasets in a reliable and scalable manner, these full repository

searches are still costly and time consuming since each experimental run will have

to scan the repository and extract the particular data files required by the user.

16

Moreover, even with the presence of these programming tools, it is still not possible

to dynamically organize and group subsets of the data repository based on the

metadata in a persistent manner, making it difficult to export reusable snapshots

of particular datasets.

2.3 Databases

When you want to query a tremendous amount of structured data, naturally

you turn to a database management system (DBMS). Basic DBMS operations in-

clude inserting data, updating data, and querying for data. Users interact with the

DBMS by issuing commands and expect to receive the result back shortly. Highly

active commercial systems like the NYSE stock exchange or Amazon shopping

website can handle thousands to millions of queries per second. A DBMS is also

used to analyze data. However, with such a high volume of queries, performing

analysis of tasks on a DBMS is not ideal. Data analysis can take hours or days

and thus can bring the DBMS system to a crawl. Therefore, in the 1990s, the

DBMS landscape saw an evolution from the local database to warehouse. For

big database systems, data often is separated into two systems. The operational

database hosts live data and serves insert, update, and query requests. A larger

data warehouse [21] hosts archive data in snapshots. Data is periodically archived

from the operational database to the data warehouse.

With the explosion of social networks in late 2000’s there has been another

evolution from traditional DBMS to NoSQL [36]. Unlike DMBS, NoSQL does not

use SQL structure to perform queries. There is no fixed schema; data is denoted

and stored in a key-value format instead of using a highly structured table. Major

Internet companies like Google, Facebook and Twitter have different challenges in

17

managing their users’ data. First of all, the data does not have a strong structure.

For example Facebook users’ photos can be tagged and associated with any type

of imaginable metadata. It is not feasible to modify the database schema when a

new metadata is added.

Adding a new field to the database schema will affect every single record,

which can take days to complete given the sheer amount of data these companies

deal with. Secondly there is a requirement for instant gratification. When users

update their status or post new photos, they expect to see the result right the

way. Traditional DBMS could not maintain and provide real-time information

out of large volumes of data update. A NoSQL system such as MongoDB, BaseX,

SimpleDB, Apache CouchDB [26, 30, 50, 59] fit this type of workload better than

a traditional relational DBMS. One of the drawbacks of NoSQL is that it has

limited support to store raw data files. For example, MongoDB imposes a limit

on file size of 4MB. In order to store large data objects, users will need to use

GridFS [41] GridFS is system built on top of MongoDB. GridFS breaks up large

files into chunks of 4MB and stitches them back together per users’ requests.

Another common approach to managing scientific data in a database is to go

the route of projects such as the Sloan Digital Sky Survey [66]. That is, rather

than opt for a “flat file” data access pattern used in filesystems, the scientific

data is collected and organized directly in a large distributed database such as

MonetDB [32] or Vertica [78]. Besides providing efficient query capabilities, such

systems also provide advanced data analysis tools to examine and probe the data.

However, these systems remain undesirable to many scientific researchers.

The first problem with database systems is that in order to use them the data

must be organized in a highly structured explicit schema. From our experience,

18

it is rarely the case that the scientific researchers know the exact nature of their

data a priori or what attributes are relevant or necessary. Because scientific data

tends to be semi-structured rather than highly structured, this requirement of a

full explicit schema imposes a barrier to the adoption of database systems and

explains why most research groups opt for filesystem based storage systems which

fit their organic and evolving method of data collection.

Most importantly, database systems are not ideal for scientific data repositories

because they do not fit into the workflow commonly used by scientific researchers.

In projects such as the Sloan Digital Sky Survey and Sequoia 2000 [65], the scien-

tific data is directly stored in database tables and the database system is used as

a data processing and analysis engine to query and search through the data. For

scientific projects such as these, the recent work outlined by Stonebraker et. al [64]

is a more suitable storage system for these high-structured scientific repositories.

In most fields of scientific research, however, it is not feasible or realistic to

put the raw scientific data directly into the database and use the database as

an execution engine. Rather, in fields such as biological computing, for instance,

genome sequence data is generally stored in large flat files and analyzed using

highly optimized tools such as BLAST [5] on distributed systems such as Condor

[73]. Although it may be possible to stuff the genome data in a high-end database

and use the database engine to execute BLAST as a UDF (user defined function),

this goes against the common practices of most researchers and diverts from their

normal workflow. Therefore, using a database as a scientific data repository moves

the scientists away from their domains of expertise and their familiar tools to the

realm of database optimization and management, which is not desirable for many

scientific researchers.

19

Because of these limitations, traditional distributed filesystems and databases

are not desirable for scientific data repositories which require both large scal-

able storage and efficient rich metadata operations. Although distributed systems

provide robust and scalable data storage, they do not provide direct metadata

querying capabilities. In contrast, databases do provide the necessary metadata

querying capabilities, but fail to fit into the workflow of research scientists.

The purpose of ROARS is to address these shortcomings by constructing a

hybrid system that leverages the strengths of both distributed filesystems and

relational databases to provide fault-tolerant scalable data storage and efficient

rich metadata manipulation. This hybrid design is similar to SDM [46] which

also utilizes a database together with a file system. The design of SDM highly

optimizes for n-dimensional arrays type data. Moreover, SDM uses multiple disks

support high throughput I/O for MPI [22], while ROARS uses a distributed active

storage cluster. Another example of a filesystem-database combination is HEDC

[63]. HEDC is implemented on a single large enterprise-class machine rather than

an array of storage nodes. iRODS [79] and its predecessor, the Storage Resource

Broker [9], supports tagged searchable metadata implemented as a vertical schema.

ROARS manages metadata with horizontal schema pointing to files and replicas

which allows for the full expressiveness of SQL to be applied.

ROARS merges these two different storage concepts into a hybrid distributed

storage system where the filesystem is augmented and enriched with database

capabilities. Next chapters will demonstrate that ROARS is capable of handling

raw data storage, metadata query, and metadata provenance gracefully. ROARS is

also a stable system that provides a high level of data availability and data integrity

through data replication. ROARS is robust enough to tolerate system failures

20

and provide mechanisms for recovery, backup, and restoration. Because data is

replicated and distributed intelligently across Storage Nodes, ROARS naturally

fits into distributed framework such as All-Pairs [42], Makeflow [82], and Weaver

[15]. Thus, ROARS enables scientific researchers to continue using their familiar

workflow and applications.

21

CHAPTER 3

ARCHITECTURE AND IMPLEMENTATION

3.1 System Design

ROARS is designed to store millions to billions of individual objects, each typ-

ically measured in megabytes or gigabytes. Each object contains both binary data

and structured metadata that describes the binary data. Because ROARS is de-

signed for the long-term preservation of scientific data, data objects are write-once,

read-many (WORM), but the associated metadata can be updated by logging.

The system can be accessed with an SQL-like interface and also by a filesystem-

like interface.

3.1.1 Data Model

A ROARS system stores a number of named collections. Each collection con-

sists of a number of unordered objects. Each object consists of the two following

components:

1. Binary Data: Each data object corresponds to a single discrete binary file

that is stored on a filesystem. This object is usually an opaque file such as a

TIFF(image), a AVI(video), a WAV(sound) or PDF(document), meaning that

the system does not extract any information from the file other than the

basic filesystem attributes such as filesize and creation date.

22

2. Structured Metadata: Associated with each data object is a set of meta-

data items that describes or annotates the raw data object with domain-

specific properties and values. This information is stored in plain text as

rows of (NAME, TYPE, VALUE, OWNER, TIME) tuples as shown in the example

of a metadata record here:

NAME TYPE VALUE OWNER TIME

recordingid string nd3R22829 hbui 1253373461

filename string nd5M12.wav hbui 1253373461

format string wav hbui 1253373461

ingested date 08/03/2010 hbui 1253373461

subjectid string nd1S04388 hbui 1253373461

comment text Spring Co. hbui 1253373461

state string problem dthain 1254049876

problemtype number 34 dthain 1254049876

state string fixed hbui 1254050851

In the above example, each tuple contains fields for NAME, TYPE and VALUE,

which define the name of the object’s property, the type, and its value. Currently

supported types include string, number, date, and text, with no declared limits

on field length. This data model is schema-free: the user does not declare any

property of a collection, and an object may have any number of properties. In

practice, a given collection is likely to have objects with similar metadata, so an

implementation of ROARS may reasonably optimize for that case.

In addition to NAME, TYPE and VALUE fields, each metadata entry also contains

fields for OWNER and TIME. This is to provide provenance information and complete

history of the metadata. OWNER denotes who changed the value of the metadata

23

while TIME represents the time stamp (in UNIX epoch time) when the change

took place. Rather than overwriting metadata entries when a field is updated,

new values are simply appended to the end of the record. In the example above,

the state value was initially set to problem by one user and then later to fixed

by another. By doing so, the latest value for a particular field will always be

the last entry found in the record. This transactional metadata log is critical to

scientific researchers who often need to keep track of not only the metadata, but

how it is updated and transformed over time. These additional fields enable the

users to track who made the updates, when the updates occurred, and what the

new values are.

This data model fits in with the write-once-read-many nature of most scientific

data. The discrete data files are rarely if ever updated and often contain data to

be processed by highly optimized domain-specific applications. The metadata,

however, may change or evolve over time and is used to organize and query the

data sets.

3.1.2 User Interface

Users may interact with the system using either a command-line tool or a

filesystem interface. The command line interface supports the following opera-

tions:

SCREEN <coll> FROM <dir>

IMPORT <coll> FROM <dir>

QUERY <coll> WHERE <expr>

EXPORT <coll> WHERE <expr> INTO <dir> [AS <pattern>]

VIEW <coll> WHERE <expr> AS <pattern>

24

DELETE <coll> WHERE <expr>

Before data is ingested into ROARS. It is recommended that users use SCREEN

to examine data and metadata for consistency purpose. The SCREEN operation

scans a local directory containing objects and evaluates metadata before IMPORT

is called. The IMPORT operation loads a local directory containing objects and

metadata into a specific collection in the repository. With IMPORT, ROARS creates

replicas sequentially. QUERY retrieves the metadata for each object matching a

given expression. EXPORT retrieves both the data and metadata for each object

and stores the result on the local disk. VIEW creates a materialized view on the

local disk of all objects matching the given expression, using the specific pattern

for the path name. DELETE marks data objects and the corresponding metadata

as deleted. The system administrator may permanently delete them if desired.

Because metadata schema can evolve overtime, it is important to make sure

that the metadata IMPORT is about to ingest into ROARS is consistent with the

current metadata schema. For each metadata attribute, the SCREEN checks for its

name, type and length. SCREEN then compares this information to information

from the internal metadata schema. If SCREEN detects any discrepancy, it notifies

the user and gives an option to correct the schema. For example, SCREEN can warn

the user that an attribute does not exist in the current schema and ask the user

to expand the schema to accommodate the new attribute. SCREEN also examines

the actual data objects and alerts the user about missing raw data.

Ordinary applications may also view ROARS as a read-only filesystem, using

either FUSE [1] (a user/kernel filesystem driver) or Parrot [70] (a ptrace-based

interposition agent). Individual objects and their corresponding metadata can be

accessed via their unique file identifiers using absolute paths:

25

1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff 1.tiff1.tiff 1.tiff

Materialized
View

Faces

Female

Neutral

Male

Sad HappySad Happy Neutral

CREATE VIEW

Appl

ParrotTool
Query system

calls

Figure 3.1. Example Materialized View

/roars/mdsname/fileid/3417

/roars/mdsname/fileid/3417.meta

Of course, it would be impractical to list and navigate a flat directory consisting

of millions of files. Instead, most users find it effective to explore the repository

using the QUERY command to retrieve metadata, then use VIEW to deposit a smaller

materialized view for direct use. A materialized view consists of a directory tree

where the leaves are symbolic links pointing to absolute paths in the repository.

For example, Figure 3.1 shows a view generated by the following command:

VIEW faces WHERE true AS "gender/emotion/fileid.type"

Because the materialized view is stored in the normal local filesystem, it can

be kept indefinitely, shared with other users, sent along with batch jobs, or packed

26

up into an archive file and emailed to other users. Authentication can be obtained

using a ticket system [23] that grants access to a dataset within a time period. The

creating user manages their own disk space and is responsible for cleanup at the

appropriate time. The ability to generate materialized views that provide third

party applications a robust and scalable filesystem interface to the data objects

is a distinguishing feature of ROARS. Rather than force users to integrate their

domain-specific tools into a database execution engine or wrap it in a distributed

programming abstraction, ROARS enables scientific researchers to continue using

their familiar scripts and tools. We will continue and expand on the discussion of

using ROARS’ VIEWS in a large scale distributed application in a later chapter.

3.1.3 System Management

Management of a large storage cluster requires some care. Adding or removing

storage nodes may require movement of data, which itself may be a long-running

and fault-prone task. To this end, ROARS provides a management interface which

separates the logical addition and removal of nodes from data migration, which

can be performed at leisure. Our current implementation of ROARS includes the

following management operations:

LIST NODES

ADD NODE <nodename> <groupid>

REMOVE NODE <nodename>

ABANDON NODE <nodename>

MIGRATE DATA

AUDIT DATAi

REPAIR DATA

27

LIST NODES queries the MDS for the list of available storage nodes, showing

the current state, capacity, and usage. ADD NODE will add a storage node to the

system and make it available as a target for newly ingested data. REMOVE NODE

will put an existing storage node in the ’removing’ state, but has no immediate

effect on the data on that node. A removed node is no longer a target for IMPORT

and is not preferred for servicing reads. In the case where a physical failure

renders migration impossible, ABANDON NODE is used to immediately remove the

corresponding node and replica records from the system. Finally, MIGRATE DATA

queries for nodes in the removing state holding files with too few replicas. It

incrementally migrates or replicates the data to nodes with available space as

needed. When a storage node in the removed state no longer contains replicas, it

is deleted from the MDS.

A major system reconfiguration – such as replacing one storage cluster with

another – can be achieved by calling ADD NODE to configure the new nodes, REMOVE

NODE to mark the old nodes as no longer needed, and then MIGRATE DATA to begin

the process of moving data. Note that because ADD NODE and REMOVE NODE only

interact with the MDS, it does not matter whether the server is online or offline.

If MIGRATE DATA finds a server offline, it simply moves on to other available work.

AUDIT DATA is used to check the data integrity of the entire system. This

command checks all servers for basic health and then queries the MDS to ensure

that every file has sufficient replicas, that replicas are distributed across groups,

and that there are no replicas located on removed or abandoned servers. Finally,

all data objects are checksummed and compared against the value in the MDS.

Checksumming is performed in parallel locally at each storage node, making it

feasible to check the integrity of a very large archive in time proportional to the

28

MIGRATE
complete

NODE
REMOVE

NODE
ADD

NODE
ABANDON

online

removing

destroyed destroyed

deleting

ok damaged
DELETE

intent

complete
DELETE

AUDIT
fails

remain
replicas
if good

Storage Nodes Replicas

MIGRATE failed
IMPORT or

IMPORT or
 MIGRATE intent

creating

IMPORT or
MIGRATE complete

Figure 3.2. State Machines for Storage Nodes and Replicas

size of the largest storage node. If problems exist, they are reported to the MDS

and, where possible, repair is done by replicating good replicas. In extreme cases

where no good replicas remain, repair is not possible, and damaged replicas are

left in place (and indicated as damaged) for manual examination and recovery.

The time of the last good checksum for each replica is stored in the MDS. This

data has several uses: tools can focus on the oldest replicas first, management

operations can be done incrementally, and the physical wear of auditing on the

system can be throttled by specifying a minimum time between checksums.

3.2 Implementation

Figure 3.3 shows the basic architecture of ROARS. To support the discrete

object data model and the data operations previously outlined, ROARS utilizes a

hybrid approach to construct scientific data repositories. Multiple storage nodes

are used for storing both the data and metadata in archival format. A metadata

server (MDS) indexes all of the metadata on the storage server, along with the

29

Metadata
Lookup

Group A
Storage Servers

Group Z

. . .

Apps

FS Interface

Server
Metadata

Query Tool

User

Data
Access

Figure 3.3. ROARS Architecture

location of each replicated object. The MDS serves as the primary name and

entry point to an instance of ROARS.

The decision to employ both a database and a cluster of storage servers comes

from the observation that while one type of system meets the requirements of

one of the components of a scientific data repository, it is not adequate at the

other type. For instance, while it is possible to record both the metadata and

raw data in a database, the performance would generally be poor and difficult to

scale, especially to the level required for large scale distributed experiments nor

would it fit in with the workflow normally used by research scientists. Moreover,

the distinct advantage of using a database, its transactional nature, is hardly uti-

30

lized in a scientific repository because the data is mostly write-once-read-many,

and thus rarely needs atomic updating. From our experience, during the life-

time of the repository, metadata may changed once or twice while the raw data

stays untouched. Besides the scalability disadvantages, keeping raw data in a

database poses bigger challenges on everyday maintenance and failure recovery.

So although, a database would provide good metadata querying capabilities, it

would not be able to satisfy the requirement for large scale data storage.

On the other hand, a distributed storage system, even with a clever file naming

scheme, is also not adequate for scientific repositories. Such distributed storage

systems provide scalable high performance I/O but provide limited support for

rich metadata operations. Metadata operations generally devolve into full dataset

scans or searches using fragile and ad hoc scripts. Although there are possible

tricks and techniques for improving metadata availability in the filesystem, these

all fall short of the efficiency required for a scientific repository. For instance, while

it is possible to encode particular attributes in the file name, it is still inflexible

and inefficient, particularly for data that belong to many different categories.

Fast access to metadata remains nearly impossible, because parsing thousands or

millions filenames is the same if not worse than writing a cumbersome script to

parse collections of metadata text files.

The hybrid design of ROARS takes the best aspects from both databases and

distributed filesystems and combines them to provide rich metadata capabilities

and robust scalable storage. To meet the storage requirement, ROARS replicates

the data objects along with their associated metadata across multiple storage

nodes. Like in traditional distributed systems, this use of data replications allows

for scalable streaming read access and fault tolerance. In order to provide fast

31

metadata query operations, the metadata information is persistently cached upon

importing the data objects into the repository in a traditional database server.

Queries and operations on the data objects access this cache for fast and efficient

storage operations and metadata operations.

Although, ROARS storage organization is similar to the one used in the Google

Fileystem [27], and Hadoop [29], where simple Data Nodes store raw data and a

single Name Node maintains the metadata. ROARS architecture differs in a few

important ways however. First, rather than striping the data as blocks across

multiple storage nodes as done in Hadoop and the Google Filesystem, ROARS

store discrete whole data files on the storage nodes. While this prevents us from

being able to support extremely large file sizes, this is not an important feature

since most scientific data collections tend to be many small files, rather than a

few extremely large ones. Moreover, the use of whole data files greatly simplifies

recovery and enables failure independence. Likewise, the use of a database server

as the metadata cache enables us to provide sophisticated and efficient metadata

queries. While Google Filesystem and Hadoop are restricted to basic filesystem

type metadata, ROARS can handle queries that work on constraints on domain-

specific metadata information, allowing researchers to search and organize their

data in terms familiar to their research focus.

3.2.1 MDS Structure

We employ a relational database to implement the main functionality of the

MDS. The database contains three primary tables: a metadata table, a file table

and a replica table. The metadata table stores the most recent values for all items

in a collection, indexed for efficient lookup. Each entry in the metadata table

32

Files Replicas

1289

1290

1291

1292

4051

4052

4053

state

creating

ok

host path

fs03

fs04

fs05

fs06

fileid

enrolled

enrolled

validated

unvalidated

checksum

b92891...

013987...

7f3f2d1...

5b9617...790K

801K

size replicaid

4050

fileid

1289

1290

1290

1291

800K

325K

L05/01/08

05/01/08

05/01/08

05/01/08 R

05/01/08 S330

S330

S330

S331

S331

null

R

null

null

null

null

smile

neutral

/2/5/1290.4052

/3/5/1291.4053

/0/5/1289.4050

/1/5/1290.4051

validated

1290.4051.jpg

Storage Servers

state date eye emotion subject

1289

1290

1291

1292

1288

nd1R3205

nd1R3206

nd1R3207

nd1R3208

nd1R3204

fileid recordingid

Metadata

recording
state
date
eye
subject

string
string

string

05/01/08
R
3330

1290.4051.meta

date
string

nd1R3206
\validated

damaged

deleting

Figure 3.4. MDS Structure

points to a unique fileid in the file table. The file table plays the same role an

inode table in a traditional Unix file system does for ROARS and holds the essen-

tial information about raw data files, such as size, checksum, and create time.

ROARS utilizes this information not only to keep track of files but also to emulate

system calls such as stat. For any given fileid, there can be multiple replica

entries in the replica table, which tracks the location and state of each replica of

a file. Figure 3.4 gives an example of the relationship between the metadata, file,

and replica tables. In this configuration, each file is given a unique fileid in file

table. In the replica table, the fileid may occur multiple times, with each row

representing a separate replica location in the storage cluster. Accessing a file then

involves looking up the fileid, finding the set of associated replica locations, and

then selecting a storage node.

As can be seen, this database organization provides both the ability to query

files based on domain specific metadata and the ability to provide scalable data

33

distribution and fault-tolerant operation through the use of replicas. Some of

the additional fields such as lastcheck, state, and checksum are used by high

level data access operations provided by ROARS to maintain the integrity of the

system. These operations will be discussed in later subsections.

A few complications regarding the metadata are worth noting. First, the

ROARS abstract data model has no schema nor limits on field length. ROARS

maps all metadata fields to a relational database table. ROARS supports new

fields by adding new columns or expanding field widths as needed. This could be

highly inefficient for very sparse data, but is adequate for the common case where

items in a collection share a number of properties.

Second, the metadata table only contains the most recent values for each tu-

ple in a record. The complete history including the OWNER and TIME elements

described in section 2.1 is stored in a distinct metadata log table. Additionally,

these information is written to the metadata file next to each raw data object in

the storage nodes. This provides the complete history of the repository when it

is necessary to audit for scientific integrity. Each metadata change is written to

the database intermediately. However, the change may not be reflected at the

storage node simultaneously. ROARS could write changes to both database and

storage servers atomically; however, because of the latency discrepancy between

a database update transaction and a disk write transaction, writing changes to

both is lagged and bounded by slow disk speed. Especially when there are mass

metadata changes during the enrollment process, writing thousands of small trans-

actions to disk can take minutes to hours.

Third, any changes to metadata must be reflected in several places: the meta-

data table, the metadata log, and each of the distributed metadata files. This

34

is accomplished by treating the metadata log as a roll-forward recovery log. All

updates are applied to the log first and marked as ’incomplete’ until they are

appended to each of the distributed metadata files.

3.2.2 Storage Nodes

ROARS uses the Chirp [72] user level filesystem to implement the software

component of each storage node. A storage node is typically a conventional server

with large local disks, organized into a cluster. Storage nodes are divided into

different storage groups based on locality, and given a groupid. This approach is

consistent with the structure principle that Maccormic et al. proposed with the

Kinesis system [37]. In such a system, storage servers are grouped into different

segments which are likely to be failure-independent. Thus, failure in one segment

would not catastrophically affect the system as a whole. An IMPORT deliberately

places replicas in different storage groups to achieve both load balancing and

failure independence. This approach is similar to rack awareness in Hadoop. By

convention, if a data object was named X.jpg, then the associated metadata file

would be named X.meta and both of these files are replicated across the storage

nodes in each of the Storage Groups.

By replicating the raw data across the network, ROARS provides scalable,

high throughput data access for distributed applications. Moreover, because each

storage group has at least one copy of the data file, distributed applications can

easily take advantage of data locality with ROARS. Applications using the filesys-

tem interface are directed to the closest replica, preferring one on the same node,

otherwise in the same storage group if possible.

35

3.3 ROARS as a Storage System for Daily Use and Long Term Data Preservation

3.3.1 Robustness

The ROARS architecture is robust to a wide variety of failures in a number of

dimensions, including server or network outage, server loss, data corruption, and

interruption of write and administrative operations. The system design assumes

that errors are due to failures or accidents, but does not go to the expense of

protecting against Byzantine failures, as in in LOCKSS [55].

Data integrity is achieved by checksumming all file objects on storage nodes

and by recording this in the MDS. (Integrity of the MDS can be accomplished

via internal hierarchical checksums of the tables, as in ZFS [12]. Data integrity

is verified by a periodic AUDIT process as described above. Damaged replicas are

automatically deleted if a majority of replicas are in agreement with the checksum

stored in the MDS. If a majority of replicas agree upon a checksum, but this does

not equal that stored in the MDS, ROARS assumes the MDS is corrupted, and

with manual approval, will update the MDS to correspond to the majority view.

Replication is the primary defense against server and network outage. Files are

replicated three times by default. During a read operation by the query client or

the filesystem client, if a replica is not reachable due to server outage or hardware

failure, ROARS will randomly try other replicas until a user-specified timeout is

reached. As mentioned earlier, storage nodes are organized into groups based on

locality. By placing replicas in distinct groups, the likelihood of availability is

improved.

ROARS employs complete replicas of each data object and corresponding

metadata file to protect against server loss. In the event of multiple simulta-

neous hardware failures from a fire, flood, etc., any individual storage unit that

36

can be recovered contains a usable fragment of the data and its corresponding

metadata. If the metadata server itself is lost, the entire contents of the metadata

table, metadata log, file table, and replica table can be reconstructed from the

metadata files on the distributed storage nodes, albeit at some expense. From

this perspective, the MDS is an important cache of the metadata, but not the

authoritative copy.

All operations that write to the archive, including IMPORT, MIGRATE DATA, and

AUDIT DATA are carefully designed to move file servers and replicas through the

state transitions shown in Figure 3.2. The common concept is that major actions

are accomplished via two phase commit: a state transition marks an intent to

execute and the intention is executed before completing the next action. If an

administrative command crashes or is forcibly killed, the next invocation observes

the previously recorded intent, and continues. This makes all operations robust

to system failures or accidental cancellation. It also give the system operator flex-

ibility to spread out long-running operations. For example, one might accomplish

a complex migration by running it incrementally for two hours every night during

a period of low usage. Additionally, both the command line client and the filesys-

tem client take server and replica states into account, so that imports and reads

can continue while the system is in flux.

3.3.2 Reliability and Availability

ROARS must be able to preserve data and support data recovery when disaster

strikes. First, it must be reliable: once imported, data in the system should survive

the expected rate of hardware failures and migrate automatically as new hardware

is provisioned. Second, it must also be available. Acquisition of data occurs on

37

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

Year 1 Year 2 Year 3 Year 4 Year 5A
nn

ua
liz

ed
 F

ai
lu

re
 R

at
e

(%
)

1 Copy
2 Copies

3 Copies
4 Copies

Figure 3.5. Expected Failure Rate for Replicated Data

dozens of weekdays during the academic year. Students and faculty interact with

the system to do research at all hours of the night and day. Data analysis tasks

may take days or weeks. Good performance is also desirable, but not at the

expense of reliability and availability.

Figure 3.5 shows the expected probability of data loss due to disk failure based

on the values observed by Google [49], which are significantly higher than those

reported by manufacturers. For years one through five in the life of a disk, the

annualized failure rate f is the probability that the disk will fail in that particular

year. The probability of data loss of two disks is simply f 2, three disks f 3, and so

forth. For three data copies, the probability of failure is less than 0.001 percent

in the first year, and less than 0.1 percent in years two through five. To sustain

the data beyond the conventional disk lifetime of five years, ROARS should plan

to provision new equipment

38

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10000 20000 30000 40000 50000

E
la

ps
ed

 T
im

e
(s

)

Number of Records Exported

File Timeout
Fast Check

Cached Check
Optimistic

Figure 3.6. Performance of Transparent Failover Techniques

3.3.3 Transparent Fail Over

Because the active storage cluster records each replica as a self-contained

whole, the failure of any device does not have any immediate impact on the

others. Operations that read the repository retrieve the set of available replicas,

then try each in random order until success is obtained. Operations that import

new data select any available file server at random: if the selected one does not

respond, another may be chosen. If no replicas (or file servers) are available, then

the request may either block or return an error, depending on the user’s configu-

ration. Given a sufficient replication factor, even the failure of several servers at

once will only impact performance.

Sustaining acceptable performance during a failure requires some care and

imposes a modest performance penalty on normal operations. Each file server

39

operation has an internal timeout and retry, which is designed to hide transient

failures such as network outages, server reboots, and dropped TCP connections.

Without any advance knowledge of the amount of data to be transferred, this

timeout must be set very high – five minutes – in order to acommodate files mea-

sured in gigabytes. If a file server is not available, then an operation will be retried

for up to five minutes, holding up the entire workload. To avoid this problem,

ROARS probes for server health using an inexpensive test before downloading a

file: the client requests a stat on the file with a short timeout of three seconds.

If this succeeds, then the client now has the file size and can choose a download

timeout proportional to the file size. If it fails, the client requests a different

replica and tries again with another service. Of course, this test also has a cost of

three seconds on a failed server, so the client should cache this result for a limited

time (five minutes) before attempting to contact the server again.

Figure 3.6 demonstrates this by comparing the performance of several varia-

tions of transparent failover while exporting 50,000 data objects, 300KB each. The

“Optimistic” case has all 16 servers operating and downloading files without any

additional checks. The remaining cases have one file server disabled. “File Time-

out” relies solely on the failure of file downloads, and makes very little progress.

“Fast Check” does better but is still significantly slower because approximately

every 16th request is delayed by three seconds. “Cached Check” does best be-

cause it only pays the three second penalty every five minutes. However, it is still

measurably worse than the optimistic case, because each transaction involves an

additional check.

40

3.3.4 Three Phase Updates

Most updates on the repository require modifying both the database server and

one or more storage servers. Because this cannot be done atomically, there is the

danger of inconsistency between the two after a failure. To address this problem,

all changes to the repository require three phases: (1) record an intention in the

database, (2) modify the file server(s), (3) complete the intention in the database.

For example, when adding a new file to the system, the IMPORT command chooses

a location for the first replica, writes that intention to the database and marks

its state as creating. It then uploads the file into the desired location, and then

completes by updating the state to ok. Likewise, DELETE records the intention

of deleting to the database, deletes a file, and then removes the record entirely.

Other tools that read the database simply must take care to read data only in

the ok state. In the event of a failure, there may be records left behind in the

intermediate states, but the REPAIR tool can complete or abort the action without

ambiguity.

3.3.5 Asynchronous Audit and Repair

An important aspect of preserving data for the long haul is providing the end

user with an independent mean for checking the integrity of the system. Although

the system can (and should) perform all manner of integrity checks when data

are imported or exported, changes to the system, software, or environment may

damage the repository in ways that may not be observed until much later. Thus,

ROARS was bulit to allow the curator to check the integrity of a set or to scan

the entire system on demand.

The AUDIT command works as follows. For every file, the system locates all

41

replicas, computes the size and checksum of each replica, and compares it to the

stored values. An error is reported if there is an insufficient number of replicas

in the ok state, inconsistencies in the checksums, and replicas for files that no

longer exist. In addition, the auditing tool checks for referential integrity in the

metadata, ensuring that each recording refers to a valid entry in the ancillary

data tables. (We do not use the database to enforce referential integrity when

inserting data because we do not wish to delay the preservation of digital data

simply because the paperwork representing the ancillary data has not yet been

processed.)

This is a very data intensive process that gains significant benefit from the

capabilities of the active storage cluster. The serial task of interrogating the

database can be accomplished in seconds, but the checksumming requires visiting

every byte stored, and it would be highly inefficient to move all of this data over

the network. Instead, we can perform the checksums on the active storage nodes in

parallel. To demonstrate this, we constructed three versions of the auditing code.

The first uses the repository like a conventional file system, reading all of the data

over the network into a checksum process at the database node. The second uses

the active storage cluster to perform the checksums at the remote hosts, but only

performs them sequentially. The third dispatches all the checksum requests in

bulk parallel to all active storage units.

When the repository is scaled up to a million recordings, the parallel active

storage audit can be done in a few hours, while the conventional method would

take days. For even larger sizes, the audit can be done incrementally by specifying

a maximum number of files to check in the given invocation. This would allow

the curator to spread checks across periods of low load. The REPAIR check for

42

corrupted replicas, repairs the system by making new replicas and deleting bad

copies.

3.3.6 Active Storage

ROARS is also capable of executing programs internally, co-locating the com-

putation with the data that it requires. This technique is known as active stor-

age [54]. In ROARS, an active storage job is dispatch to a specific file server

containing the input files where it is run in an identity box [68] to prevent it from

harming the archive.

Active storage is frequently used in ROARS to provide transcoding from one

data format to another. For example, a large MPEG format animation might be

converted down to a 10-frame low resolution GIF animation to use as a preview

image on a web site. A given web page might show tens or hundreds of thumbnails

that must be transcoded and displayed simultaneously. With active storage, we

can harness the parallelism of the cluster to deliver the result faster.

Table 3.3.6 shows the performance of transcoding various kinds of images

using the active storage facilites of ROARS. Each line shows the turnaround time

(in seconds) to convert 50 images of the given type. The ‘Local’ line shows the

time to complete the conversions sequentially using ROARS as an ordinary file

system. The ‘Remote’ lines show the turnaround time using the indicated number

of active storage servers. As can be seen the active storage facility does not help

when applied to small still images, but offers a significant speedup when applied

to large videos with significant processing cost.

43

TABLE 3.1

TRANSCODING IN ACTIVE STORAGE

Iris Face Iris Face

Still Still Video Video

Method (300KB) (1MB) (5MB) (50MB)

Local 10 18 106 187

Remote x2 80 45 150 134

Remote x4 23 26 57 79

Remote x8 22 16 58 70

Remote x16 12 12 18 33

Remote x32 12 17 16 17

44

CHAPTER 4

SYSTEM EVALUATION

4.1 System Environment

To evaluate the performance and operational characteristics of ROARS, we

ran a number of experiments on a testbed cluster consisting of 22 data storage

nodes. They are servers with 32GB RAM, twelve 2TB SATA disks and two 8-core

Intel Xeon E5620 CPUs, all connected via a dedicated Gigabit Ethernet switch.

ROARS was deployed with 22 Chirp servers running on those 22 nodes, and an

MDS with the MySQL database on a head node. A number read and write

experiments were also ran on Hadoop filesystem and the results were compare to

ROARS’ performance results. Hadoop filesystem was deployed with 22 Hadoop

filesystem Datanodes running on the same 22 data storage nodes and the Hadoop

filesystem Namenode running on the cluster head node. With Hadoop filesystem,

we kept the usual Hadoop defaults such as employing a 64 MB chunk size and a

replication factor of three.

The following experimental results test the performance of ROARS and demon-

strate its capabilities while performing a variety of storage system activities such

as importing data, exporting materialized views and migrating replicas. These

experiments also include micro-benchmarks of traditional filesystem operations to

determine the latency of common system calls, and concurrent access benchmarks

45

that demonstrate how well the system scales in read performance throughput. For

these latter performance tests, we compare ROARS’s performance to Hadoop,

which is an often cited as an alternative to distributed data archiving. At the

end, we include operational results that demonstrate the operational robustness

of ROARS.

4.2 Basic Data Storage Operations

The purpose of these benchmark experiments is to measure ROARS’ perfor-

mance on daily operations of a storage system. These operations include SCREEN:

exam data and metadata before ingesting into the system , IMPORT: ingest data

into ROARS, EXPORT: get data and metadata out of ROARS, VIEWS: create a

materialized view with metadata, QUERY: only get metadata, and DELETE: remove

data from ROARS. Of the six operations, IMPORT, EXPORT, and DELETE interact

directly with the storage nodes, while SCREEN, VIEW, and QUERY do not.

Figure 4.1 shows the runtime of each of the key operations on 10,000 data

objects total of 17.4GB data, with triple replication. Most operations require

multiple transactions against the database and the storage cluster. IMPORT oper-

ates at the lowest speed because it has to create three replicas for each data file.

Moreover, the number of database queries is by far the most comparing to other

operations. Table 4.2 shows the number of database queries for each operations

per data file.

UPDATE queries are extra expensive comparing to other types of query be-

cause of ROARS’ metadata logging mechanism described in Chapter 2. Each

update essentially means another insert into the log table which decreases the

performance of IMPORT and DELETE operations. SCREEN is significantly faster than

46

 0

 200

 400

 600

 800

 1000

 1200

 1400

Screen

Im
port

Export

View
Query

Delete

E
la

ps
ed

 T
im

e
(s

)

1

1267

233

32 17
95

Figure 4.1. Screen, Import, Export, View, Query, Delete Performance
10,000 files 17.9GB of data

all other commands because it has the least number of database query and its

merely stat data files on local storage instead of transferring data files across the

network multiple times sequentially like EXPORT. QUERY is also fast because it only

needs to query the metadata from the database and it does not actually fetch

any data file. VIEW is very similar to QUERY because it does not interact with the

storage nodes. However VIEWS creates symbolic link files on local hard drive for

each object, thus the performance differs from QUERY Figure 4.2 shows the runtime

of the same set of operations, this time with 10,000 small data objects of about

300KB each. As expected, the performance of SCREEN, QUERY, and DELETE does

not depend on the total size of the data, their performance only depends on the

number of objects. QUERY took longer in this experiment because the number of

metadata for this dataset is almost double the number of metadata for the first

47

 0

 100

 200

 300

 400

 500

 600

 700

 800

Screen

Im
port

Export

View
Query

Delete

E
la

ps
ed

 T
im

e
(s

)

1

775

59 31 37
94

Figure 4.2. Screen, Import, Export, View, Query, Delete Performance,
10,000 files 3.0GB of data

experiment. The runtime of SCREEN and DELETE are almost identical for both ex-

periments. The experiment results show that ROARS achieve good performance

for daily use of data ingestion and data export.

4.3 ROARS vs. Hadoop: Data Import and Metadata Query

These set of experiments were designed to measure the performance of data

import and metadata query for both ROARS and Hadoop. Since ROARS and

Hadoop filesystem replicate data differently, the data import performance are not

expected to be identical. As described in Chapter 2, ROARS replicate data in

a sequential manner while Haddop replicates data in a parallel tree structure.

On another hand, ROARS supports for metadata query through database, and

Haddop does not have any built-in support for metadata thus users usually rely

48

TABLE 4.1

NUMBER OF DATABASE QUERIES PER OPERATION

QUERY SCREEN IMPORT EXPORT VIEW QUERY DELETE

SELECT 1 1 1 1 1 1

INSERT 0 5 0 0 0 0

UPDATE 0 7 0 0 0 5

DELETE 0 0 0 0 0 5

on Map Reduce for any type of metadata query.

4.3.1 Data Import

The following test measured the performance of importing large datasets into

both Hadoop and ROARS. For this data import experiment, the test were divided

into several sets of data objects. Each set consists of number of fixed size files,

ranging from 1KB to 1GB. To perform the experiment, we imported the data from

a local disk to the distributed systems. In the case of Hadoop this simply involved

copying the data from the local machine to Hadoop filesystem. For ROARS, we

used the IMPORT operation.

Figure 4.3 shows the data import performance for Hadoop and ROARS for

several sets of data. The graph shows the throughput as the file sizes increase. The

maximum theoretical throughput on a gigabit link is 128MB/s, and the maximum

achievable by a TCP connection is closer to 100MB/s, depending on the variant

used. Both ROARS and Hadoop filesystem achieve significantly less than that, due

to the overheads of interacting with the central metadata server, and the creation

49

 0.1

 1

 10

 100

 1000

 10000

1KB
8KB

64KB
512KB

1M
B

8M
B
64M

B
512M

B

1GB

T
hr

ou
gh

pu
t(

M
B

/s
)

File size

HDFS
ROARS

Figure 4.3. Import Performance for ROARS and Hadoop filesystem

of multiple file replicas. The overhead of interacting with the MDS is higher in

ROARS, due to the multiple state transitions shown in Figure 3.2. The overhead of

creating replicas is higher in ROARS, because it transfers and verifies each replica

separately, whereas Hadoop filesystem sets up a data forwarding pipeline, and

only communicates with the primary replica. In both systems, higher throughput

is achieved with larger files. For the purposes of long term data preservation with

a write-once, read-many model, this is an acceptable trade-off to achieve high

integrity transactions.

4.3.2 Metadata Query

In this benchmark, we studied the cost of performing a metadata query. As

previously noted, one of the advantages of ROARS over distributed systems such

50

 20

 40

 60

 80

 100

 120

 10 100 1000 10000

R
un

-T
im

e
(S

ec
on

ds
)

Number of records (x1000)

HDFS-Grep
HDFS-MapReduce

ROARS-MDS

Figure 4.4. Query Performance

as Hadoop is that it provides a means of quickly searching and manipulating the

metadata in the repository. For this experiment, we created multiple metadata

databases of increasing size and performed a query that looks for objects of a

particular type.

As a baseline reference, we performed a custom grep of the database records

on a single node accessing Hadoop filesystem, which is normally what happens in

rudimentary scientific data collections. For Hadoop, we stored all the metadata

in a single file in NAME, TYPE, VALUE tuple format we described in Section 2.1. For

each object, the metadata takes up approximately 1.3KB in storage. We started

with We queried the metadata by executing the custom script using MapReduce

[19]. For ROARS, we queried the metadata using QUERY which internally uses the

MySQL execution engine.

Figure 4.4 clearly shows that ROARS takes full advantage of the database

51

query capabilities properly and is much faster than either MapReduce or standard

grepping. Evidently, as the metadata database increases in size, the grep perfor-

mance degrades quickly. The same is true for the QUERY operation. Hadoop, how-

ever, at first retains a steady running time, regardless of the size of the database

(up to 2.7M rows or 3.6 GB). After that, Hadoop Map Reduce runtime only

increases linearly. This is because the MapReduce version was able to take advan-

tage of multiple compute nodes and thus scale up its performance. Unfortunately,

due to the overhead incurred in setting up the computation and organizing the

MapReduce execution, the Hadoop query had a high startup cost and thus was

slower than the MDS. Futhermore, the standard grep and MDS queries were per-

formed on a single node, and thus did not benefit from scaling. That said, the

ROARS query was still faster than Hadoop, even when the database reached 345M

data objects(427 GB of data).

4.4 ROARS Data Read Performance

4.4.1 Filesystem Access

ROARS provides a read-only filesystem interface for conventional applications,

consisting primarily of the system calls stat, open, read, and close. Hadoop

filesystem provides similar functionality through the library libhdfs. To evaluate

these side by side, we implemented equivalent modules in Parrot for a single Chirp

server, ROARS, and Hadoop filesystem. In addition, we provide a variant of the

ROARS module which caches recently used filesystem data and metadata. To

test the latency of these common filesystem functions, we constructed a simple

benchmark which performs repeated stats, opens, reads, and closes on a single

file.

52

 0

 2

 4

 6

 8

 10

stat open read close

La
te

nc
y

(m
s)

Filesystem Operations

Centralized
HDFS

ROARS
ROARS w/caching

Figure 4.5. Latency of Filesystem Operations

Figure 4.5 shows the latency of each operations on a centralized server, Hadoop

filesystem, and ROARS. As can be seen, ROARS provides comparable latency to

the centralized server, and in the case of stat, open, and read, lower latency

than Hadoop filesystem. Since all file access also pass through Parrot, there is

some interposition overhead for each system call. However, since all of the storage

systems were accessed though the same Parrot adapter, this additional overhead

is same for all of the systems and thus does not affect the relative latencies.

These results show that there is overhead to communicating with the MDS for

metadata, the latencies provided by the ROARS system remain comparable to

Hadoop filesystem. Moreover, because of the write-once nature of the data, these

queries can be cached for significant performance gains. With this small optimiza-

tion, operations such as stat and open are significantly faster with ROARS than

with Hadoop filesystem.

53

4.4.2 ROARS Concurrent Access

To determine the scalability of ROARS in comparison to a centralized network

server (running Chirp) and Hadoop filesystem, we exported two different datasets

to each of the systems and performed a test that read all of the data in each set.

In the case of ROARS, we used a materialized view with symbolic links to take

advantage of the data replication features of the system, while for the centralized

network server and Hadoop filesystem, we exported the data directory to each of

those systems. We ran our test program using the Condor [73] distributed batch

system running on the same cluster with 1 - 32 concurrent jobs reading data from

each system.

We set up the experiment using a 32 storage nodes with the following setup.

Nodes are commodity servers with dual-core Intel 2.4 GHz CPUs, 4GB of RAM,

and 750GB SATA-II disks, all connected via a dedicated Gigabit Ethernet switch.

ROARS was deployed with 32 Chirp servers running on the 32 cluster data nodes,

and an MDS with the MySQL database on the cluster head node. Hadoop filesys-

tem was deployed with 32 Hadoop filesystem Datanodes running on the 32 cluster

data nodes, and the Hadoop filesystem Namenode running on the cluster head

node.

Figure 4.6 and Figure 6.2.2 show the performance results of all three systems

for both datasets. In Figure 4.6, the clients read 10,000 320KB files, while in

Figure 6.2.2 1,000 5MB files were read. In both graphs, the overall aggregate

throughput for both Hadoop filesystem and ROARS increases with an increasing

number of concurrent clients, while the traditional file server levels off after around

8 clients. This is because the central file server is limited to a maximum upload

rate of about 120MB/s, which it reaches after 8 concurrent readers. ROARS

54

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Concurrent Clients

ROARS
HDFS

Centralized

Figure 4.6. Concurrent Access Performance (10K x 320KB)

and Hadoop filesystem, however, use replicas to enable reading from multiple

machines, and thus scale with the number of readers. As with the case of importing

data, these read tests also show that accessing larger files is much more efficient

in both ROARS and Hadoop filesystem than working on smaller files.

While both ROARS and Hadoop filesystem achieve improved aggregate per-

formance over the traditional file server, ROARS outperforms Hadoop filesystem

by a factor of 2. In the case of the small files, ROARS was able to achieve an ag-

gregate throughput of 526.66 MB/s, while Hadoop filesystem only reached 245.23

MB/s. For the larger test, ROARS reached 1030.94 MBS/s and Hadoop filesystem

581.88 MB/s. There are several reasons for this difference. First, ROARS has less

overhead in setting up the data transfers than Hadoop filesystem as indicated in

the micro-operations benchmarks. Such overhead limits the number of concurrent

55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

B
/s

)

Concurrent Clients

ROARS
HDFS

Centralized

Figure 4.7. Concurrent Access Performance (1K x 5MB)

data transfers and thus aggregate throughput. Another cause for the performance

difference is the behavior of the storage nodes. In Hadoop filesystem, each block

is checksummed and there is some additional overhead to maintain data integrity,

while in ROARS, data integrity is only enforced during high level operations such

as IMPORT, MIGRATE, and AUDIT. Since the storage nodes in ROARS are simple

network file servers, no checksumming is performed during a read operation, while

in Hadoop filesystem data integrity is enforced throughout, even during reads.

4.5 Integrity Check & Recovery

In ROARS, the AUDIT command is used to perform an integrity check. As we

have mentioned, the file table keeps records of a data file’s size, checksum, and

the last checked date. AUDIT uses this information to detect suspect replicas and

56

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

1M
B

16M
B

64M
B

256M
B

512M
B

1GB
2GB

T
im

e
(s

)

File Size

HDFS
ROARS

Figure 4.8. Cost of Calculating Checksums

replace them. At the lowest level, AUDIT checks the size of the replicas to make

sure it is the same as the file table entries indicate. This type of check is not

expensive to perform, but it is also not reliable. A replica could have a number

of bytes modified, but remains the same size. A better way to check a replica’s

integrity is to compute the checksum of the replica, and compare it to the value

in file table. This is expensive because the process will need to read in the whole

replica to compute the checksum.

Figure 4.8 shows the cost of computing checksums in both ROARS and Hadoop

filesystem. As file size increases, the time required to perform a checksum also

increases for both systems. However, when the file size is bigger than a Hadoop

filesystem block size (64MB), ROARS begins to outperform Hadoop filesystem

because the latter incurs additional overhead in selecting a new block and setting

up a new transaction. Moreover, ROARS lets storage nodes perform checksum

57

remotely where the data file is stored while for Hadoop filesystem this data must

be streamed locally before an operation can be performed.

Verifying data integrity is an essential component of maintaining a long-term

archive with many stakeholders. If verification requires moving all data to an

external party, then it can only be done in time proportional to the sum of the

archive. To make this process feasible on a regular basis, ROARS uses the active

storage facility to run the checksums directly on each storage node, then runs each

storage node in parallel. In this way, a complete system audit can be performed

in time proportional to the capacity of the largest node.

To start, we measure the performance of each audit method on 50,000 images

object of about 300KB each. Table 5.4 show the initial result.

We also compared the performance of an external sequential audit against a

parallel/active-storage audit on a production ROARS deployment of 90,000 files

totalling 497GB. The sequential implementation completed in 4.2 hours, averag-

ing 32.5MB of data verified per second. The parallel implementation completed in

19.6 min, for a speedup of 13x, which is imperfect due to the Amdahl overhead

of the MDS operations, but still significantly faster. If we consider much larger

storage systems, say 100 storage nodes of 1 TB each, a sequential integrity check

would take months and be practically infeasible, while a complete parallel check

could be scheduled into system downtime and completed in hours.

We measure the performance of each audit method on 50,000 images object of

about 300KB each:

58

TABLE 4.2

AUDIT RUNTIME FOR 50,000 DATA OBJECTS, 300KB EACH

Audit Method Execution Time Speedup

Conventional File System 5:43:12 1X

Sequential Active Storage 1:39:22 3.4X

Parallel Active Storage 0:08:21 41.1X

4.6 Metadata Logging

Metadata can be modified through out the life cycle of a data object, starts

with data import, continues with data update and ends with data delete. At

each phase, metadata change is written to the database intermediately. However,

those changes have not been reflected at the storage level yet. ROARS could write

changes to both database and storage servers at the same time. However, because

of the time discrepancy between a database update transaction and a disk write

transaction, writing changes to both is lagged and bounded by slow disk speed.

Especially when there are mass metadata changes during the enrollment process,

writing thousands of small transactions to disk can take minutes to hours.

In order to maintain data consistency, ROARS logs all metadata changes in

a log table. The log table keeps track of what has been changed, who made

the change, and when the change was made. However, logging changes come

with a cost. Figure 4.9 graphs shows the average performance import,update

and delete operations on 100,000 metadata records with and without metadata

logging. Obviously, metadata logging feature does affect import, update and delete

metadata performance. Each update of metadata will result to at least one insert

59

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

import update delete

C
os

t (
M

ill
is

ec
on

ds
)

Operations

No Logging
With Logging

Figure 4.9. Metadata Logging

into a metadata log table. The performance penalty is about 40 percent. While

import and delete result in multiple inserts into the log table.

4.7 Dynamic Data Migration

In early section, I showed that hardware failure is unavoidable in a distributed

environment. Hard drive goes bad all the time. New storage node is added to

the systems to either increase the storage capability or to replace a failing node.

Either way, when a new storage node is added, data need to be moved to a new

node, new replicas will be created to replace the damage one or to maintain the

load balancing among group.

To demonstrate the data migration and fault tolerance features of ROARS,

we set up a migration experiment as follows. We added 16 new storage nodes

60

to our current system, and we started a MIGRATE process to spawn new replicas.

Starting with 30 active storage nodes, we intentionally turned off a number of

storage nodes during MIGRATE process. After some time, we turn some storage

nodes back on, leaving the others inactive.

By dropping storage nodes from the system, we wanted to demonstrate that

ROARS still could be functional even when hardware failure occurs. Figure 4.10

demonstrates that ROARS remained operational during the MIGRATE process. As

expected, the performance throughput takes a dip as number of active Storage

Nodes decreases. The decrease in performance is because when ROARS contacts

an inactive storage node, it would fail to obtain the necessary replica for copying.

Within a global timeout, ROARS will retry to connect to the same storage node

and then move on to the next available Node. Because storage nodes remain

inactive, the ROARS continues to endure more and more timeouts. That leads

to the decrease of system throughput. While the experiment was progressing, we

added a number of storage nodes back to the system. As soon as number of nodes

came back online, we see the increase in system throughput.

Although, throughput performance decreases slightly when there are only two

inactive storage nodes, throughput takes a more significant hit when there is a

larger number of inactive storage nodes. There are ways to reduce this negative

effect on performance. First, ROARS can dynamically shorten the global timeout,

effectively cutting down retry time. Or better yet, ROARS can detect inactive

storage nodes after a number of failed attempts, and blacklist them, thus avoiding

picking replicas from inactive Nodes in the future.

61

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20
 0

 20

 40

 60

 80

 100

D
at

a
T

ra
ns

fe
rr

ed
 (

G
B

)

O
nl

in
e

S
to

ra
ge

 N
od

es
 (

#)
O

ve
ra

ll
T

hr
ou

gh
pu

t (
M

B
/s

)

Elapsed Time (hours)

 Switch-off
10 Storage Nodes

 Switch-on
8 Storage Nodes

GBs Transfered
Active Servers

Throughput

Figure 4.10: Dynamic Data Migration

62

CHAPTER 5

ROARS AND BIOMETRICS DATA

The last chapter shows that ROARS provides scalable, fault-tolerant data

storage with metadata support for scientific data. Users can utilize ROARS to

store, manage, update, and query for data easily using a useful set of tools. IMPORT

and EXPORT performance are adequate for daily data ingestion and data query

from a number of concurrent users. ROARS can not only manage scientific data,

but also present data to users in a more effective way which previously was not

possible.

ROARS has been used to manage a large biometrics data repository (BXGrid)

at Notre Dame. We have developed a step by step model to capture, ingest,

validate, and prepare data for biometrics research. During the life-time of biomet-

rics data, there are many hidden errors which can be introduced into the data.

Those errors can affect the overall quality of data, and thus can skew the re-

sults of biometrics research. ROARS helps researchers improve data quality and

sub-sequentially the quality of their research. ROARS provides data replication,

automated data validation, and metadata provenance which are necessary and

crucial to improve the quality and reliability of biometrics data.

63

5.1 Biometrics Research

Biometrics researchers study human body characteristics in the context of iden-

tification. Scientists develop algorithms to identify and confirm a human identity

by comparing those characteristics with a known set and using a measurement of

a physical trait. There have been a number of studies detailing the effectiveness

of using human body characteristics such as fingerprint [52], hand [33], iris [18],

and face [83] to identify or to verify an identity claim. However, questions remain

about how to improve speed and reliability of the identification process. Nowa-

days, with the popularity of cloud computing [71], biometrics researchers have a

very powerful tool to study the correctness and effectiveness of their biometrics

recognition algorithms.

The Computer Vision Research Lab (CVRL) at the University of Notre Dame

collects hundreds of gigabytes of biometrics data every semester from students,

staffs, and faculties. Data is ingested and maintained in the BXGrid system for

internal use to study newly developed algorithms. Data is also exported and

shipped to the National Institute of Standards and Technology (NIST) to enter

into a national research database. Examples of biometrics data are iris, face (still

images and movies), and 3D face scans. Every image, movie, and scan collected is

considered a recording. There are a number of metadata attributes attached to

a recording. The metadata is gathered during the acquisition of each recording.

Figure 5.1 shows an example of a face recording.

BXGrid is tailored from ROARS to support storage of biometrics data and

metadata and to facilitate large scale experiments using distributed tools available

from the Cooporate Computing Lab. Most end users interact with the system

through the web portal, which allows for interactive browsing, data export in

64

id numeric 64427
recordingid string nd4R91445
shotid string 2009-084-004-neutral.NEF
sequenceid string 05432d373
date string 2009-03-25 00:00:00
format string nef
subjectid string nd1S05432
glasses string No
source1 string Retrospectively
emotion string BlankStare
source2 string Given
stageid string nd4T00014
weather string Inside
collectionid string nd1C00031
environmentid string nd1E00069
sensorid string nd1N00012
illuminantid1 string nd1I00010
state string enrolled
fileid numeric 430941
by user string slagree
lastcheck string 2009-04-09 09:49:11
date added string 2009-03-31 10:00:40
added by string dwright2
temp collectionid string 1238508120
YOB numeric 1982
gender string Male
race string Asian

Figure 5.1. Sample Face Image and Metadata

65

(a) Validate Page) (b) Browse Page)

(c) Record Detail Page)

Figure 5.2: Examples of the Web Portal Interface

66

various forms, dataset management, and system administration. Figure 5.2 shows

examples of BXGrid’s portal pages.

5.2 Overview of Acquisition

The CVRL collects data bi-weekly during Fall and Spring semesters. Each

acquisition involves several lab technicians and employs a number of biometrics

sensors. Acquisition needs to be carried out as quickly as possible according

to a plan to ensure the quality of data collected and the correctness of derived

metadata. Acquisition usually includes a number of stations. Each station requires

one or more lab technicians to monitor and capture data as subjects proceed

through. A station uses one or multiple sensors with different lighting conditions.

A sensor can produce more than one recording. A recording can be a picture, a

movie, or a 3D scan.

5.2.1 Acquisition Setup

The first step of any acquisition session is to set up the stations based on an

acquisition specification. The job of the setup technician is to follow the specifica-

tion in order to determine the placement of sensors (camera, camcorder, scanner)

and illuminant sources. In addition, the specification provides the position of sub-

jects and number of recordings captured per subject per sensor. After setting up

the station according to the specification, technicians perform a mock acquisition

to make sure the equipment functions properly, and then eliminate any remaining

problems observed.

67

5.2.2 Data Acquisition

As subjects start an acquisition session, each of them is given a session id.

This session id is used to synchronize each captured recording and its metadata,

such as subjectid, stageid, eye color, etc. Subjects go through a number of sta-

tions, recordings are captured at each station, and metadata is recorded. During

the acquisition, technicians capture these data and act as the first quality screen-

ing gate. They make sure that eyes are open during iris acquisition, faces are

unobstructed during face acquisition, and so on. They will initiate re-acquisition

if deemed necessary.

During acquisition, metadata is captured along with each recording. Metadata

includes lighting conditions, sensor specifications, relative position of subject to

sensor and lighting (e.g. subject 6’ away from camera and illuminant 8’ above

ground, 6’ directly in front of subject). Other metadata contains personal infor-

mation regarding the subject, such as eye color, race, and age. Another set of

metadata is a recording of specifications such as format, resolution, and length

(for video).

5.2.3 Pre-ingestion Assembly of Data

After acquisition, there are several types of recordings that need to be pro-

cessed before ingesting. HD video needs to be clipped by subject, renamed, then

transcoded to MPEG format. BMP images need to be converted to TIFF format.

Iris videos need to be clipped by subject and eye (left,right), then transcoded

to MPEG format and renamed. Data and metadata need to be gathered and

synchronized before ingesting into a distributed storage system. While computer

controlled sensors have the session id built into the recording’s filename, manu-

68

ally operated sensor recordings need to be renamed. The new filename includes

session id, date, description of a recording (regarding either quality – high, low –

or activity classification – still, movement, etc.)

The next step is to collate metadata from various sources into a spreadsheet

that links it to the correct recording. Some data comes from subject registration,

e.g., eye color, glasses, age; some is environment-dependent e.g., sensor id (sensor

information), illuminant id (lighting information). Metadata is then converted to

name value pair format and is ready to be ingested. The name-value-pair format

is similar to the metadata shown in Figure 5.1. Metadata name, type (numeric

or string), and value are separated by tabs, while recordings are separated by an

empty line.

5.2.4 Data Ingestion and Data Storage

After being prepared, data is ingested into BXGrid by invoking an IMPORT

command. BXGrid automatically replicates data and associated metadata across

multiple storage servers. BXGrid provides data redundancy to assure data quality

and data integrity. Data information such as size of file and checksum are kept

internally inside BXGrid.

5.2.5 Data Validation

The acquisition process clearly leaves a lot of room for error. With so many

people working with such a large number of images, mistakes are not only probable

but inevitable. In order to find these errors and combat their permanent entry into

the repository, all image records have a state attribute. A newly imported record

is initially in the unvalidated state. For an image to be validated, a technician

69

must review the image and metadata via the web portal. The portal displays the

unvalidated image side by side with images taken of the same subject from several

previous acquisition sessions. If the technician identifies an error in the metadata,

such as an incorrect subject, or a left eye labelled as a right eye, they can flag it

as a problem, which will require manual repair by a domain expert. Otherwise,

the image may be marked as validated. By exposing this task through the web

portal, the very labor intensive activity can be “crowdsourced” by sharing the

task among multiple workers.

A second level of approval is required before an image is accepted into the

repository. The curator supervising the validation process may view a web in-

terface that gives an overview of the number of records in each state, and who

has validated them. The quality of work may be reviewed by selecting validated

records at random, or by searching for the work of any one technician. At this

point, decisions may still be reversed, and individual problems fixed by editing

the metadata directly. In the case of a completely flubbed acquisition, the entire

dataset can be backed out by invoking DELETE on the batch number.

5.2.6 Data Enrollment

The final step in processing a recording is to enroll it. Once a record is en-

rolled, it should not be edited or changed in any way. During the enrollment

process, a record is associated with a collectionid and given a recordingid that

is used to identify the image in any subsequent research and ensuing publication.

Another unique metadata named sequenceid is assigned to each recording. The

sequenceid is used internally at Notre Dame by the CVRL. Additional metadata

that must be kept internally for bookkeeping purposes are shotid: original file-

70

recordingid

state

null

unvalidated

1347

metadata value

id

fileid

18

recordingid

state

null

validated

1347

metadata value

id

fileid

18

recordingid

state

null

problem

1347

metadata value

id

fileid

18

recordingid

state

nd1R3457

enrolled

1347

metadata value

id

fileid

18Ingest

Problem

Validate Enroll

Correct

Figure 5.3. Data Life Cycle. Metadata changes during validation
process. New metadata is assigned when data is enrolled.

name, and batchid: unique number for a collection session. BXGrid supplies the

structure for creating a collection in a format that is consistent with a US gov-

ernment Document Type Definition Reference Document. It provides a template

for naming the collection and allows the user to specify the type of data and the

acquisition dates to be included with a few simple buttons. Once the user verifies

her choices, BXGrid generates the recordingid for each of the included images

and adds the collection to the collections table. Figure 5.3 shows the life cycle of

a recording.

71

5.3 Improve Biometrics Data Quality

Biometrics, like many modern science and engineering research fields, is data-

driven. Data enters the research enterprise through sensors and is processed,

yielding derivative data sets, some of which feed comparisons that are used to

evaluate the sensing technology, the steps in the processing pipelines leading to the

comparisons, and the comparison techniques. Such evaluations must be performed

with statistical rigor, which drives the collection of data to support the conclusions

reached. Management of this data is a demanding task and the data sets’ integrity

must be assured through appropriate management and validation techniques. The

use of ROARS to store and maintain the integrity of data, coupled with web

services and portals that allow crowdsourced evaluation work and data access, is

an ideal management strategy for large data sets such as those used in biometrics.

5.3.1 Issues That Can Affect Data Quality

Creating and maintaining a large repository of biometrics data can be chal-

lenging in many ways. One hundred thousand data files can add up to terabytes

of data. Because of the size of the repository and the fault-prone nature of both

humans and computers, data quality can be affected throughout the life cycle of

data. Error can be introduced into data at any time during pre-acquisition, during

acquisition, during ingestion and after ingestion. Depending on the nature of the

errors, solutions to correct errors can be recapturing data, modifying metadata,

or removing data completely.

During acquisition, equipment can malfunction (e.g. a camera does not take

a picture, the flash does not trigger). Other errors can be due to carelessness

of lab technicians (e.g. camera has a wrong zoom setting, unnoticed blinking

72

(a) Wrong camera position. (b) Blinking eye. (c) Out of focus camera.

Figure 5.4. Example of problem recordings.

eyes at the time of data capture). Another error occurs when subjects get out

of order during acquisition. Figure 5.4 shows some of the problem recordings.

Because each acquisition usually includes a number of stations, a subject jumping

the station line will cause a string of mislabeled data. This proves to be costly

when data is enrolled and used in experiments because it can inadvertently affect

experiment results. Mistakes during acquisition can be easily corrected if the lab

technician pays attention during operation and identifies the mistakes. Once a

mistake is identified, steps are carried out to correct the mistake, ranging from

logging the discrepancy to retaking a picture or a movie.

After acquisition, the lab technician uses various tools to prepare the data for

the ingestion process. Data collected during acquisition is copied into local storage

for pre-processing purposes. A script is used to rename the default filename to a

more meaningful one. Data, such as video, will be edited. Problems may arise

when the renaming script does not perform as intended or when video cutting

73

fails. Mistakes during this stage can be eliminated by carefully processing data

and also by maintaining a stable, working set of tools.

When data is ready to ingest, the lab technician invokes a SCREEN then an

IMPORT command to ingest data into the repositories. Each ingestion is assigned

a batchid. The batchid is very useful for keeping track of each data acquisition,

and also for correcting mistakes when mistakes are made. Ingestion can fail un-

expectedly due to malfunctioning hardware or power outage. When ingestion is

interrupted, the lab technician can invoke the same IMPORT command to resume

the ingestion. IMPORT command will automatically start where the last IMPORT

command left off. IMPORT also has built-in redundancy detection. When a batch

is ingested twice, IMPORT will ignore already ingested data. When a batch needs to

be deleted due to error, the lab technician can identify batchid and invoke DELETE

to erase the batch from the repository.

The last step to assure data quality before enrollment is the validation process.

Lab technicians validate data using a web portal. The web portal allows the

technician to identify poor quality data by displaying data and comparing data

from the same subject. Common metadata mistakes are mislabeling, such as

left eye to right eye and vice versa, subject wrongly marked as wearing glasses,

and data assigned to the wrong subject. By providing a comparison view between

unvalidated data and already validated data from the same subject, lab technicians

have a better chance of detecting these types of mistakes and correcting them

accordingly. Figure 6.9 shows an example of a validation page.

Data quality plays a very important role in the success of an experiment. Data

and metadata have to match correctly. Wrongly matched data and metadata can

alter the result of an experiment. BXGrid employs a number of mechanisms

74

TABLE 5.1: SUMMARY OF PROBLEMS AND SOLUTIONS
Stage Problem Solution

Acquisition Equipment malfunctions Discard image/movie, reset, or replace equipment
Acquisition Subject jumps out of order Lab technicians detect and correct the order
Ingestion Ingestion is interrupted Re-run ingestion command
Validation Incorrect metadata Lab technicians correct metadata using web portal
Validation Length of validation process Automated Data Validation
Validation Metadata inconsistency Two phases of metadata update, database then flush to storage
Archival Hardware failure Replicate and store metadata in three storage servers
Archival Data inconsistency Audit and Repair process
Archival Validate/Enroll errors Revert using metadata log
Archival Loss of database Recover by scanning metadata from fileservers

75

to assure the correctness, consistency, and availability of data. Table 5.3.1 lists

the problems we have identified and steps we take to minimize or eliminate data

quality problems.

5.4 Recent Data on Failure Rates and Recovery Mechanisms

Hardware failure is not uncommon, especially hard drive failure. A hard drive

can fail because it is exposed to extreme conditions, such as heat, humidity, water,

shock, etc. It also can fail due to use or aging [49], [58]. Google [49] published

a study on commodity hard drive failure rate in 2007. Although the annualized

failure rates are higher than those reported by hard drive manufacturers, given

the scope and size of a Google disk farm, the number provided on hard drive

failure rate is deemed to be accurate. According to Google, 2 percent of disks fail

within a year, but the annualized failure rate jumps to 8 percent over two years

and 9 percent in the first three years. The study shows that in order to sustain

data through hard disk failure, we should plan to backup, replicate and audit data

more often, and we should plan to provision new hard drives to replace old ones

that are prone to failure.

Hardware failure is unavoidable for a production system like BXGrid. BXGrid

employs as many as 41 file servers, and after a year of operation, some of them

have already suffered hardware failure. Most common failures are bad hard drives

and bad SATA controller boards. In the case of a bad hard drive, a new hard drive

is added to replace the bad one, and all data on the drive is lost. In the case of a

bad SATA controller board, data is intact and recoverable with a new controller

board. As recent studies on hard drive failure show, system administrators need

to run data audit and repair frequently. However, as the amount of data grows,

76

TABLE 5.2

AUDIT AND REPAIR TIMELINE

Period Elapsed Time Files Checked Suspect

1 24 hours 80,000 16,244

2 24 hours 80,000 15,153

3 48 hours 160,000 1,227

4 16 hours 60,000 9,381

5 32 hours 160,000 0

6 28 hours 160,000 0

it is not feasible to perform auditing on the whole system every day. Thus we

have been running audit and repair only during night time when BXGrid usage

is minimal. In order to test BXGrid’s ability to recover from hard drive failure,

we intentionally removed several hard drives from the storage cluster. We ran

BXGrid audit and repair incrementally to detect and replace missing replicas.

Table 5.4 shows the length of each audit and repair run, the number of audited

files and the number of repaired replicas when hardware failure was deliberately

introduced into BXGrid. During the recovery process, BXGrid remained in oper-

ational mode, and was accessible by multiple users performing regular tasks, such

as import, export, validate, enroll, etc.

During December 2009, four storage servers suffered from hard drive failures.

After identifying problem servers, REPAIR was invoked to spawn new replicas.

These replicas replaced those from problem servers and kept the number of repli-

cas for each file at three. The repair process took just over five hours to replace

77

an estimated 26,000 missing replicas, a total 250GB of data. The repair pro-

cess took significantly less time than the audit process because auditing involves

expensive checksum calculations. Repair process throughput is mainly bounded

by the speed of network links between storage servers, a mixture of gigabit and

100Mbps network.

5.5 Current status of BXGrid

At the time of writing, BXGRid has been in use as the archival service for a

biometrics research group at the University of Notre Dame for over three years.

BXGrid is used to curate data which is transmitted to the National Institute of

Standards and Technology for evaluation of biometric technologies by the fed-

eral government. Approximately 60GB of new data is acquired in the lab on a

bi-weekly basis, while collections on legacy storage devices are gradually being

imported into the system.

Figure 5.5 shows the growth of BXGrid over time from 2008 to 2009. The

system began production operations in July 2008, and ingested a terabyte of data

from previous years by September 2008. Through Fall 2008, it collected daily

acquisitions of iris images. Starting in January 2009, BXGrid began accepting

video acquisitions.

BXGrid currently contains 853,004 recordings totalling 14.1TB of data, spread

across 40 storage nodes. Figure 5.6 shows that the filesize distribution in BXGrid.

The repository is dominated by small and medium size files because the majority

of the files are iris and face images. Only a small portion of BXGrid consists of

bigger video and 3D files.

The data model fits ROARS perfectly because the raw data never changes

78

 0

 20

 40

 60

 80

 100

 120

 140

 160

Jun
2008

Jul
2008

Aug
2008

Sep
2008

Oct
2008

Nov
2008

Dec
2008

Jan
2009

Feb
2009

 0

 0.5

 1

 1.5

 2

 2.5

N
um

be
r

of
 R

ec
or

di
ng

s

T
er

ab
yt

es
 o

f D
at

a

Recordings
Total Data

Figure 5.5. System Growth Jul 2008 - Jan 2009

after its initial ingestion. However the metadata can change or more precisely

will change throughout the biometrics team’s validation and verification process.

When a recording is first ingested, it is marked as unvalidated. The state, which is

a part of recording metadata, can be changed to validated or problem during a val-

idation process. A recording is deemed to be problem if its metadata is mislabeled

or the recording itself is unusable. In the case where its metadata is mislabeled

(e.g. right iris is flagged as left iris), the metadata can be modified and the state

of the recording is set to validated. At the end of this whole process, the state of

the recording changes to enrolled, and a collectionid is assigned. collectionid

differs from batchid because it is a unique number usually representing a semester

worth of data.

In the last 6 months, there has been 1,685,509 entries inserted into the log

table. So far, 48 users has modified 21 types of metadata. More than half of the

79

 0

 100

 200

 300

 400

 500

256KB512KB 1MB 64MB 512MB 1GB 1GB+

N
um

be
r

of
 fi

le
s(

x1
,0

00
)

File Size

68.6K

359.5K

115.3K

294.0K

15.3K 77 3

Filesize Distribution

Figure 5.6. Filesize Distribution in BXGrid

total metadata changes were related to state changes, and they were made during

validation and enorllment process. The rest of metadata changes concentrated

on a few metadata: lighting condition, weather condition and yaw angle of face

images.

In May of 2011. We upgraded the storage cluster for BXGrid. We removed 32

aging storage nodes from the storage pool and we added 32 new storage nodes.

Each storage node consists of 32GB RAM, twelve 2TB SATA disks and two 8-core

Intel Xeon E5620 CPUs. All of them are equipped with Gigabit Ethernet. We

safely removed the old nodes from the system and migrated the data to the new

nodes. Figure 5.7 shows the entire migration process. It took 40 hours to move

approximate 5TB to the new nodes.

80

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40
 0

 10

 20

 30

 40

 50

 60

 70

 80

D
at

a
T

ra
ns

fe
rr

ed
 (

G
B

)

A
ve

ra
ge

 F
ile

zi
e(

x1
00

K
B

)
pe

r
In

te
rv

al
O

ve
ra

ll
T

hr
ou

gh
pu

t (
M

B
/s

)
pe

r
In

te
rv

al

Elapsed Time (hours)

GBs Transfered
Throughput per Interval

Average Filesize per Interval

Figure 5.7: BXGrid Data Migration To A New Cluster

81

CHAPTER 6

ROARS INTEGRATION WITH WORKFLOWS

Chapter 5 demonstrates ROARS’ usefulness as a biometrics data repository.

In addition to provididing safe storage for biometrics data, ROARS also helps

researchers speedup their research by taking advantage of the distributed nature of

ROARS. In order to demonstrate the ability of ROARS to integrate with a number

of abstractions and scientific workflows [77], this chapter will give a number of

examples of abstractions and workflows which take advantage of ROARS in the

context of biometrics research.

6.1 Distributed Computing Tools

The Cooperative Computing Lab at the University of Notre Dame provides a

number of tools to help users from other disciplines to harness the power of large

distributed systems.

Work Queue [82] is a scalable and robust master/worker framework, which

provides an API for users to write their own distributed application. Users can

define and submit tasks to a worker queue. Tasks are sent to and executed on any

available worker machines. After finishing the assigned task, the worker reports

the result to a master and asks for another task. The role of the master is to

distribute tasks and manage the results.

82

All-Pairs [42] is an abstraction which takes in two sets of objects, A and B,

and performs a function F on any pair of objects (a,b) such that a belongs to

set A and b belongs to set B. Users provide set A, set B and function F. The

All-Pairs abstraction executes the work load in a distributed manner and handles

automatically other details such as fault tolerance, data movement, etc Users do

not have to be a distributed system expert to run All-Pairs workloads.

Makeflow [4] is a workflow engine that assists users with executing large and

complex scientific workflows in number of distributed environments such as cluster,

clouds, and grids. Users can use Makeflow to execute their application using

supported distributed frameworks such as Work Queue or All-Pairs.

Weaver [15] is a Python-based workflow compiler for distributed applications.

Weaver supports several common distributed computing patterns. The result of

an application compiled by Weaver is workflow described in Makeflow format.

6.2 Abstractions for Biometrics Research

Motivated by the advice of Gray [28], who suggests that the most effective

way to design a new database is to ask the potential users to pose several hard

questions that they would like answered, temporarily ignoring the technical diffi-

culties involved. In working with the biometrics group, we discovered that almost

all of the proposed questions involved combining four simple abstractions shown

in Figure 6.1:� Select(R) : Select a set of images and metadata from the repository based

on requirements R, such as eye color, gender, camera, or location.� Transform(S, C) : Apply convert function C to all members of set S,

yielding the output of C attached to the same metadata as the input. This

83

F

F

F
R

Inside

Outside

Inside

L

R

S101

S102

S103 L

S MT

Blue

Blue

Blue

eye

S=Select(color="blue") M=AllPairs(S’,F)

R=Analyze(M)S’=Transform(S,C)

subject locationcolor

Figure 6.1: Workflow Abstractions for Biometrics

abstraction is typically used to convert file types, or to reduce an image into

a feature space such as an iris template, an iris code or a face geometry.� All-Pairs(S, F) : Compare all elements in set S using function, producing

a matrix M where each element M[x][y] = F(S[x],S[y]). This abstraction is

used to create a similarity matrix that represents the action of a biometric

matcher on a large body of data.� Analyze(M, D) = Reduce matrix M into a metric D that represents the

overall quality of the match. This could be a single value such as the rank

one recognition rate, or a graph such as a histogram or an ROC curve.

6.2.1 Select Abstraction

The first step in experimentation is to select a dataset. Select abstraction is

equivalent to a EXPORT request for both data and metadata. Because most users

are not SQL experts, the primary method of selecting data is to compose entire

collections of data with labels such as “Spring 2008 Indoor Faces”. These results

can be viewed graphically and then successively refined with simple expressions

such as “eye = Left”. Those with SQL expertise can perform more complex queries

84

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000

T
im

e
(s

)

Number of object(s)

EXPORT
VIEW

Figure 6.2: Export and View performance

through a text interface, view the results graphically, and then save the results

for other users.

As described in Chapter 3, there are multiple ways for users to get data out

of BXGrid. They can use EXPORT to download actual data objects with metadata

to local storage. Then they can choose to process data locally. They also can

have data distributed and analyzed remotely. If users choose to run experiments

on data in a distributed workflow, data has to move twice thus it is not optimal.

First, data is moved from BXGrid to local storage, and then once again from local

storage to remote nodes.

In order to be more efficient, users can use VIEW to create a materialized view

of the dataset on local storage. They can run experiments on the data using either

FUSE or Parrot. If they choose to run their experiment remotely in a distributed

manner, they can send a Chirp ticket along with the materialized view. The

85

remote jobs will use the Chirp ticket [23] to gain the access to the actual data on

BXGrid’s storage nodes. Instead of sending actual data which could be Gigabytes

in total, users only need to send a set of symbolic links which point to the location

of the data in BXGrid’s storage nodes. By using VIEW, the data only needs to

be moved once from BXGrid to the remote job’s location. Figure 6.2 shows the

cost of EXPORT and VIEWS for various datasets. As the datasets get bigger, EXPORT

performance grows linearly with dataset’s size while VIEWS’s runtime stays at

constant. It is because EXPORT transfers data from BXGrid’s storage node to local

storage while VIEWS only creates symbolic links to the data.

6.2.2 Transform Abstraction

Most raw data must be reduced into a feature space or other form more suit-

able for processing. To facilitate this, the user may select from a library of stan-

dard transformations or upload their own binary code that performs exactly one

transformation. After selecting the function and the selected dataset, the trans-

formation is performed on the local storage or on a distributed system, resulting in

a new dataset that may be further selected or transformed. The new transformed

dataset is considered to be derived from a parent dataset. Therefore, it retains

most of the metadata which comes from the parent set. For example, a function

transforms an iris image to an iris code, or a function converts images and videos

to thumbnails for web pages. The result will inherit information such as: left eye,

subjectid, environmentid, etc. from the original iris image.

86

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 C

P
U

s
B

us
y

Elapsed Time (hours)

Figure 6.3: All-Pairs on 4000 Faces

6.2.3 All-Pairs Abstraction

All-Pairs abstraction helps users perform a large-scale comparison. The user

uploads or chooses an existing comparison function and a saved data set. This

task is very computation intensive and requires dispatch to a computational grid.

Details of the implementation of All-Pairs is described in an earlier paper [43] and

briefly works as follows. First, the system measures the size of the input data and

the sample runtime of the function to build a model of the system. It then chooses

a suitable number of hosts to harness, distributes the input data to the grid using

a spanning tree. The workload is partitioned, and the function is dispatched to

the data using Condor [73]. Figure 6.3 shows a timeline of a typical All-Pairs job,

comparing all 4466 images to each other, harnessing up to 350 CPUs over eight

hours, varying due to competition from other users. As can be seen, the scale of

the problem is such that it would be impractical to run solely in the database or

87

even on a active storage cluster.

6.2.4 Analyze Abstraction

The result of an All-Pairs run is a large matrix where each cell represents the

result of a single comparison. Because some of the matrices are potentially very

large (the 60K X 60K result is 28.8 GB), they are stored in a custom matrix

library that partitions the results across the active storage cluster, keeping only

an “index record” on the database server. Because there are a relatively small

number of standardized ways to present data in this field, the system can auto-

matically generate publication-ready outputs in a number of forms. For example,

a histogram can be used to show the distribution of comparison scores between

matching and non-matching subjects. Or, an ROC curve can represent the accept

and reject rates at various levels of sensitivity.

Given Select, Transform, All-Pairs, and Analyze abstractions as an interface

to the repository, new workloads can be constructed to solve interesting problems

and answer research questions in biometrics.

6.3 Biometrics Workflow

A workflow is a series of tasks that are executed in order to achieve a final

result. In science experiments, a workflow is important because it defines the

specification of the experiment. In other words, workflows convey the blueprint

of the whole experiment and include all necessary steps to achieve the final goal.

A workflow usually is represented by a directed acyclic graphs (DAG). Figure 6.4

shows a simple biometrics workflow.

This workflow compares two iris images using a function F. Note that before

88

irish 1 irish 1convert C

compare F

Convert

Compare

template 2template 1

result

Step 1

Step 3

Convert Step 2

Figure 6.4: DAG Workflow for comparing two irises

1template1: iris1.tiff convertC //Rule #1

2 ./ convertC iris1.tiff template1

3

4template2: iris2.tiff convertC //Rule #2

5 ./ convertC iris2.tiff template2

6

7result: template1 template2 compareF //Rule #3

8 ./ compareF template1 template2 > result

Figure 6.5. Makeflow code that creates two iris template and compare
the templates

executing function F, the two iris images need to be transformed into a template

format. For simplicity, let us assume that all steps, 1, 2 and 3, take 1 second

to complete. If the workflow is executed sequentially, it would take 3 seconds to

complete all tasks (2 seconds for running convert function C twice and 1 second for

running compare function F once). It is possible to finish the workflow in 2 seconds

if the images are converted to templates concurrently. With a more complicated

89

workflows, for example a workflow that compares thousands or millions of irises,

if tasks can be executed in parallel, the runtime of the whole experiment will

decrease significantly.

There are a number of workflow management systems [84], [3], [20], [40], [47]

have been developed to assist scientists with running distributed workflows. At

Notre Dame, the Cooperative Computing Lab has developed Makeflow, a workflow

management system that uses the traditional Make language syntax to express

tasks and their dependencies. The advantage of Makeflow is that it is simple and

portable. Makeflow’s workflow can be executed across multiple execution engines

including Condor, SGE, HDFS, and more. Figure 6.6 shows the architecture of

Makeflow [4]. In this chapter, example workflows are executed by Makeflow on

Local, Condor and WorkQueue. Figure 6.5 is an example of the Makeflow code

representing the workflow in figure 6.4. Since there is no dependency between the

first two rules, they can be executed concurrently. The last rule needs the output

of the first two rules to complete.

6.3.1 BXGrid Transcode

BXGrid website helps users visualized biometrics data more easily. Images and

videos are transcoded into smaller thumbnail size still images or animated GIFs

before they are displayed on the website for users’ viewing. Figure 6.7 shows an

example of a browser page for iris images. Each page can have up to 100 images.

If all 100 images need to be transcoded, the browser page will take a long time to

load, which is unacceptable for users to wait. Moreover, when users validate data,

there may be up to 600 images to transcode per page. Although the transcoded

results are only generated once and kept in a cache, newly ingested images will

90

Condor QueueLocal HDFSSGE Work

Makefile

Compute and Storage Resources

Log
Transaction

append
events

recover
state

read
graph

Makeflow Core Logic

Abstract System Interface

Figure 6.6: Makeflow Architecture[4]

have no thumbnail. Browsing new data without already generated thumbnails will

hinder users’ overall experience.

In order to provide users with a more positive browsing experience, a transcode

workflow was created to pre-generate the thumbnails for all images and videos.

The workflow can be summarized as follow:

Question: How to select all new data from the last workflow execution and transcode

them, and store the result in the cache?

1S = Se l e c t (D)

2T = Transform(S ,F)

Figure 6.8 shows a Weaver program that compiles to Makeflow rules represent-

ing the transcode workflow to query and generate missing thumbnails for BXGrid

website. The workflow then are executed using WorkQueue. The initial run, BX-

Grid transcode completed transcode 85.72 GB of biometrics data in 3.81 Hours

91

Figure 6.7. BXGrid’s Browser Page

1for file_type , command , query , cache_path in file_types:

2 missing = [find_missing_thumbnails(f, cache_path , force=False)

3 for f in query(bxgrid)]

4 missing = filter(lambda x: x, missing)

5 if len(missing) > CHUNK_SIZE:

6 with SubNest(file_type , local=True):

7 for i, chunk in enumerate(Chunk(missing , CHUNK_SIZE)):

8 with SubNest('%s.%04X' % (file_type , i),local=True)

:

9 GenerateThumbnails(file_type , command , chunk ,

cache_path)

10 else:

11 with SubNest(file_type , local=True):

12 GenerateThumbnails(file_type , command , missing ,

cache_path)

Figure 6.8. Weaver code that compiles to Makeflow rules that generates
missing thumbnails

92

at the average of 22.5 GB/hour. Since then, the transcode makeflow runs auto-

matically at midnight to find and generate thumbnails for newly ingested data.

6.3.2 BXGrid Auto Validation

The data collected through the CVRL acquisitions are used for research into

biometric recognition algorithms by institutions throughout the world. Therefore,

it is of the utmost importance that it is tagged correctly. The validation function of

BXGrid allows for an efficient visual comparison of a newly acquired image against

similar images of the same subject while also displaying the relevant metadata tags

in a concise format. Records that have no problems are validated. If an error in

the metadata or a problem with the image quality is discovered, the record is

designated as a ”problem” record which can be either eliminated from the data

set, or corrected and validated at a later date. The problems encountered fall into

two categories: image quality and incorrect metadata. Image quality problems

might include blurriness of an image or intended feature not visible (eye closed,

part of face cut off, image too dark/light, etc.), which make the image unfit for

use in research. The more difficult problems to ferret out and resolve are those

that involve incorrect metadata. This can range from an image being tagged

as a subject wearing glasses when he/she is not, to an image being tagged with

the wrong subject number. The first problem is fairly easy to spot and correct,

however when a recording is tagged with a wrong subject, it is more difficult to

identify the error, especially with iris images.

During the iris image validation process, lab technicians usually look for mis-

takes such as closed eye, incorrect subject, etc. Figure 6.9 shows an example of

an iris image validation page. An iris image is displayed next to five ”good” iris

93

Figure 6.9. Iris Images Validation Page

images from the same subject. A good iris is an iris that has been validated and

verified to be correctly linked to that subject. Although there are attributes of

a person’s eye that could change over time [8], the eyes usually retain their sim-

ilarities, such as shape and size of the iris. By looking at iris images from the

same subject, lab technicians can easily spot an iris that does not belong to the

assigned subject. The same process applies to the face validation process.

In order to speed up the iris validation process, a BXGrid auto-validation

workflow has been created to take on these challenges. This workflow mimics a

94

technician’s actions by comparing the unvalidated image (gallery) to five already

validated and verified images from the same subject (probe).

Question: Select all new irises, for everyone of them, answer the question: ”Does this

iris belong to the person as the metadata claims?”

1S = Se l e c t (D)

2For each s in S

3 X = Se l e c t (s ub j e c t=x . s ub j e c t)

4 s ’ = Transform(s ’ ,F)

5 X ’ = Transform(X ’ ,F)

6 All−Pair s (s ’ ,X ’ ,C)

Figure 6.10 shows the workflow for auto validation workload. Based on com-

parison scores between the gallery image and the probe images, one can deicide

to accept the iris identity claim and mark the image as validated, or reject the

claim and mark it as problem. If the system cannot decide, it will be left for the

technician to decide later.

To determine the threshold numbers for accepting or rejecting an iris identity

claim, the matching algorithm needs to be test against a large set of data. This

leads to another biometrics workflow that is used to study matching algorithms.

6.3.3 BXGrid All-Pairs

A typical All-Pairs workflow includes selecting a set of irises, transforming all

irises into template format, then applying a comparison function to any pair of

templates. Figure 6.11 represents an All-Pairs workflow.

Figure 6.12 show an example of an All-Pairs result matrix. Applying All-Pairs

using function F returns Matrix M. Each comparison usually takes a fraction of a

95

Figure 6.10. Auto Validation Workflow

96

Figure 6.11. All-Pairs Workflow

97

F[4,2]

F[3.3]

F[1,3]

Figure 6.12: All-Pairs Result Matrix M

second to complete. However, applying All-Pairs to dataset of 100 or 1,000 irises

needs 10,000 or 1,000,000 comparison respectively. The number of comparisons

can grow out of hand very quickly and a single CPU will take hours, even days to

finish the workload sequentially.

The CCL has developed two applications to help with running All-Pairs work-

loads: All-Pairs Multicore [81] and All-Pairs Master [43]. All-Pairs Multicore runs

All-Pairs workload locally but uses multiple processes to execute a number of com-

parisons in parallel. The number of processes running concurrently is usually the

number of cores available in the system. All-Pairs Master partitions the result

matrix in to a number of sub-matrices, each sub-matrix represents a task. Tasks

then can be sent and executed remotely using a number of systems: Work Queue,

Condor, and SGE.

Figure 6.13 shows the runtime of an All-Pairs comparison for a All-Pairs Local,

All-Pairs Multicore and All-Pairs Master. All-Pairs Local quickly became unfea-

sible to run because of a long runtime. All-Pairs Multicore performed slightly

better. All-Pairs Master did best and finished a 10,000 X 10,000 All-Pairs work-

98

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 500 1000 5000 10000

T
u

rn
a

ro
u

n
d

 T
im

e
 (

M
in

u
te

(s
))

Data Set Size

All-Pairs
Master

on 150 CPUs

All-Pairs
Multicore

on 16 Cores

All-Pairs
Single CPU

Figure 6.13: All-Pairs runtime(only comparison stage)

load in hours instead of days. The largest All-Pairs experiment was run for 100,000

X 100,000 irises and it took almost 3 days to finish. Figure 6.14 was generated

by Condor Log Analyzer [69]. It shows the progress of the 100,000 All-Pairs ex-

periment. Although we requested 500 workers for this workload, the maximum

number of jobs running at once was around 300. The number of running jobs

fluctuated during the experiment. This is because in a campus grid environment,

the resource is allocated based on priority and availability. The total CPU time

is 501 hours with 461 hours of Goodput and 40 hours of Badput. Goodput is

the time allocation when a remote job spends executing and producing output.

Badput is the time remote job spends executing but not producing any output

due to application error or early termination.

99

 0

 100

 200

 300

 400

 500

 600

01/05
06:00

01/05
12:00

01/05
18:00

02/05
00:00

02/05
06:00

02/05
12:00

02/05
18:00

03/05
00:00

03/05
06:00

03/05
12:00

03/05
18:00

04/05
00:00

04/05
06:00

04/05
12:00

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Jo
bs

 S
ub

m
itt

ed
 /

C
om

pl
et

e

Jo
bs

 R
un

ni
ng

Submitted
Running

Complete

Figure 6.14: 100Kx100K All-Pairs experiment timeline

100

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

IrisBEE score

Match
Nonmatch

Figure 6.15: Score distribution of 10Kx10K All-Pairs experiment using irisBEE
function

With the result matrix from All-Pairs experiments, we can apply Analyze

abstraction and draw the conclusion about the threshold numbers.

Question: Given a matcher, how do I pick a threshold for accepting and rejecting

identity claim?

1S = Se l e c t (D)

2S ’ = Transform(S ,C)

3M = All−Pair s (S ’ ,F)

4V = Analyze (M)

Figure 6.15 shows a histogram after analyzing the result of an All-Pairs run

on 10,000 irises. A match is a comparison between two images of the same iris

101

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

Normalized Hamming Distance

Match
Nonmatch

Figure 6.16: Score distribution of 58Kx58K All-Pairs experiment using Hamming
distance function[43]

from the same person while a non-match is a comparison between two images of

different irises. If there was a perfect matching algorithm, the score of a match

comparison would be lesser than the score of a non-match comparison. This

particular All-Pairs experiment used irisBEE baseline function [38]. From Figure

6.15, one would conclude that 0.4 is the threshold number to accept a match.

However, because there are a number of scores from matches that are greater

than the score for non-matches, it is not safe to pick a threshold for rejecting a

match.

Figure 6.16 shows a histogram after analyzing the result of an All-Pairs run

on 58,639 irises [43] from the ICE 2006 [45]. Iris images were first transformed to

102

iris codes [14]. Then, the Hamming distance function [17] was used to compare

two iris codes. From Figure 6.16, one would pick 0.4 and 0.475 as the accept and

reject threshold number respectively. Thus for the auto-validation workload using

Hamming distance function, any score between 0 and 0.4 would yield an accept,

any score greater than 0.475 would result in a reject. Any score between 0.4 and

0.475 would be left alone for the technician to decide later.

Beside evaluating comparison algorithm to pick threshold scores, the All-Pairs

abstraction and workflow can also explore more interesting biometrics research

questions.

Question: Does matching function M have a demographic bias? To answer this, com-

pute the quality of its matches across several different demographics:

1 fo r ea ch demographic D {

2 S = Se l e c t (D)

3 Q[D] = Analyze (All−Pair s (Transform(S ,F) ,M))

4}

Figure 6.17(a) and Figure 6.17(b) show the result of All-Pairs experiments

for Asian subjects and White subjects respectively. The comparison function is

the irisBEE baseline. The curves for non-match comparison are similar for both

experiments. The score for match irises tilts more to the left. However, there are

more matches with a bigger score comparing to non-matches’ scores.

103

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

IrisBEE score

Match
Nonmatch

(a) Score distribution of Asian subjects’ irises

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6

P
er

ce
nt

IrisBEE score

Match
Nonmatch

(b) Score distribution of White subjects’ irises

Figure 6.17: Histogram of All-Pairs experiments

104

CHAPTER 7

CONCLUSION

We have showed that ROARS is capable of storing hundreds of thousands

of data objects with attached metadata. ROARS provides scalable data access

and fast metadata query abilities. ROARS is also robust, fault-tolerant and can

handle frequent hardware failure gracefully. Additionally, ROARS can facilitate

large scale experiments using abstractions and distributed workflows.

7.1 Impact

The impact of BXGrid on biometrics research activity at Notre Dame has been

significant and positive. It has enabled the development of workflows for ingestion,

validation, and enrollment that did not exist before BXGrid (all earlier data set

constructions were done by hand, by different people, and yielded unstructured

piles of customized scripts with variable quality and accuracy). Biometrics group

members are not forced to fret about the nuts and bolts of data management as

frequently, and can access and use data with the assurance that quality checks

have been performed.

105

7.2 Lessons Learned

Like many engineering projects, ROARS is a collaboration between two re-

search groups: one building the system, and the other using it to conduct research.

Each group brought to the project different experience, terminology, and expec-

tations. In this section, We will revisit some of the challenges we faced during the

development process given the dynamics of distributed environment. The lessons

we learned may become useful insights for future projects.

Lesson 1: Get a prototype running right away. It is essential to have

working system even if it is only partially working. Having a working system is

helpful in many ways. First of all, it takes the system out of its conception to real

hardware, real software, and real data. The system is no longer just a blueprint

on paper. In the initial stages of the project, we spent a fair amount of energy

elaborating the design and specifications of the system. We then constructed a

prototype with the basic functions of the system, only to discover that a significant

number of design decisions were just plain wrong. The prototype system helped

us discover our mistakes, pointed us to a right direction before it was too late.

Simply having an operational prototype in place forced the design team to confront

technical issues that would not have otherwise been apparent. If we had spent a

year designing the “perfect” system without the benefit of practical experience,

the project might have failed.

Lesson 2: Ingest provisional data, not just archival data. In our initial

design for the system, we assumed that BXGrid would only ingest data of archival

quality for permanent storage and experimental study. However, once we ingested

BXGrid with daily collected data, the system became more than just a archival.

We understand that other people depend on BXGrid and use BXGrid in their

106

daily research activities. Although the system was still under experimental, we

knew that users come to BXGrid with certain expectations. They expect BXGrid

to work. Because of that we worked hard and diligently to keep the system

operating as smoothly as possible. Working with real scientific data also gets us

to understand the data better. This kind of valuable knowledge helps with making

the right design decision later on.

Lesson 3: Work closely with your users. Each group brought to the

project different experience, terminology, and expectations. By talking to each

other, we not only minimize confusion but also re-enforce what we have learned.

Users’ input is very important, because after all, we build the system for the users,

not for us. Although what users want is not always what we can accomplish,

healthy discussion is very essential to the success of a project. Users also play a

very important role in identifying and reporting bugs. There are bugs that we did

not anticipate during the design, implementation, and test process which the users

did find and report. Users’ contribution to the project does not stop there, their

encouragement and thoughtfulness proves to be unmeasurable to the progress of

the project.

Lesson 4: Embed deliberate failures to achieve fault tolerance. While

the system design considered fault tolerance from the beginning, the actual im-

plementation lagged behind, because the underlying hardware was quite reliable.

Programmers implementing new portions of the system would (naturally) imple-

ment the basic functionality, leave the fault tolerance until later, and then forget

to complete it. We found that the most effective way to ensure that fault toler-

ance was actually achieved was to deliberately increase the failure rate. In the

production system, we began taking servers offline randomly and corrupting some

107

replicas of the underlying objects which should be detected by checksums. As a

result, fault tolerance was forced to become a higher priority in development.

Lesson 5: Expect events that should “never” happen. In our initial

design discussions, we deliberately searched for invariants that could simplify the

design of the system. For example, we agreed early on that as a matter of scientific

integrity, ingested data would never be deleted, and enrolled data would never be

modified. While these may be desirable properties for a scientific repository in

the abstract, they ignore the very real costs of making mistakes. A user could

accidentally ingest a terabyte of incorrect data; if it must be maintained forever,

this will severely degrade the capacity and the performance of the system. With

some operational experience, it became clear that both deletions and modifications

would be necessary. To maintain the integrity of the system, we simply require

that such operations require a higher level of privilege, are logged in a distinct

area of the system, and do not re-use unique identifiers.

7.3 Future Work

The power of ROARS is not only about managing, exporting data, but also

about driving large scale experiments using current scientific abstractions and

distributed workflows. The next step is to help researchers analyze and share

results in a collaborative environments. Experiments should be re-run easily to

confirm the results. Results should be rendered and presented back to the user

for visualization. Share is the abstraction that takes ROARS to that direction.

Share: ROARS should store results at every intermediate step of the data

lifecycle, users can draw on one another’s results. The system records every newly

created dataset as a child of an existing dataset via one of the four abstract opera-

108

images
face

matrix

User A

10
saved

11
derived

12

13
graph

allpairs

transform

select

18
saved

19
derived

20
matrix

21
graph

analyze

allpairs

transform

select

14
derived

15

matrix

16
graph

17

graph

transform

allpairs

User B User C

analyze

Figure 7.1. Sharing Datasets for Cooperative Discovery

tions (Select, Transform, All-Pairs, and Analyze). Figure 7.1 shows an example of

this. User A Selects data from the archive of face images, transforms it via a func-

tion, computes the similarity matrix via AllPairs, and produces a histogram graph

of the result. If User B wishes to improve upon User A’s matching algorithm, B

may simply select the same dataset, apply a new transform function, repeat the

experiment, and compare the output graphs. A year later, user C could repeat

the same experiment on a larger dataset by issuing the same query against the

(larger) archive, but apply the same function and produce new results. In this

way, experiments can be precisely reproduced and compared.

109

BIBLIOGRAPHY

1. Filesystem in user space. http://sourceforge.net/projects/fuse.

2. Solaris ZFS Administration Guide. Sun Microsystems, Santa Clara, CA (May
1996).

3. The directed acyclic graph manager. http://www.cs.wisc.edu/condor/dagman
(2002).

4. M. Albrecht, P. Donnelly, P. Bui and D. Thain, Makeflow: A Portable Ab-
straction for Cluster, Cloud, and Grid Computing. In Technical Report CUCS-
035-95 .

5. S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman, Basic local align-
ment search tool. Journal of Molecular Biology , 3(215): 403–410 (Oct 1990).

6. Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/
(2009).

7. T. Anderson, M. Dahlin, J. Neefe, D. Pat-terson, D. Roselli and R. Wang,
Serverless network file systems. In ACM Symposium on Operating System
Principles (Dec 1995).

8. S. Baker, K. Bowyer and P. Flynn, Empirical Evidence for Correct Iris Match
Score Degradation with Increased Time-Lapse between Gallery and Probe
Matches. In Proceedings of International Conference on Biometrics 2009 ,
pages 1170–1179 (June 2009).

9. C. Baru, R. Moore, A. Rajasekar and M. Wan, The SDSC storage resource
broker. In Proceedings of CASCON , Toronto, Canada (1998).

10. S. Best and D. Kleikamp, JFS Layout. In IBM
http://jfs.sourceforge.net/project/pub/jfslayout.pdf .

11. J. Bonwick, M. Ahrens, V. Henson, M. Maybee and M. Shellenbaum, The
zettabyte file system. In Technical Report - Sun Microsystems.

110

12. J. Bonwick, M. Ahrens, V. Henson, M. Maybee and M. Shellenbaum, The
zettabyte file system. In Technical Report, Sun Microsystems (2003).

13. D. Borthakur, HDFS Architecture Guide. In HADOOP APACHE PROJECT
http://hadoop.apache.org/common/docs/current/hdfs design.pdf .

14. K. Bowyer, K. Hollingsworth and P. Flynn, Image understanding for iris bio-
metrics: A survey. Computer Vision and Image Understanding , 110(2): 281–
307 (2007).

15. P. Bui, L. Yu and D. Thain, Weaver: Integrating Distributed Computing
Abstractions into Scientific Workflows using Python. In Challenges of Large
Applications in Distributed Environments at ACM HPDC 2010 (2010).

16. R. Card, T. Ts’o and S. Tweedie, Design and Implementation of the Second
Extended Filesystem. In Proceedings of the First Dutch International Sympo-
sium on Linux .

17. J. Daugman, How iris recognition works. In University of Cambridge, The
Computer Laboratory, Cambridge CB2 3QG, U.K .

18. J. Daugman, How Iris Recognition Works. IEEE Trans. on Circuits and Sys-
tems for Video Technology , 14(1): 21–30 (2004).

19. J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large
clusters. In Operating Systems Design and Implementation (2004).

20. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob and D. Katz, Pegasus: A
framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal , 13(3) (2005).

21. B. Devlin, Data Warehouse: From Architecture to Implementation. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1996).

22. J. J. Dongarra and D. W. Walker, MPI: A standard message passing interface.
Supercomputer , pages 56–68 (January 1996).

23. P. Donnelly and D. Thain, Fine-Grained Access Control in the Chirp Dis-
tributed File System. In IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing (2012).

24. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and
T. Berners-Lee, Hypertext transfer protocol (HTTP). Internet Engineering
Task Force Request for Comments (RFC) 2616 (June 1999).

111

25. J. G. Fletcher, An arithmetic checksum for serial transmissions. In IEEE
Transactions on Communications (1982).

26. A. S. Foundation, The Apache CouchDB project. In http://couchdb.apache.org
(2012).

27. S. Ghemawat, H. Gobioff and S. Leung, The Google filesystem. In ACM Sym-
posium on Operating Systems Principles (2003).

28. J. Gray and A. Szalay, Where the rubber meets the sky: Bridging the gap
between databases and science. IEEE Data Engineering Bulletin, 27: 3–11
(December 2004).

29. Hadoop. http://hadoop.apache.org/ (2007).

30. A. Holupirek, C. Grn and M. H. Scholl, BaseX & DeepFS joint storage for
filesystem and database. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology (2009).

31. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham and M. West, Scale and performance in a distributed file system.
ACM Trans. on Comp. Sys., 6(1): 51–81 (February 1988).

32. M. Ivanova, N. Nes, R. Goncalves and M. Kersten, Monetdb/sql meets
skyserver: the challenges of a scientific database. Scientific and Statistical
Database Management, International Conference on, 0: 13 (2007).

33. A. K. Jain, A. Ross and S. Pankanti, A Prototype Hand Geometry-Based
Verification System. In Proc. Audio- and Video-Based Biometric Person Au-
thentication (AVBPA), pages 166–171 (1999).

34. M. K. Johnson, Whitepaper: Red Hat’s new journaling file system: ext3
(2011).

35. O. Kirch, Why NFS Sucks. In Proceedings of the Linux Symposium (2006).

36. N. Leavitt, Will nosql databases live up to their promise? Computer , 43(2):
12–14 (February 2010).

37. J. Maccormick, N. Murphy, V. Ramasubramanian, U. Weder and J. Yang,
Kinesis: A new approach to replica placement in distributed storage systems.
ACM Transactions on Storage, 4(1) (2009).

38. L. Masek, Recognition of human iris patterns for biometric identi.cation. In
Technical Report, School of Computer Science and Software Engineering, The
University of Western Australia, 2003 .

112

39. A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas and L. Vivier, The
new ext4 filesystem: current status and future plans. In Proceedings of the
Linux Symposium, volume 2 (June 2007).

40. P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn and C. Goble, Taverna, reloaded. 6187: 471–481 (2010).

41. MongoDB, GridFS Specification. In http://www.mongodb.org (2012).

42. C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn and D. Thain, All-
Pairs: An Abstraction for Data Intensive Computing on Campus Grids. IEEE
Transactions on Parallel and Distributed Systems, 21(1): 33–46 (2010).

43. C. Moretti, J. Bulosan, D. Thain and P. Flynn, All-Pairs: An Abstraction for
Data Intensive Cloud Computing. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 1–11 (2008).

44. MySQL: The world’s most popular open source database.
http://www.mysql.com/ (2012).

45. National Insitute of Standards and Technology, Iris challenge evaluation data
http://iris.nist.gov/ice/ (accessed Apr 2008).

46. J. No, R. Thakur and A. Choudhary:, Integrating parallel file i/o and database
support for high-performance scientific data management. In IEEE High Per-
formance Networking and Computing (2000).

47. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat and P. Li, Taverna: a tool for the com-
position and enactment of bioinformatics workflows. Bioinformatics , 20(17):
3045–3054 (2004).

48. D. A. Patterson, G. Gibson and R. Katz, A case for redundant arrays of in-
expensive disks (RAID). In ACM SIGMOD international conference on man-
agement of data, pages 109–116 (June 1988).

49. E. Pinheiro, W.-D. Weber and L. A. Barroso, Failure trends in a large disk
drive population. In USENIX File and Storage Technologies (2007).

50. E. Plugge, T. Hawkins and P. Membrey, The definitive guide to MongoDB:
the noSQL database for cloud and desktop computing. In Apress, Berkely,
CA, USA, 1st edition (2010).

51. J. Postel, FTP: File transfer protocol specification. Internet Engineering Task
Force Request for Comments (RFC) 765 (June 1980).

113

52. N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems. Springer
(2004).

53. H. Reiser, ReiserFS. In www.namesys.com, 2004..

54. E. Riedel, G. A. Gibson and C. Faloutsos, Active storage for large scale data
mining and multimedia. In Very Large Databases (VLDB) (1998).

55. D. S. Rosenthal, Lockss: Lots of copies keep stuff safe. In NIST Digital Preser-
vation Interoperability Framework Workshop (2010).

56. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, Design and
implementation of the Sun network filesystem. In USENIX Summer Technical
Conference, pages 119–130 (1985).

57. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, Design and
Implementation of the Sun Network Filesystem. In Proceedings of USENIX
1985 Summer Conference, pages 119–130, Portland OR (USA) (1985).

58. B. Schroeder and G. A. Gibson, Disk failures in the real world: what does an
mttf of 1,000,000 hours mean to you? In USENIX File and Storage Technolo-
gies (2007).

59. E. Sciore, SimpleDB: a simple java-based multiuser syst for teaching database
internals. In Proceedings of the 38th SIGCSE technical symposium on Com-
puter science education (2007).

60. R. Searcs, C. V. Ingen and J. Gray, To blob or not to blob: Large object
storage in a database or a filesystem. Technical Report MSR-TR-2006-45,
Microsoft Research (April 2006).

61. Y. L. Simmhan, B. Plale and D. Gannon, A survey of data provenance in
e-science. SIGMOD Rec., 34(3): 31–36 (September 2005).

62. M. Spasojevic and M. Satyanarayanan, An empirical study of a wide-area
distributed file system. ACM Transactions on Computer Systems, 14(2) (May
1996).

63. E. Stolte, C. von Praun, G.Alonso and T. Gross, Scientific data repositories .
designing for a moving target. In SIGMOD (2003).

64. M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier, O. Ratzesberger
and S. B. Zdonik, Requirements for science data bases and scidb. In CIDR,
www.crdrdb.org (2009).

114

65. M. Stonebraker, J. F. T and J. Dozier, An overview of the sequoia 2000
project. In In Proceedings of the Third International Symposium on Large
Spatial Databases , pages 397–412 (1992).

66. A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray and D. R. Slutz, Designing
and mining multi-terabyte astronomy archives: The sloan digital sky survey.
In SIGMOD Conference (2000).

67. O. Tatebe, N. Soda, Y. Morita, S. Matsuoka and S. Sekiguchi, Gfarm v2: A
grid file system that supports high-performance distributed and parallel data
computing. In Computing in High Energy Physics (CHEP) (September 2004).

68. D. Thain, Identity Boxing: A New Technique for Consistent Global Identity.
In IEEE/ACM Supercomputing , pages 51–61 (2005).

69. D. Thain, D. Cieslak and N. Chawla, Condor Log Analyzer. In
http://condorlog.cse.nd.edu (2009).

70. D. Thain and M. Livny, Parrot: An Application Environment for Data-
Intensive Computing. Scalable Computing: Practice and Experience, 6(3):
9–18 (2005).

71. D. Thain and C. Moretti, Abstractions for Cloud Computing with Condor.
In S. Ahson and M. Ilyas, editors, Cloud Computing and Software Services:
Theory and Techniques, pages 153–171, CRC Press (2010).

72. D. Thain, C. Moretti and J. Hemmes, Chirp: A Practical Global Filesystem
for Cluster and Grid Computing. Journal of Grid Computing , 7(1): 51–72
(2009).

73. D. Thain, T. Tannenbaum and M. Livny, Condor and the grid. In F. Berman,
G. Fox and T. Hey, editors, Grid Computing: Making the Global Infrastructure
a Reality , John Wiley (2003).

74. T. Y. Ts’o, Planned Extensions to the Linux Ext2/Ext3 Filesystem. In 2002
FREENIX Track Technical Program.

75. S. Tweedie, Journaling the Linux ext2fs Filesystem. In Proceedings of the 4th
Annual LinuxExpo, Durham, NC .

76. S. Tweedie, Presentation on EXT3 Journaling Filesystem. In The Ottawa
Linux Symposium 2000 (July 2000).

77. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski and A. Barros, Workflow
patterns. Distributed and Parallel Databases , 14: 5–51 (2003).

115

78. Vertica. http://www.vertica.com/ (2009).

79. M. Wan, R. Moore and W. Schroeder, A prototype rule-based distributed
data management system rajasekar. In HPDC Workshop on Next Generation
Distributed Data Management (May 2006).

80. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long and C. Maltzahn, Ceph:
A scalable, high-performance distributed file system. In USENIX Operating
Systems Design and Implementation (2006).

81. L. Yu, C. Moretti, S. Emrich, K. Judd and D. Thain, Harnessing Parallelism
in Multicore Clusters with the All-Pairs and Wavefront Abstractions. In IEEE
High Performance Distributed Computing , pages 1–10 (2009).

82. L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd and D. Thain, Harnessing
Parallelism in Multicore Clusters with the All-Pairs, Wavefront, and Makeflow
Abstractions. Journal of Cluster Computing , 13(3): 243–256 (2010).

83. W. Zhao, R. Chellappa, P. Phillips and A. Rosenfeld, Face Recognition: A
Literature Survey. ACM Computing Surveys, 34(4): 299–458 (2003).

84. Y. Zhao, J. Dobson, L. Moreau, I. Foster and M. Wilde, A notation and system
for expressing and executing cleanly typed workflows on messy scientific data.
In SIGMOD (2005).

This document was prepared & typeset with LATEX2ε, and formatted with
nddiss2ε classfile (v3.0[2005/07/27]) provided by Sameer Vijay.

116

