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IMPROVING DATA AVAILABILITY IN MOBILE APPLICATIONS

THROUGH ENHANCED COOPERATIVE LOCALIZATION

Abstract

by

Jeffrey Matthew Hemmes

It has become commonplace for mobile computing systems to be constructed

using low-cost, commodity components for localization. While the expected error

in consumer-grade sensors can still be acceptable for localization at human scale,

all sensors have fundamental limitations which manifest in different ways in differ-

ent environments. Cooperative localization techniques can compensate for these

hardware limitations, facilitating robust positioning in location-sensitive mobile

applications.

Four significant challenges exist for developers of localized mobile systems.

First, the nature of connectivity in mobile ad-hoc networks can often be highly

sporadic, with frequent disconnects and changing topology. Second, sensor error

frequently occurs in unexpected ways, is produced by multiple sensors working

in tandem, or exhibits much different behavior depending on the type of sensor.

Third, the lack of effective tools for measuring spatial separation between mobile

nodes makes implementing existing localization methods difficult. Finally, many

applications that rely on localization of remote network nodes can fail without

accurate and precise positioning.

The foundation of this work is a rigorous evaluation and discussion of sensor

error as encountered in practice. This work examines sensor error, which can
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manifest in unexpected ways outside of controlled environments and applications,

focusing on its effect on human-scale localization. Data collected from both em-

pirical measurement and outdoor exercises are used to construct error models

which may be used to evaluate new ideas in mobile cooperative computing. A

simulation environment for mobile ad hoc networks incorporating various models

of localization error is presented.

Next, the utility of sharing location information and error metrics among co-

operating users is explored. Two methods are presented which can account for

and reduce localization error using shared data, exploiting the independence of

error among nodes in close proximity. A scenario-based evaluation approach is

used to demonstrate possible techniques for using shared location information.

System parameters required for effective utilization such data is also discussed.

Simulation trials show that up to 50 percent reduction in overall localization error

can be realized in many cases using only commercial-grade sensors.

Finally, the effect of robust localization and error reduction at the application

layer is studied. This is examined in the context of a new method for selecting

available peers in a mobile network for the purpose of short-term data storage

and retrieval. By weighting the utility of each remote node based on error metrics

and the confidence level of those metrics, an increase in the effective availability

of data in the system can be demonstrated.
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CHAPTER 1

INTRODUCTION

1.1 Mobile Distributed Systems

The last decade has brought forth explosive growth in the use of personal

communication devices based on wireless connectivity, which enables mobility

and facilitates an “anywhere, anytime” computing capability. These types of sys-

tems, particularly those designed for robust commercial applications, are typically

not fully autonomous and still require fixed networking infrastructure to varying

extents in order to interoperate effectively and provide consistent performance.

For example, a standard commercial cell phone cannot work at all unless within

sufficient proximity to a cell tower. If such a system is to be used effectively in

a very remote geographic area, networking infrastructure must be provided si-

multaneously, as is commonly the case with deployed military communications

systems.

With increasing awareness of the capabilities of distributed systems, a broader

segment of the scientific community has become appreciative of the benefits of

their use. It is now relatively common to see them deployed as sensor networks

used for data collection efforts supporting various research endeavors. Like tra-

ditional distributed systems used in data-intensive or computation-intensive sci-

entific applications, sensor networks are generally designed and built with static
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architectures and network topologies. However, they are frequently deployed to

very remote physical locations in which a priori construction of wired infrastruc-

ture is either extraordinarily difficult or impossible. The importance users place

on maximizing the effective lifespans of these systems operating under austere en-

vironmental conditions demands the use of limited computing power and minimal

resource consumption. Furthermore, these systems are often deployed on a fairly

large scale, composed of perhaps hundreds or even thousands of devices. These

requirements and limitations are very important to note, as they frequently force

system designers to consider harsh tradeoffs when building sensor networks.

Despite the existence of such an enormous variety of computing systems, the

needs of many user communities are not adequately met. Many existing mobile

computing platforms are still not directly interoperable, especially in remote envi-

ronments, which makes data sharing among users working in concert challenging

at best. While mobile systems need a capability that can be exploited without

assuming pre-existing infrastructure, autonomous operation is not necessarily an

overriding requirement, and is, in fact, only one of several key parameters. How-

ever, developing capable and reliable systems without reliance on infrastructure is

a daunting problem, and one that will be the focus of much of this work. Mobile

ad-hoc networks provide a convenient way of getting around these concerns, but

typically pose significant reliability and performance problems in practice.

Whether or not a mobile computing device operates independently or as part of

a larger distributed system, one of the canonical requirements for mobile applica-

tions is to have some notion of locality, i.e., satisfactorily answering the question

where in the world am I? In sensor networks, localizing sensor output provides

context, enabling the transformation of raw data into information that can be

2



effectively utilized at the application layer. However, localization is as difficult

a problem to solve as it is important. The challenges arise from the inherent

uncertainties in the sensor data upon which most localization techniques rely as

well as the practical difficulties installing beacons or other fixed, ground-based

infrastructure components. A large number of system designs incorporate use of

the Global Positioning System (GPS), originally developed by the U.S. Depart-

ment of Defense (Kaplan, 1996), and simply call the problem solved. Depending

on the particular application, the use of commercial GPS alone may be sufficient.

For instance, for an application that determines the location of a tractor-trailer

rig, the magnitude of the approximation error inherent to GPS positions is prob-

ably acceptable; if localizing an individual sensor the size of a coin, perhaps not.

Determining whether the precision and accuracy of a location approximation is

acceptable or not is a fundamental problem that must be addressed in order for

mobile applications to exploit locality.

Localization in sensor networks with static topologies has one important ad-

vantage over mobile networks: random errors in position can be smoothed out

over time by averaging multiple samples. Indeed, averaging samples over a period

of several days can yield accuracy to within one or two meters (Wilson, 2001).

When localized nodes become mobile, however, that luxury is usually no longer

available. One reason for this is the limitation of throughput found in most com-

mercially available GPS receivers. In many types of receivers, position updates

are only available at a rate of around once per second. A lag of several seconds

which might be required to facilitate averaging makes futile any attempt to ac-

curately estimate a position in this manner, for at least as long as the operator

carrying the device is in motion. Furthermore, as users move about, blocking of
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GPS signals may preclude collecting additional samples. Clearly, expecting the

operator to stop and wait for a sufficient number of samples to be collected is not

an acceptable tradeoff.

Finally, the problem of error detection and error handling is exacerbated by

some of the practical realities in the current state of system design methodologies.

These challenges, along with a few of the benefits, are discussed next.

1.2 Building Mobile Systems With Consumer-Grade Components

Component-based approaches have long been used in the area of systems en-

gineering. Through the use of existing off-the-shelf components, acquired from ei-

ther commercially available sources or reused from previous internal development

projects, system development time and acquisition costs are reduced, oftentimes

substantially (Heineman and Councill, 2001). This approach towards systems

engineering dovetails nicely with the underlying philosophies of distributed com-

puting. One of the most widely recognized advantages of distributed paradigms

such as cluster or grid computing is that by constructing them from lower-cost

commodity hardware and software, powerful computing capabilities can be ac-

quired and systems deployed with lower overall acquisition costs and shorter de-

velopment time than they could be otherwise. In many cases, the resultant cost

savings arising from component reuse might mean the difference in whether system

development and deployment are even feasible at all.

Distributed systems using traditional wired networks are well understood, as

that area has enjoyed an abundance of research over the years. As an emerging

technology, the use of mobile networks as distributed systems has been far more

limited. Furthermore, the integration of off-the-shelf hardware and software into
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mobile sensor networks is a relatively recent trend as well. Thus, the impact of

commodity hardware and software integration on the suitability of such systems

has not been examined in any significant way.

The challenge of developing with commodity components lies in the fundamen-

tal tradeoff that exists between cost and performance. While it might be possi-

ble to realize performance gains by incorporating custom-fabricated, high-quality

parts, doing so would likely push development costs significantly over budget.

More significantly, most sensor devices have fundamental limitations that cannot

be overcome simply by throwing money at the problem. GPS is but one example

of the latter. To construct a system using any off-the-shelf sensor device, a de-

veloper should pay particular attention to both the interfaces provided as well as

the failure modes, as the sensor may have been originally developed intended for

a much different application, and any new application using data from that sen-

sor should account for these failure modes in some way. This requires a rigorous

analysis of sensor data collected under realistic operational conditions, which are

based on both the new system requirements and an evaluation of any resultant

failure modes.

The TeamTrak mobile ad-hoc network testbed (Hemmes et al., 2007) is the

product of our experiences using low-cost commodity hardware in mobile sensor

networks. TeamTrak is a testbed implementation for outdoor urban or semi-urban

environments, intended as an approximation of personal navigation systems de-

veloped for military use. It is indeed a quite reasonable model of such systems;

a commercial GPS receiver used by the U. S. Air Force for training purposes is

shown in Figure 1.1. Operation of physical implementations of such sensor systems

under noisy, uncontrolled conditions presents both system designers and maintain-
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Figure 1.1: Commercial GPS for Military Use

ers with unique fault tolerance challenges, many of which are unanticipated and

frequently open new avenues for future research. This dissertation is the culmi-

nation of several years of experience building, deploying, and evaluating ideas in

mobile cooperative computing using the TeamTrak framework. An overview of

TeamTrak is presented in Section 3.2 of Chapter 3.

1.3 Why a Cooperative Model?

Cooperative computing is a way for users to work together and share resources

with each other in a computing environment that is at once complex, dynamic,

heterogeneous, and unreliable. While many works in the literature attempt local-

ization among mobile nodes using distributed approaches, two aspects make this

work unique and suitable for a cooperative approach. First, with multiple sensors

attached to each node, each with individual advantages and disadvantages, it is

quite possible for different users to have position estimates whose quality varies

dramatically, even if multiple users happen to be in close proximity to each other.
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Different types of sensors fail in different ways, and this observation can be ex-

ploited with a cooperative data sharing approach. Secondly, even among nodes

using similar sensor hardware for localization, the data quality may vary signifi-

cantly, again, even when sensors are positioned in close proximity to each other.

Consider a case where two nodes are localized using GPS. If one receiver is able

to acquire a fix and the second is not (as frequently occurs in practice), the first

may have an accurate position estimate that can be used to improve the second,

which may only have a rough estimate of position using cached information. Sim-

ilarly, if both have a position estimate, but one is clearly more accurate than the

other, the node with lower quality location data can leverage the higher quality

data of the other. Its position can then be improved through averaging or another

combination technique.

1.4 Potential Applications

This section describes a sample of real-world applications whose performance

and effectiveness could be improved through a cooperative localization technique.

Personal Navigation. The most obvious application of improved localization

of mobile computing devices is personal navigation systems which allow users to

identify their location in relation to geographic features represented as objects

on a map. On a human scale, absolute error, uncertainty, and variability in

position are far more pronounced and have more significant consequences than

when localizing much larger objects such as vehicles. For instance, localizing an

individual operator to a walking path requires much greater precision and accuracy

than localizing an automobile to a four-lane highway.
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Geographic Forwarding. Many applications or protocols used in mobile ad-

hoc networks not only require localization of the nodes, but bad localization can

have serious performance implications. For example, routing algorithms based on

geographic forwarding can suffer from suboptimal routes, misrouted packets (Abu-

Ghazaleh et al., 2005), or, if poor localization is malicious in nature, wormhole

attacks (Perrig et al., 2001). Several techniques have been devised to verify loca-

tion accuracy (Abu-Ghazaleh et al., 2005; Sastry et al., 2003), but these are not

general purpose algorithms.

Search and Rescue. Search and rescue operations can be greatly aided if

handheld computing devices self localize. This can already be accomplished with

cell phones as they handshake with a nearby tower (Sandoval, 2007), but more

accurate localization can facilitate speedier rescues. In particular, data from cell

handshakes are not readily available to searchers on the ground, nor are such data

always available at all.

Sensor Networks. A wide variety of sensor networks has emerged for a broad

application space, to include such disparate applications as habitat monitoring, in-

frastructure protection, and battlefield awareness (Zhao and Guibas, 2004). These

types of systems require localized nodes for purposes of providing geographically

meaningful data, and many require location information for either routing of col-

laborative tracking tasks (Bachrach and Taylor, 2005). Inaccurate positioning,

particularly when coupled with a relatively low deployment density, could easily

cause the system to be ineffective at the task for which it was designed, built, and

deployed.

Moreover, many other types of applications which are dependent on data repli-

cation, such as peer-to-peer networks, exploit spatial locality to achieve greater
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communication efficiency. The work presented in Chapter 5 of this dissertation

is one example. All of these types of applications rely on robust localization, yet

are frequently deployed to or operated in places lacking infrastructure to easily

facilitate positioning. Although reliable localization is generally assumed in many

works, that is frequently not the case encountered in practice, which in turn leads

to overall poor application performance.

In this dissertation, practical experiences and lessons learned with commodity

hardware and software are presented in the context of a mobile ad-hoc network

testbed, along with ways in which mobile applications can detect and deal with

sensor measurement error. Focus is on the propagation of error when location data

is combined from multiple hardware sources using an array of sensors attached to

connected devices. The contribution is an exploration of error reduction tech-

niques in unreliable mobile sensor networks and the further exploitation of robust

localization information.

1.5 Overview of Dissertation

This dissertation will examine whether the data available in systems composed

of commodity hardware and software are sufficient to determine whether error-

prone sensor data from various sources can be effectively used alone or in concert

to improve positions in real time. Figure 1.2 illustrates the focus of each chapter

and its respective place in the architecture of a typical mobile system.

At the device layer, raw sensor data are retrieved from the hardware. This

data may include some estimate of localization error as a function of distance.

Additionally, such data may be adjusted based on an error model created for

each particular sensor. At the next higher layer, location data are shared among
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Figure 1.2. Overview of Dissertation

connected nodes and combined to improve accuracy and precision. This corrected

data, along with an adjusted error estimate and confidence level, are then funneled

to the application layer.

Chapter 2: Related Work. Typically localization in mobile networks or

sensor network is accomplished using GPS, with the most common limiting factor

its relatively high deployment cost or energy consumption rate, not positioning

error. Furthermore, most works in wireless sensor network localization assume a

static network topology. This chapter presents an overview of existing research

into localization of sensor networks and related areas as pertaining to evaluation

of mobile networks, paying particular attention to those addressing localization in

the presence of mobility. It also presents the current state of the art in mobility

prediction techniques as well, an area expanded on in Chapter 5.

Chapter 3: Multi-Sensor Localization. Much of the study of sensor error

involves understanding the “good” cases, i.e., looking at the cases in which sen-
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sors perform well, oftentimes with a goal of ensuring the data is reliable enough

for a particular application. Ignoring the behavior of error does not help applica-

tion designers determine how to handle boundary cases, which occur frequently

enough in practice to be noticeable by the user. Thus, such error warrants inves-

tigation and should be accounted for in system design. Frequently, sensor error

manifests in unintuitive ways, and understanding the manner in which common

sensors fail in practice helps sensor hardware designers build better devices and

application designers build more robust location-sensitive applications. Further-

more, the study of sensor data in this chapter is fundamental to the development

of valid error models which constitute a large part of the evaluation efforts in this

dissertation.

Chapter 4: Cooperative Localization. The vast majority of localization

schemes assume that anchor nodes always have low-error localization, and other

nodes estimate their own position (or, alternatively, have their positions estimated

for them) based on the anchors’ positions. This chapter explores ways in which

location data of varying quality obtained by different techniques can be combined

to improve the localization of the system as a whole. In this work, the term sen-

sor includes such nontraditional means of detection and measurement as wireless

network connectivity. Evaluation of these cooperative approaches is presented

through a series of scenarios in which sensor data is shared among collaborating

actors, but may or may not be accepted based on the combination method and

both the relative quality of the data and the confidence in that quality.

Chapter 5: Location-Sensitive Applications. Chapter 5 demonstrates

the importance of robust localization in mobile networks by presenting a method

for replicating sensor data which relies on mobility prediction to maximize avail-
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ability of directly connected nodes. In this method, mobility prediction is based

on a subset of location history, which is then extrapolated and combined with a

model of wireless signal propagation in order to estimate a window of opportunity

in which nodes can exchange data. This chapter explores the semantics of peer

node selection, data placement, recovery, and data management and further dis-

cusses the effect of localization error on selection and placement, and presents a

simple weighting technique to acoount for such error.
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CHAPTER 2

RELATED WORK

2.1 Sensor Evaluation and Mobile Ad-Hoc Network Testbeds

The need for mobile ad-hoc network (MANET) testbeds has gained widespread

recognition in the literature only relatively recently, but research into multi-hop

wireless networks using physical prototypes has its roots back in the early 1970s

with the advent of the ALOHA project at the University of Hawaii (Abramson,

1970). ALOHA was most noteworthy in that it successfully demonstrated the

feasibility of broadcast messaging over wireless channels, albeit in a single-hop

network that would be considered quite primitive by today’s standards.

The first multi-hop ad-hoc network that incorporated some degree of mobility

among nodes was introduced only a few years later when DARPA began work on

PRNET (Jubin and Turnow, 1987; Kahn et al., 1978). PRNET was originally

designed to study the feasibility of packet-switched, store-and-forward wireless

communications (Kahn, 1977). Incidentally, in the earliest days of mobile net-

works, wireless networks were given the term packet radio networks, from which

the name PRNET was derived.

As work progressed on PRNET over the following decade, it led to the intro-

duction of the SURAN project in 1983 (Beyer, 1990), whose goals were to evaluate

more sophisticated routing protocols, allow for far greater scalability than previ-

ously realized, and permit a degree of survivability in the presence of electronic
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attacks in military-type applications. SURAN was the first prototype of a modern

mobile ad-hoc network.

As study of MANETs grew over the subsequent decades, three fundamental

approaches to evaluation emerged and evolved. Conceptual ideas can be tested

and validated through simulation, emulation, and through scientific experiments

using the systems as a whole or their separate, individual components. Each of

these approaches has its own strengths and weaknesses.

2.1.1 Simulation

Simulation is arguably the most prevalent approach to evaluating MANETs

today, and with good reason. Simulation tools provide a flexible and effective

means to quickly evaluate attributes such as scalability and node mobility over

great distances which would be very difficult or impossible to evaluate with physi-

cal implementations. Simulation environments such as NS-2 (Information Sciences

Institute, 2006) and GloMoSim (Zeng et al., 1998) are by far the most commonly

used, with rich feature sets and active community support, although legions of

simulation tools built specifically for individual projects exist as well. All of these

tools, however, suffer from the same fundamental limitation as any other simula-

tor. Results are only as valid as both the assumptions made about the behavior

of external factors and the complexity and granularity of the models. Although

their discussion pertains primarily to routing protocols, Kiess and Mauve point

out that qualitative rankings of systems under evaluation can largely depend on

the particular simulator as well as both the validity and complexity of the models

used in the evaluation (Kiess and Mauve, 2007).
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2.1.2 Emulation

Additional realism can be injected into a test environment through the use of

emulation. Emulation simply augments a simulation tool with physical hardware

and production software, much like hardware-in-the-loop simulations familiar to

designers of embedded systems. Emulation using ad-hoc networks has a fairly

lengthy history as well. Much of the SURAN project was evaluated through

emulation (Beyer, 1990), and its use has expanded significantly in subsequent

decades.

As much of the research into MANET design involves the study of network

protocols, a large number of existing emulators were designed and built for such

a purpose. There are numerous physical emulation environments in existence

which are intended to evaluate network-layer protocols, and do so by modeling

the different network layers to varying extents. These emulation tools can be

categorized into two groups: those which model only the physical layer, e.g.,

(Chin et al., 2002; De et al., 2005; Girod et al., 2004; Judd and Steenkiste, 2002;

Levis et al., 2003; Raychaudhuri et al., 2005; Sanghani et al., 2003; Vaidha et al.,

2004), and those which model both the physical and MAC layers (Chao et al.,

2003; Heisenbüttel et al., 2005; Maltz et al., 1999; Matthes et al., 2005; Nordstrom

et al., 2005; Zhang and Li, 2002a). While emulation in the latter cases typically

involve MAC-layer filtering in a decentralized fashion, packet routing and delivery

can also be emulated through the use of a centralized simulator (Ke et al., 2000).

WHYNET (Varshney et al., 2007) takes emulation of networking components a

step further, and facilitates simulation of software and hardware systems, which

may include the entire operating system and applications.

Lastly, emulation can be accomplished through a trace-based mechanism. In
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network emulators, a trace-based approach adds realism by modeling packet loss

and delay based on the results of prior empirical evaluation of real wireless net-

works (Liu et al., 2004, 2005; Noble et al., 1997). The use of empirical evaluation

and experimentation is particularly relevant to this work, and their application in

mobile sensor networks is discussed next.

2.1.3 Experimental Trials

Models developed for simulation and emulation tasks can either be purely the-

oretical or based on empirical data collected via experiments. An implementation

of a mobile network provides a convenient platform to conduct experimental trials

and gather empirical data. This data can be used to develop or refine analytical

models for use in simulation, which adds to the validity of such models, or as feed-

back into agile system development processes. Additionally, results of live system

tests by themselves can be used for evaluation purposes, augmenting simulation or

emulation results. The foundation of any component-based engineering approach,

as described earlier in Section 1.2, lies in understanding the capabilities, limita-

tions, and interfaces of individual components. Therefore, this section begins with

a discussion of component-wise experimental evaluation.

2.1.3.1 GPS Error Analysis

When approached with the idea of independently evaluating commercial GPS

receivers for accuracy, a skeptical observer might ask why the accompanying data

sheets are insufficient. The answer is twofold: First, technical data describing GPS

receiver performance are not uniformly reported across manufacturers (Buick,

2002). Robust error handling in a system which incorporates more than one
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model of GPS receiver hardware, as TeamTrak does, might prove considerably

more challenging to design and successfully implement if component performance

is measured inconsistently across devices. Second, even GPS receivers of the same

model or manufacturer may perform quite differently in different environments or

when employed in specialized applications such as agriculture. These specialized

applications often have unique requirements and performance demands not likely

to be fully anticipated by sensor hardware designers or that paints a pessimistic

view of the receiver’s capabilities. Examples of such include mounting on rapidly

moving vehicles such as aircraft (Shannon et al., 2002; Taylor et al., 2004; Thomson

and Smith, 2006) or deployment in dense urban or wooded environments.

In terms of empirically-based error models for GPS, several experimental GPS

accuracy evaluations are published in the literature. Additionally, specific guide-

lines for evaluating GPS accuracy exist (Han et al., 2004; Institute of Navigation

Standards, 1997), but many of these analyses were accomplished prior to the U. S.

Government’s disabling of so-called selective availability . Selective availability pro-

vided a far less accurate position estimate in commercial-grade receivers, and so

many of the earlier published accuracy data is no longer meaningful. Similarly,

several evaluations were conducted under much different environmental condi-

tions than are of interest in this work, such as in locations with wide-open sky

views (Rupprecht, 2007; Wormley, 2007) or using additional correction techniques

such as differential GPS, which maximize the accuracy of GPS, but may not always

be representative of real-world conditions. Furthermore, while such experiments

yield acceptable statistical models of GPS error distributions, results frequently

lack confidence values for specific error values or ranges, which makes designing

systems sufficiently robust to account for GPS error somewhat more challenging.
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2.1.3.2 Dead Reckoning Systems

Regardless of the accuracy of GPS measurements, cases in which no position

is available are frequently encountered. While indoor operation is the canonical

example of this used in many works, many other situations arise in which GPS

accuracy is poor, to include outdoors. For those cases in which GPS is highly

unreliable or unavailable, localization can be accomplished via dead reckoning .

The Merriam-Webster dictionary defines dead reckoning as:

The determination without the aid of celestial observations of the po-
sition...from the record of the courses [traveled], the distance made,
and the known or estimated drift.

and was originally applied to navigation in ships or airplanes. This definition

aptly applies to pedestrian navigation as well, hence the more slightly generalized

definition used here.

Research into localization using dead reckoning has been ongoing for years.

Techniques for implementing dead reckoning systems and their associated chal-

lenges have been nicely described in the literature (Amundson, 2006). As the

authors point out, using wheeled robots reduces the error in calculating specific

movements significantly, so the real challenge with dead reckoning lies in build-

ing systems based on effective step detection and stride length estimation for

non-wheeled platforms such as human operators, whose steps are not rigidly me-

chanical in nature. These types of systems have not yet been widely built or

explored, particularly those applied to wearable systems.

Dead reckoning systems mounted on a walking platform, despite the inherent

difficulty, is not a new concept. The CMU Ambler (Roston and Krotkov, 1991),

first developed in the late 1980s, is a six-legged walking robot that relies on the

kinematics of its mechanical legs to determine steps taken and detect error condi-
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tions such as slips. It had no GPS or other external, on-line means of localization

or correction of dead reckoning errors, nor did it use electronic sensors such as

accelerometers for motion detection.

Attempts have been made to apply dead reckoning techniques to human op-

erators. NavMote (Fang et al., 2005) is a pedestrian dead reckoning system that

relies on a compass/accelerometer pair which operate in tandem to determine

changes in position resulting from each step taken by a human operator. Nav-

Mote is intended to be used more as a tracking system to provide location data

to a centralized command post, rather than providing real-time status displays

to the operator. NavMote does not rely on inter-node communications for data

sharing, nor does it provide localization by means other than dead reckoning or

manual adjustments.

2.1.4 Existing Testbeds and Deployed Systems

Actual implementations of mobile ad-hoc networks have been somewhat lim-

ited, particularly those requiring or facilitating human interaction. Generally,

focus has been more on autonomous operation of wireless sensor networks in re-

mote locations. Because of the specific application requirements for these types of

systems, the body of work in wireless sensor network testbeds intended for human

intervention or interactions is far more limited. The remainder of this section

briefly surveys some of the works in the area of sensor networks.

2.1.4.1 Wireless Sensor Networks

Wireless sensor networks are nearly always designed and built to target a very

specific application domain, e.g., (Arora et al., 2005; Burghardt et al., 2002; Cerpa
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et al., 2003; Corr and Okino, 2000; Correal and Patwari, 2001; Delin and Jackson,

2000; He et al., 2004; Marcy et al., 1999; Mason et al., 1995; Odell and Wright,

2002; Yarvis et al., 2002; Zhang and Li, 2002b). A survey by Xu categorized the

predominant classes of current sensor network applications as habitat monitoring,

environmental observation, and health monitoring (Xu, 2003). Certainly many

others exist, a sampling of which will be mentioned in this section.

Among deployed systems designed for habitat monitoring, perhaps the most

widely cited is the GDI sensor network, constructed from low-power motes and

deployed to Great Duck Island, Maine, for the purpose of monitoring behavioral

patterns of storm petrel (Mainwaring et al., 2002). ZebraNet (Juang et al., 2002),

as the name implies, uses GPS receivers affixed to zebras to facilitate the study of

behaviors such as migration patterns and inter-species interactions. In ZebraNet,

sensor data, to include data in addition to GPS location, is shared between con-

nected nodes within wireless range using a flooding mechanism similar to many

routing protocols. PODS (Biagioni and Bridges, 2002) is a habitat monitoring

system that collects both imagery and weather data for the purpose of under-

standing why certain endangered plants grow only in specific locations. Similarly,

sensor networks exist for herding cattle (Butler et al., 2004) and so on.

Of those sensor networks intended for human interaction, most are designed

to target very specific applications such as health monitoring (Falck et al., 2006;

Hester et al., 2006; Oliver and Flores-Mangas, 2006) or measuring physical motions

of the body for a specific activity such as dancing (Aylward et al., 2006).

However, there are a number of sensor networks that have been built targeting

broader application. For example, Eco (Park and Chou, 2006) consists of wearable

devices that are extensible through the addition of sensor equipment, but the
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functionality is limited by the physical dimensions of each device, which does not

permit interaction with the user. Similarly, TeamTrak (Hemmes et al., 2007) is

extensible through the use of plug-in commodity sensor hardware with standard

interfaces, but provides a capability for interaction not only with a local user, but

other users connected via ad-hoc networks.

2.1.4.2 Mesh Networks

In contrast to MANETs, mesh networks are typically deployed in static topolo-

gies and generally provide network connectivity over a wide area at a lower cost

than would be obtained with multiple wired access points. While mesh network

designs usually do not incorporate sensor hardware to any significant extent, they

are commonly the most mature implementations of wireless multi-hop networks.

These types of systems are generally intended to provide multi-hop Internet

connectivity over a wide area (Robinson et al., 2005). The roofnet project by

MIT (MIT, 2008), perhaps the most widely known mesh network, provides such

connectivity over the length of several city blocks. Similarly, several metropolitan

areas have implemented prototype mesh networks as part of ongoing research

efforts. Melbourne, Australia (Melbourne Wireless Committee, 2008) and Leiden,

the Netherlands (Wireless Leiden Foundation, 2008), are but two examples.

An evaluation of 802.11a wireless Ethernet performance on a mesh network

of Windows XP machines was accomplished in (Draves et al., 2004) and revealed

a significant amount of asymmetry (as determined by measured bandwidth) in

the bi-directional links on a single hop. Use of this testbed demonstrated that

multiple wireless radios using wireless Ethernet on the same node tends to cause

interference among the wireless cards, resulting in a significant loss of available
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bandwidth. This result was confirmed in (Bruno et al., 2005), using a testbed

composed of Linux machines with multiple wireless radios installed on each node.

2.1.4.3 Mobile Testbeds

It is very common for testbeds to involve the use of robots or vehicles to

achieve mobility (Castro et al., 1998; Liu and Pang, 1999; Pang and Liu, 2001).

Such platforms provide much greater stability than can be achieved with a wear-

able or handheld device, which makes the use of many types of sensors such as

accelerometers and compasses far more straightforward, as they are not subjected

to noisy motion patterns to the same extent as human-mounted or human-portable

sensors.

Finally, it is important to note that a number of testbeds, such as mLab (Kary-

giannis and Antonakakis, 2006), have attempted to bridge the gap between simu-

lations and field tests by including wireless network connectivity in the platform.

However, these systems are generally installed indoors and rely on simulation to

evaluate interactions due to mobility.

Netbed (White et al., 2002) is a mobile wireless network testbed that en-

compasses a range of evaluation techniques by facilitating evaluation using any

combination of simulation, emulation, and experimentation (White et al., 2003).

Localization in Netbed is limited to the possibility of using commercial GPS re-

ceivers with differential correction, but the test scenarios envisioned by the au-

thors involve both urban and semi-indoor, i.e., inside a vehicle, environments,

which may not provide the most accurate positioning. Netbed does not account

for localization error in any significant way.
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2.2 Localization Techniques

Although localization is a concern primarily in mobile networks, where node

movement is not only common, but expected, there has been work done in the area

of localization in traditional wired networks, although the approaches taken are

much different. A common method for determining location of wired machines is

through correlating latency with distance (Ledlie et al., 2007; Wong et al., 2007).

Alternatively, desktop workstations may be outfitted with wireless monitors to

determine proximity to wireless access points in known locations (Chandra et al.,

2007). Note that these approaches are limited to static wired networks, and

generally do not work well in mobile environments, due to low precision.

There has been a great deal of work in the area of localization in wireless sensor

networks, to include several surveys, e.g., (Langendoen and Reijers, 2003). Much

work has been done with standalone dead reckoning techniques, which include

systems affixed to human operators such as NavMote (Fang et al., 2005). While

dead reckoning techniques comprise a substantial portion of this work, the goal

is not simply to build a better dead reckoning system; rather, to understand the

use of cooperative data sharing among remote peers to improve location accuracy

given estimated positions of varying quality.

Cooperative localization is not a new idea, but the traditional approach as-

sumes that a subgraph of the network topology has good localization a priori

through either an active GPS signal or predetermined ground truth location in-

formation (Bulusu et al., 2000; Hu and Evans, 2004; Lorincz and Welsh, 2005;

Niculescu, 2001; Savarese et al., 2002; Savvides et al., 2002, 2004; Sun and Guo,

2004). The location of such “beacon” nodes is used, along with some method for

determining the separation distance between them, to estimate the position of the
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others.

A distributed method for localization is presented in (Priyantha et al., 2003),

but this method assumes a static configuration in which no physical node loca-

tions are known a priori. The focus of their work is more on determining the

topology of the network, i.e., relative localization, which can then be translated

to a specific coordinate set, and also cannot account account for node mobility.

Like other related localization schemes this method requires an accurate distance

estimation or measurement for each pair of connected nodes. Similarly, convex

position estimation techniques can be used (Doherty et al., 2001), but this re-

quires a homogeneous physical implementation. Moore et al (Moore et al., 2004)

proposed an algorithm for relative localization without anchors in the presence of

noisy distance estimates, but requires significant computational overhead, which

may not be suitable for existing hardware.

The Spotlight technique (Stoleru et al., 2005) uses a unique event-based ap-

proach to localization in which a base station estimates position based on the time

a particular node reported an event’s occurrence, but this method is centralized,

and therefore not suitable for use in MANETs, and further requires deployment

of additional infrastructure, to include an airborne vehicle which signals the nodes

on the ground. It is also not clear whether this approach would be suitable for

cluttered environments or deployed over a very small geographic area.

Traditional approaches to distributed localization generally make assumptions

about the quality of location data. First, instead of assuming nodes are either

localized accurately, i.e., via GPS, or not, a range of location qualities, e.g, none,

dead reckoning, GPS, fixed, etc., should be assumed. Second, the presence of

at least some nodes with high-quality location information, i.e., anchor nodes, is
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assumed, particularly for systems deployed indoors and in which all nodes either

use dead reckoning or have no initial positioning information. In cases in which

GPS is not available for any node, the quality of the location provided by an

anchor used to laterate positions of other nodes may be substantially less than

that of GPS. Third, targeting work for use in human-scale mobile systems implies

that location information may be at best highly dynamic and often unreliable.

Despite the importance of accurately estimating distance between nodes, there

are few available options which are both reliable and adaptable to both indoor

and outdoor environments. RSSI is a commonly cited approach to estimating

distance, but its suitability under noisy outdoor conditions is highly uncertain.

RADAR (Bahl and Padmanabhan, 2001) is a system which uses RSSI to estimate

distance to within a few meters accuracy, but by design is generally limited to

indoor environments. A number of range-free schemes have been devised (He et al.,

2003) that rely on a connection-based algorithm for distance estimation. DV-

HOP (Niculescu, 2001) is one example that does not require range measurement,

but does assume isotropic RF signal propagation and in the worst cases, which

are a function of network topology, is subject to substantial error.

2.3 Mobility

It has been observed that node mobility can significantly affect the performance

of routing protocols (Bai and Helmy, 2004). Both the importance of simulation

and emulation in evaluation of MANETs and the close relationship between lo-

calization and mobility dictate the effective use of mobility models. Camp et al

surveyed various mobility models used in simulation of wireless networks and orga-

nized them into two broad categories: trace-driven and synthetic models (Camp
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et al., 2002). Furthermore, Pazand and McDonald presented an overview and

critique of such models (Pazand and McDonald, 2007). Rather than discuss all

models in depth, the interested reader is encouraged to review the existing work.

In this dissertation, focus is limited to the more widely adopted mobility models.

2.3.1 Mobility Models

The most frequently used, random-based mobility model is the Random Way-

point model. This model has been the foundation for many MANET evaluations,

primarily due to its simplicity. Two important and frequently used variants of

Random Waypoint are the Random Walk and Random Direction models, each of

which is discussed separately.

2.3.1.1 Random Waypoint

Perhaps the most commonly implemented mobility model, the Random Way-

point model (Johnson and Maltz, 1996) moves a node at a constant speed to a

randomly selected destination point within the boundaries of the simulation field,

then pauses for a specified time Tpause, then chooses a new waypoint, and so on.

The speed of each node is selected randomly over the interval [0, Vmax]. The rela-

tionship between these two parameters, Tpause and Vmax, is primarily responsible

for the behavior of the system. Setting Vmax too high relative to Tpause causes the

system to become highly dynamic and somewhat unstable. To quantify the over-

all nodal speed , which can facilitate comparisons between instances of the model

based on the stability of the topology, Johansson et al propose a mobility metric,
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based on relative speed between nodes, defined as:

M̄ =
1

|i, j|
n

∑

i=1

n
∑

j=i+1

∫ t

0

RS(i, j, t)dt

where

RS(i, j, t) = |~Vi(t) − ~Vj(t)|

and |i, j| is the number of distinct node pairs in the system, n is the number of

nodes in the network, and t is the current simulation time (Johansson et al., 1999).

The Random Waypoint model is found in the most popular network simulation

environments, NS-2 (Information Sciences Institute, 2006) and GloMoSim (Zeng

et al., 1998), as well as in the simulation tools developed for the work discussed

in Chapters 4 and 5.

2.3.1.2 Random Walk

Random Walk is a widely used mobility model with numerous enhancements

(Akyildiz et al., 2000). This model can be thought of as a specific instance of

Random Waypoint in which Tpause = 0 and a new speed and direction selected

after a designated time interval, rather than at a specified point. This model is

considered memoryless; it only requires the last position of a mobile operator and

a randomly chosen direction and stride length at the end of each time interval.

While this model is conceptually very simple and commonly used, its realism is

suspect since in practice nodes tend to make very sudden stops and abrupt changes

of direction.
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2.3.1.3 Random Direction

The Random Direction model borrows from both the Random Walk and Ran-

dom Waypoint mobility models in that nodes select a direction and speed ran-

domly, but continue movement in a single direction until reaching the boundary of

the simulation field. As in Random Waypoint, a node at a field boundary pauses

for some specified time, then randomly chooses a new random speed and direc-

tion. This model was developed due to observations of the previous models that

demonstrated the distribution of nodes at steady state was highly non-uniform;

nodes tend to converge in the center of the simulation field (Royer et al., 2001).

The Random Direction model was proposed to alleviate this problem.

2.3.2 Mobility Prediction

While there is an abundance of research in the area of mobile networks, work

specifically in the area of mobility prediction is much more limited. Mobility

prediction is frequently based on trace data; using the current direction and speed

based on previous locations to extrapolate future positions. There are a number

of works which attempt to predict future availability by tracking position history,

but routing protocols generally do not incorporate system state information into

routing determinations, or combine system state with mobility data.

In (Larkin, 2005), mobility is predicted by building and maintaining a table to

track estimated periods of connectivity loss, but the focus of that work is limited

to disconnections due solely to mobility. While this work bears some similarity

to theirs, to include the ability to use the prediction method independent of the

routing protocol, their work assumes that availability of nodes does not change

due to diminishing system state, and therefore the network is static in terms of
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the total number of nodes in the system.

The method presented in this work is most closely related to that proposed by

Pascoe (Pascoe et al., 2007). Whereas in their work, the prediction is intended

to be used for estimating the amount of overhead incurred in both unicast and

multicast routing protocols as routes are broken due to mobility, this method is

designed to select a single hop route with the largest predicted availability for

purposes of short-term data storage and retrieval of transient data. Furthermore,

their work does not assume link breakage due to system failures.

Also closely related is the work proposed by Su (Su, 2000), which uses GPS

location information to predict the future location of nodes moving independently.

Additionally, parameters such as radio propagation range are known a priori. Like

other routing protocols, this approach does not account for availability constraints

other than mobility or localization error, and does not address the specific problem

of data recovery.

Other methods of predicting availability do so by measuring signal strength,

with a diminishing signal portending a link disconnection. Given experiences with

the directional nature of many wireless antennas, using detected signal strength

alone may not be the most appropriate factor for predicting mobility in many

types of applications. Examples that employ a signal strength measurement for

availability estimation are (Chellappa-Doss et al., 2003) and (Goff et al., 2001).

29



CHAPTER 3

MULTI-SENSOR LOCALIZATION

3.1 Introduction

Chapter 2 described a wide array of mobile testbeds along with existing sensor-

based localization techniques. A number of these testbeds are constructed using

commodity hardware and software components. In many of these cases such com-

ponents are selected for the express purpose of rapid prototyping, which signifi-

cantly accelerates system development. In recent years, increased use of off-the-

shelf hardware and software has become commonplace among system developers,

both in research projects as well as production systems built by industry. The rate

of adoption is due to the substantial benefits realized in terms of both cost savings

and decreased development time. Trends in systems development techniques sug-

gest even greater reliance on the use of reusable components designed and built by

multiple vendors for general application, with current practices trending towards

a greater focus on system integration, rather than design and implementation

from scratch (Rising, 2001). Additionally, the National Science Foundation has

long advocated the use of open hardware and software in research testbeds (Aiken

et al., 2002).

Despite the obvious advantages of integrating off-the-shelf sensor devices, their

use presents some unique challenges as well. Low-cost, mass-produced sensor hard-

ware may be in some cases of inferior quality when compared to specially designed,
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custom fabricated hardware, and therefore may provide data of uncertain accu-

racy (Refan et al., 2003), particularly when applied to new systems for which

the sensors are not specifically optimized. However, the feasibility of large-scale

deployments commonly envisioned by application designers depends in large part

on the use of such hardware. The challenge, then, is presenting applications with

data of sufficiently high quality, or at least recognizing cases in which sensor data

has significant error, while simultaneously accepting the cost constraints which

necessitate the use of commodity sensors.

This chapter examines the data reported by an array of low-cost sensors used

in the TeamTrak testbed implementation, a necessary precursor to the distributed

localization methods discussed in Chapter 4. Specifically, focus is on collecting and

observing sensor data used for localization with the larger objective the character-

ization of those failure modes which may be encountered under normal operating

conditions. Failure modes of interest may result from either known limitations

of the hardware, e.g., compass roll, or unexpected but repeatable variations in

the sensor data which may be attributed to any number of causes. In turn, error

models can be used to improve localization for a single node, and can then be

used collaboratively to detect conditions under which sensor data may be unre-

liable and facilitate correction. The goal of this work is not to build a flawless

navigation system per se, as many concurrent works are progressing towards that

aim, but instead to understand the nature of sensor error, particularly the more

esoteric cases which might significantly affect navigation systems constructed from

low-cost components.
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3.2 The TeamTrak Mobile Testbed

The overarching purpose of TeamTrak is to evaluate research ideas in mo-

bile distributed computing without reliance on specialized or custom fabricated

hardware. The hardware testbed consists of inexpensive commodity equipment

to the greatest extent possible. The research prototype consists of 32 Lenovo X41

Thinkpad tablet computers running Windows XP and eight HP iPAQ hx2795b

PDAs running Windows Mobile. A standard ANSI Z89.1 Class C safety helmet

provides a convenient platform for mounting mobile sensor equipment.

In its current incarnation, the TeamTrak framework incorporates three main

types of localization sensors, all obtained from commercial sources and imple-

mented with standard hardware and software interfaces:

• GPS Receiver: GPS is the primary means of localization in TeamTrak, but

GPS has limitations exhibited in urban environments beyond what is widely

published in the literature, and in such cases errors observed in the output of

commodity GPS hardware may differ significantly from well-publicized error

rates of GPS. These limitations are not inherent to any single manufacturer

or model of receiver, as both the Garmin GPS-18 USB and the HP iPAQ BT-

308 receivers (Garmin International Inc, 2005; Hewlett-Packard Company,

2003), both of which are part of the baseline TeamTrak implementation,

have demonstrated significant positioning error at times, but in practice do

so in different ways and to different extents. It should also be noted that

urban canyons do not need to be particularly dense in order to experience

substantial error.

• Digital Three-Axis Accelerometer: In the absence of an accurate GPS signal,

or in the event of a low power state where operating a GPS receiver con-
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tinuously might be impractical, localization can be accomplished through

dead reckoning , defined in Section 2.1.3.2. The accelerometer can be used to

detect individual footsteps taken by a human operator, and coupled with an

estimate of stride length, may be used to determine the incremental distance

traveled. When employed in tandem with a digital compass used to measure

heading, accelerometer data can be used to determine position. Naturally,

this method assumes the process begins from a known initial location, as

dead reckoning is only capable of determining changes in position, not ab-

solute location. In this work data from the SparkFun SerAccel v5 digital

accelerometer is examined.

• Digital Compass (Two- and Three-Axis): Currently, TeamTrak employs

both the PNI V2Xe two-axis digital compass and the OceanServer OS3500

three-axis compass. Mounted on a human operator, reported headings from

both compasses are influenced by pitch and roll to varying degrees, and in

some cases the effects can be quite dramatic. Pitch and roll variations, which

are a direct consequence of mounting on an unstable platform, are far more

pronounced when triggered by a human operator as compared to a more

stable robot or vehicle, and therefore must be accounted for in any personal

dead reckoning navigation system.

The communications medium is wireless Ethernet (IEEE 802.11b) in ad hoc

mode and no base station. The standard Windows IP configuration is used: each

node detects an available network, then negotiates a link-local RFC 3927 IP ad-

dress. Although wireless Ethernet is not at all optimized for outdoor peer-to-peer

communication, it is supported by standard consumer electronics. Thus, Team-

Trak needs no specialized hardware, facilitating the possible addition of a variety
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(a) (b)

Figure 3.1: TeamTrak Hardware Components

of computing devices.

Augmenting the basic hardware platform are sensors connected by either USB

or serial port. GPS data are provided through Garmin GPS-18 USB GPS re-

ceivers, or in the case of the PDAs, an HP iPAQ BT-308 Bluetooth receiver. In

addition to GPS, the platform includes the PNI V2Xe digital 2-axis compass, the

Watchport/V2 digital camera, and SparkFun SerAccel v5 digital accelerometer for

localization. These are discussed in detail in Chapter 3. The overall system archi-

tecture easily allows expansion through additional sensors connected via standard

interfaces. Figure 3.1 shows the devices that comprise each TeamTrak node in

each configuration.

The software infrastructure consists of two parts: an application and a simple

routing protocol for sharing information. The TeamTrak software is a standalone

application designed to build and run on multiple platforms. It also includes

several display modes, depending on the localization technique used or the specific

application scenario. If a GPS receiver is connected and receiving a live signal,
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(a) Active GPS (b) Last Known (c) Fixed Location

(d) Routing (e) Status

Figure 3.2: TeamTrak Display Modes
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the display indicates such in the lower left corner, as shown in Figure 3.2(a).

If the GPS signal is lost, the display shows the node at its most recent known

location, as shown in Figure 3.2(b). Alternatively, if no GPS signal is available,

and dead reckoning localization is being used, the display is updated appropriately.

Similarly, as other nodes move and become disconnected, the display will continue

to show their last known location, but changes the symbol used to represent them

and also indicates the length of time since a packet was last received from each

node. Location may also be set manually for testing purposes or correcting GPS

error in cases where the exact location of a node is known. In this case, the

display indicates the location is fixed, as shown in Figure 3.2(c). Additionally,

the display shows compass heading for each node and is capable of displaying live

video imagery from the digital camera. Figure 3.2(d) shows the routing table, and

3.2(e) the current status of the local device.

Data sharing in TeamTrak is accomplished through the use of a simple distance-

vector routing protocol similar to RIP (Malkin, 1998), but does not employ the

multiple packet types found in DSDV (Perkins and Bhagwat, 1994). At 1-second

intervals, each node broadcasts the contents of its routing table, including sensor

data for each entry, to all other connected nodes. The selection of a proactive

routing protocol is primarily for simplicity and is not without some well-known

limitations. Stabilizing the routing table initially requires some time as the data

must propagate through the network using a flood-like mechanism. This fur-

ther implies that clearing stale data involves delays as well, which leads to the

well-known counting to infinity problem (Leon-Garcia and Widjaja, 2000). The

approach taken in the design of TeamTrak for handling stale data is to make it

persistent until manually cleared from memory by the operator.
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3.3 Experiences With the Global Positioning System

In practice, even the highest quality sensor equipment produces error or has

limitations based on environmental conditions. GPS is one example of such a sys-

tem, although there are certainly many other types of sensor systems that exhibit

limitations in different environments. GPS consists of about 34 non-geostationary

satellites orbiting at an altitude of 10,900 nautical miles (Uni, 2002). As GPS is

an external system on which ordinary users have no influence, accuracy of position

is a variable in this work that cannot be directly controlled, and so the objective is

to gain practical experience with commercial GPS receivers and to understand the

nature of error observed in urban or semi-urban environments. While there are

many factors which influence GPS accuracy to varying extents, a significant por-

tion of the error variation in GPS can be attributed to or influenced in some way

to the particular geometry of the available satellites used to obtain a fix (Wormley,

2007). However, it is also widely accepted that the quality of the position reported

by a GPS receiver is diminished, often quite significantly, when the receiver is in

the presence of large structures or natural foliage that even partially block direct

view of the constellation, hence the focus on urban environments. The combina-

tion of occasional obstructed views and poor geometry can result in variations in

positioning error of up to several orders of magnitude.

Despite the extremes in error observed in GPS receivers, typical commercial

household GPS receivers are capable of performing quite well, and most are gen-

erally known to be accurate to around 15 meters with a 95 percent confidence

level (Köhne and Wößner, 2005), although some may be rated slightly better.

To cite a specific example, a non-differential Garmin GPS receiver similar to the

GPS-18 was empirically evaluated to be accurate to within seven meters with a
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95 percent confidence level (Rupprecht, 2007). However, these ratings are deter-

mined under ideal environmental conditions, and more significantly, the positions

outside the stated accuracy are of interest here, particularly considering that error

states can occur over lengthy durations even if the overall accuracy, as measured

using thousands of samples recorded over a significant length of time, proves to

be within specifications. In other words, error among those 5 percent of positions

which fall outside the specified tolerance is substantial enough to be a noticeable

annoyance to the user. Finally, given that GPS error is generally modeled as a

random variable, it is not sufficient to simply look at raw error values. When

studying GPS error, or when using error estimates in applications, it is also very

important to obtain a sense of the confidence level in any particular error value

or estimate.

3.3.1 Sources of Error

Prior to May 2, 2000, accuracy of commercial GPS receivers was limited by

so-called selective availability , an artificial and deliberate perturbing of both the

L1 time, the time signal used by civilian receivers, and the satellite ephemeris

data, which indicate the expected position of the space vehicles based on their

orbits. Selective availability was intended to make position approximations in

commercial receivers less accurate than military grade GPS. During times of se-

lective availability, commercial receivers could be expected to be accurate only to

within approximately 100 meters (Köhne and Wößner, 2005). Disabling selective

availability has significantly improved the position accuracy of commercial GPS

receivers, but several important sources of error still remain. This section is not

intended as a comprehensive discussion of possible sources of GPS error. Instead,
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it is more to broadly describe the external conditions under which a GPS receiver

may produce erroneous positions.

Atmospheric Effects. While most commercial receivers can compensate for

reduced radio propagation speed in the ionosphere and troposphere under normal

conditions through the use of internal models, unforeseen cases such as unusually

strong solar winds can result in positioning error of magnitudes up to several

meters. Furthermore, positioning error can be caused by refraction of the signals

attributed to varying concentrations of water vapor in the troposphere. While such

conditions affect accuracy to a degree, many commercial receivers are capable of

accounting for refractive effects through the use of techniques such as wide area

augmentation (WAA). The Garmin GPS-18 receiver, for example, is capable of

exploiting WAA.

Satellite Geometry. Positions of GPS satellites vary at different times of

day and on different days of the month. One consequence of this is variability

in the precision of the position estimate. Two satellites which are positioned at

a 90-degree angle from the view of the receiver will estimate a more precise and

accurate ground position than two satellites aligned in a more linear arrangement.

Each signal produces a range of possible positions, and with a sufficiently wide

angle, the intersection of multiple signals is much smaller. In practice, however,

poor satellite geometry does not actually create error on its own; rather, it effects

an amplification of other types of errors.

Multipath Effects. Multipath effects are typically found in urban environ-

ments, where radio signals are reflected off of large, solid structures such as large

trees and buildings. The error is caused by the both the additional time it takes

for a reflected signal to reach the receiver as well as the lack of direct visibility
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from the receiver to the satellites caused by large obstructions.

Satellite Orbits and Clock Synchronization. GPS satellites require small

corrections to ephemeris data in the orbiting space vehicles due to small shifts

in their orbits. They also require small periodic clock corrections as well. These

updates are managed and loaded manually from the master control facility located

at Schriever Air Force Base in Colorado Springs, Colorado. Delays applying such

updates could result in positioning errors of as much as several meters.

3.3.2 GPS Error in Practice

Experiences using the TeamTrak system in informal settings revealed the fre-

quency and extent of GPS error among commercial receivers in semi-urban envi-

ronments. These experiences augmented other, oftentimes humorous, anecdotal

observations of GPS error in automotive navigation systems. For instance, while

driving to a conference a while back, the onboard GPS system precisely tracked

the vehicle down the middle of the Chicago River. Similar experiences with au-

tomotive systems showed vehicles traversing cornfields and through dense forests,

while actually driving along an interstate highway. While GPS error has cer-

tainly been studied before, the intent of this work is to measure GPS error and

correlate the data to available metrics which are generated by the receiver and

accessible through its software programming interface. The objective is not only

to describe and model GPS error in urban environments, but ultimately to apply

lessons learned towards building systems that can account for and correct error

even when its presence may not be immediately obvious to the user.
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(a) Zero Satellites
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(b) One Satellite
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(c) Two Satellites
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(d) Three Satellites
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(e) Four Satellites
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(f) Five Satellites

Figure 3.3: GPS Drift by Number of Satellites Acquired
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(a) Six Satellites
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(b) Seven Satellites

Figure 3.4: GPS Drift by Number of Satellites Acquired (Continued)
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Figure 3.5. GPS Error Over Time
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TABLE 3.1

GPS SIGNAL QUALITY SAMPLE SIZES

Number of Number of Number of Number of

Satellites Samples Satellites Samples

0 31,301 4 89,843

1 9 5 42,885

2 13,736 6 11,931

3 64,282 7 29

To understand the effect of signal quality on error, which generally manifests

itself as a drift in the reported position which may be very gradual or quite abrupt,

several experiments were conducted in which a single Garmin GPS-18 receiver was

placed outdoors in a fixed location with a partially obstructed view of the sky. At

regular, i.e., 1-second, intervals over a period of several days, the reported position

was logged along with the number of satellites used to approximate the position

for each sample. Figure 3.3 shows the amount of drift for positions reported with

between zero and five satellites, respectively. Similarly, Figure 3.4 shows the drift

of positions obtained with six or seven satellites. The number of samples used

to plot each subfigure of Figures 3.3 and 3.4 is shown in Table 3.1. Drift in this

case is determined by computing the Euclidean distance from each sample to the

mean position (expressed in latitude and longitude) for the entire data set because

the receiver was kept stationary. The true location is assumed to be the mean
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of all recorded points, as this is generally accepted as an accurate measurement

due to the reduction or elimination of most random error in the samples. A data

set collected over a period of several days can yield an approximation of the true

position accurate to within one or two meters (Wilson, 2001). Curiously, in this

experiment, with a larger number of satellites used to estimate position, i.e., four

and five, the absolute difference between sampled positions and the mean was in

many cases much larger than that observed with fewer satellites.

A comparison of the error distribution in two commercially available receivers,

the Garmin GPS-18 and the HP iPAQ BT-308, is shown in Figures 3.6(a) and 3.6(b).

These figures show the number of instances of each error value observed from each

receiver over a total of 72,454 samples. Interestingly, while the HP iPAQ receiver

produced more positions accurate to within 10 meters (as illustrated by the higher

curve on the top graph, Figure 3.6(a)), it also produced significantly more positions

with error greater than one kilometer, as illustrated in Figure 3.6(b). The mean

error from the HP receiver is 15.69 meters with standard deviation σ = 79.73,

while the mean error in the Garmin receiver is 14.27 meters with σ = 23.22.

The maximum error observed in the HP was 2,507 meters, while the Garmin’s

maximum observed error was 1,207 meters. The expected GPS error using the

Garmin receiver is 13.32 meters, and the expected error using the HP receiver is

15.69 meters. A CDF for the measurement error in both receivers is shown in

Figure 3.7.

3.3.3 Error Metrics

Examining the output from both receivers and their technical data sheets, one

may conclude that the following metrics could be useful for error detection and
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Figure 3.6: Distribution of Error in Garmin and HP GPS Receivers
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correction when building mobile systems that rely on GPS localization:

TABLE 3.2

NUMBER OF SATELLITES VS. GPS ERROR

Number of Total Mean Standard Max

Satellites Samples Error (m) Deviation σ Error (m)

0 38,858 24.17 41.54 1,328

1 9 15.44 0.00 16

2 15,453 21.82 13.31 239

3 86,000 21.82 22.99 839

4 144,585 20.78 18.12 806

5 132,212 17.53 21.82 896
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TABLE 3.2

Continued

Number of Total Mean Standard Max

Satellites Samples Error (m) Deviation σ Error (m)

6 97,214 10.92 14.94 575

7 51,466 8.90 12.15 525

8 18,621 7.55 8.63 296

9 4,008 6.58 9.62 301

10 134 3.58 2.84 9

Number of Satellites. It is commonly accepted that the more satellites used

to approximate a position, the more accurate the position should be. That notion

is intuitive in that with more possible regions used in the estimation, the receiver

should be expected to yield a smaller intersection in which the reported location

should lie, and thus the resultant position should be both more accurate and more

precise. Experience with the commercial GPS receivers used in TeamTrak sug-

gests this is not always the case, particularly in the less-than-ideal environmental

conditions of interest in this work.

To evaluate the effectiveness of using number of satellites as a quality metric,

GPS data, to include both latitude and longitude as well as the number of satellites

acquired for each position sample, were collected over a period of 7 days in total

with a stationary GPS-18 receiver placed in a location with a partially obstructed
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Figure 3.8. Obstructed Sky View at Data Collection Point

view of the sky, shown in Figure 3.8. In all, 588,560 points were recorded. In a

similar fashion to the experiment described in Section 3.3.2, the mean is used as

the true location in this experiment. Table 3.2 illustrates the correlation between

satellites and GPS error, defined here as the Euclidean distance between each

sample position recorded and the overall mean. Note that while there is a linear

decrease in both the mean error and the standard deviation σ which correspond

to increases in the number of satellites used, there are substantial errors in the

positions associated with each satellite count, many of which are on the order of a

kilometer. Two exceptions to this observation are the cases in which the number

of satellites reported is one, in which case nine data samples is insufficient to draw

any meaningful conclusions from, and ten satellites, which can estimate positions

very accurately, but is unfortunately a relatively rare case.

To graphically illustrate the relationship between number of satellites and GPS

accuracy, Figure 3.3 in Section 3.3.1 shows the variation in reported position for a

static receiver as a function of the number of satellites acquired for each position.

Even in cases where each position was derived from four or five satellites, the

estimated position can vary from the mean by as much as 500 meters or more.

Using six satellites, the drift was as large as 300 meters. This data further suggests

that the number of satellites alone is insufficient to reliably detect error in GPS.
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Finally, as a notional illustration of the lack of correlation between accuracy

and number of acquired satellites, Figure 3.9 shows the paths plotted during an

outdoor excursion using the Garmin GPS-18 receivers. In this exercise, three

students plotted their location using GPS at one-second intervals while traversing

a path shaped like a star (as an aside, the star-shaped path was selected for this

exercise as it had more detail which could better reveal inconsistencies in location

information between nodes traveling together. The impact of such inconsistency

likely would be less apparent than if the students had traversed a simpler, linear

path). The machines identified as Tablet 1 and Tablet 2 have GPS positions

which are tightly clustered together throughout the duration of the exercise. In

this case, Tablet 1’s positions were consistently obtained with either nine or ten

satellites, and Tablet 2’s position using a range between six and nine satellites.

The third machine, Tablet 3, never acquired a fix with more than five satellites,

and in the case of the positions along the lower left hand corner of the graph
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which illustrate a fairly significant deviation, the error resulted when the receiver

reported an active GPS fix, but the total number of satellites acquired was zero.

Experience has shown this behavior is not unique to either the Garmin receiver

or the particular location of the exercise. Active fixes with zero satellites reported

also has been observed in the HP iPAQ receiver as well as in other geographic

areas as well.

One additional observation that can be made from these results is that mul-

tiple receivers positioned in the same physical location generally will not fail in

a similar fashion. In fact, the number of satellites acquired, the quality of the

position, or even whether a fix is obtained at all is highly inconsistent even among

identical model hardware used in the same area at the same time, as the exercise

illustrated in Figure 3.9 illustrates. Experience has demonstrated that the GPS

error observed among collocated or very closely placed devices occurs indepen-

dently from each other, and localization accuracy may be quite different from one

device to the next. This behavior was observed numerous times during the course

of outdoor exercises, when two data collectors physically standing next to one

another observed on their display that their nodes were positioned on opposite

ends of a quad; a separation distance on the order of 100 meters.

TABLE 3.3

LOCATION QUALITY/CONFIDENCE VS. HDOP VALUES

Quality HDOP Range

Ideal 0 - 2

Excellent 2 - 4
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TABLE 3.3

Continued

Quality HDOP Range

Good 4 - 7

Moderate 7 - 9

Fair 9 - 21

Poor 21+

Horizontal Dilution of Precision (HDOP). Dilution of precision is a nu-

merical indicator representing both the quality of the satellite geometry and the

confidence in such quality. HDOP values range from one (and in some cases less

than one), which represents the best possible satellite geometry, to a maximum

value which depends on the specific receiver and/or manufacturer. For instance,

some Garmin receivers report a maximum HDOP value of nine, while the HP

iPAQ receiver reports values up to and including 50. For all receiver models,

larger values represent lower quality satellite geometry, which implies a less reli-

able, less accurate position, while an HDOP value of one is generally accepted as

ideal for most commercial applications.

Table 3.3 shows a scale for determining the quality of a given GPS posi-

tion (Person, 2003). The estimated accuracy for the HP receiver is a function

of the HDOP value, which is available directly from the device. In the case of the

HP receiver, HDOP values less than one were somewhat frequently observed, and
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therefore such values are included in the scale.

TABLE 3.4

MEAN, MINIMUM, AND MAXIMUM REPORTED GPS POSITION

ERRORS BY QUALITY (HP IPAQ RECEIVER)

Location Mean Error Standard Max Error Min Error

Quality x̄ (m) Deviation σ (m) (m)

Ideal 6.952 0.072 500.34 0.106

Excellent 9.576 0.057 97.33 0.106

Good 13.971 0.128 91.43 0.157

Moderate 18.472 0.344 65.19 0.157

Fair 21.794 0.289 125.96 0.157

Poor 110.10 4.279 2507.4 0.3275

TABLE 3.5

HORIZONTAL DILUTION OF PRECISION (ǫ = 5, 10, 15, 20, 25, 30)

Quality x̄ (m) P (error ≤ ǫ) Quality x̄ (m) P (error ≤ ǫ)

ǫ = 5 m ǫ = 20 m

Ideal 17.825 51.882 Ideal 17.825 85.046
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TABLE 3.5

Continued

Quality x̄ (m) P (error ≤ ǫ) Quality x̄ (m) P (error ≤ ǫ)

Excellent 6.942 40.720 Excellent 6.9422 97.345

Good 12.998 14.838 Good 13.000 80.157

Moderate 17.909 14.240 Moderate 17.909 67.972

Fair 21.113 11.788 Fair 21.113 65.500

Poor 108.71 3.2660 Poor 108.71 30.151

ǫ = 10 m ǫ = 25 m

Ideal 17.825 72.533 Ideal 17.825 89.166

Excellent 6.9422 81.977 Excellent 6.942 98.651

Good 12.998 44.023 Good 12.998 90.248

Moderate 17.909 35.521 Moderate 17.909 75.966

Fair 21.113 38.879 Fair 21.113 73.662

Poor 108.71 13.568 Poor 108.71 37.961

ǫ = 15 m ǫ = 30 m

Ideal 17.825 78.942 Ideal 17.825 91.506

Excellent 6.9422 93.657 Excellent 6.9422 99.509

Good 12.998 65.436 Good 12.998 96.542

Moderate 17.909 55.267 Moderate 17.909 81.789

Fair 21.113 55.784 Fair 21.113 79.689

Poor 108.71 23.492 Poor 108.71 44.745
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TABLE 3.6

HORIZONTAL DILUTION OF PRECISION (ǫ = 30, 35, 45, 50)

Quality x̄ (m) P (error ≤ ǫ) Quality x̄ (m) P (error ≤ ǫ)

ǫ = 35 m ǫ = 45 m

Ideal 0.8247 93.337 Ideal 17.825 94.710

Excellent 6.9422 99.769 Excellent 6.9422 99.924

Good 12.998 99.074 Good 12.998 99.836

Moderate 17.909 87.083 Moderate 17.909 94.018

Fair 21.113 84.367 Fair 21.113 88.667

Poor 108.71 48.702 Poor 108.71 57.035

ǫ = 40 m ǫ = 50 m

Ideal 17.825 94.151 Ideal 17.825 95.626

Excellent 6.9422 99.892 Excellent 6.9422 99.937

Good 12.998 99.777 Good 12.998 99.918

Moderate 17.909 89.889 Moderate 17.909 96.400

Fair 21.113 87.474 Fair 21.113 89.468

Poor 108.71 53.559 Poor 108.71 59.338
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Using the HP iPAQ receiver placed in a stationary location with a partially

obstructed sky view, GPS positions were recorded over a period of 24 hours along

with the HDOP value associated with each. Because this experiment was con-

ducted in the same physical location as the previous experiment with the Garmin

receiver, results from both were compared to the same “true” position, i.e., the

mean of all recorded points. Indeed, samples acquired in this experiment were

used to further adjust the overall mean by averaging them with the Garmin ex-

periment’s data. As before, in this experiment the average deviation of the re-

ported position from the true position, called x̄ here, was determined, along with

the maximum and minimum deviations observed in the data set, sorted by HDOP

range. Table 3.4 shows x̄ as well as the maximum and minimum measured position

errors for each range of position quality reported by the HP iPAQ GPS receiver.

Not surprisingly, for increasing ranges of HDOP values (and thus decreasing

estimated quality), both the mean error x̄ and the standard deviation σ of points

associated with each range, increase. However, the maximum and minimum mea-

sured errors do not behave exactly as expected. Even with very good satellite

geometry, large errors occasionally still occur, as evidenced by, for example, the

500-meter measured error which occurred with a very low HDOP value. Similarly,

regardless of HDOP, it is still possible for the receiver to produce a very accurate

position, as evidenced by the very small minimum measured errors observed for

all HDOP ranges.

Finally, to get a sense of the reliability of HDOP as a quality metric in the

iPAQ receiver, data collected from a stationary HP GPS receiver were sorted by

HDOP ranges, then the confidence level for each quality indicator was determined.

Confidence in this experiment was determined by assessing the probability that
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the measured GPS error was less than or equal to a predetermined error tolerance

level ǫ. Tables 3.5 and 3.6 indicate the confidence level of the quality indicator for

increasing values of ǫ up to and including 50 meters.

Horizontal Error. Many Garmin GPS receivers, to include the GPS-18

model, generate a horizontal error metric for two-dimensional fixes, which is an

estimate of the accuracy of the position in two dimensions. Horizontal error is

generally a function of both horizontal dilution of precision values and root mean

square (RMS) errors empirically determined by the manufacturer. Looking at the

horizontal error is a convenient, but rough and not necessarily reliable, indicator

of the estimated position error. Unlike HDOP, horizontal error values can be

examined directly rather than basing the quality on a separate scale. Much like

HDOP, however, horizontal error is modeled as a random variable, so its value

cannot be guaranteed accurate and must be checked against confidence values to

be useful.

Figure 3.10 shows the confidence level for horizontal error reported by the

Garmin receiver. In the figure, the error of each reported position was measured

and the values sorted by horizontal error in increasing order. The figure shows

the probability that the measured error is less than or equal to the estimated

horizontal error. Note that most values have a confidence level of between 80

and 90 percent, with the exception of some very small and very large horizontal

error values. In most applications, the large values would be, in all likelihood,

discarded anyway, and very small values, i.e., less than 10 meters, are probably

too unreliable to be used in practice. The anomaly in the graph occurs with a

horizontal error value of three meters. This seemingly perfectly accurate metric

can be explained by the small number of samples at that value (three in total), all
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of which had an associated measured error of less than or equal to three meters.

Clearly, the extremely small sample size for that error value would be reason to

use caution if modeling error based on a data set such as this.
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Figure 3.10: Reliability of Horizontal Error

Having examined the errors encountered during practical application of GPS

receivers, attention is now turned towards handling localization when a previously-

available GPS signal is no longer available at all. To provide continuous localiza-

tion in such cases, a mechanism has been incorporated into the TeamTrak platform

to accomplish dead reckoning. This mechanism requires two independent sensors

operating in tandem: a digital accelerometer which functions as a pedometer for

both step detection and stride length estimation, and a compass to determine the

heading of the human operator.
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3.3.4 Modeling GPS Error

A probabilistic model of GPS error requires measuring two components: the

magnitude of the error and the duration of time each particular error magnitude

occurs. Both can be modeled with a CDF derived from the empirical data. The

first step in modeling GPS error is generation of a uniformly distributed random,

floating point number, the value of which corresponds to the cumulative distribu-

tion of discrete error magnitudes. In other words, for a randomly generated value

X in the interval [0, 1), the error model returns the quantile of order X:

F (X) = inf{x ∈ R : X ≤ F (x)}

Once the magnitude of the error is determined, the next step is computing the

expected drift length for that particular error value. As with absolute error, the

drift length is determined empirically, and both a CDF and a probability density

function is computed from the live GPS data. For this model, a drift is considered

to be the number of consecutive samples recorded at 1-second intervals whose

error deviates from the previous sample by less than one meter. Figure 3.11(a)

shows the cumulative distribution for all drift lengths, regardless of associated

error value. Similarly, Figure 3.11(b) shows the distribution of all recorded drift

lengths. The model of drift length is a conditional probability function. Given an

error magnitude E, the probability of a specific drift length at distance E is given

by the inverse of the PDF.
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3.4 Digital Accelerometer

3.4.1 Overview

One inherent limitation of GPS is that it cannot be used in locations lacking

a view of the sky, which includes not only indoor environments but other highly

shielded areas such as very dense urban centers, under jungle canopies, etc. As a

workaround for this limitation, previous work has proposed using accelerometers

which are mounted on, and can detect movement of, mobile robots (Liu and Pang,

1999; Pang and Liu, 2001). The accelerometer output can then be integrated

to determine current velocity and ultimately change in position. This change

in position is then used for fine-grained localization starting from a valid initial

reference point. The projects that have implemented such a localization method

have demonstrated good results, but their success is due primarily to the relatively

consistent acceleration patterns found in robots or wheeled vehicles.

Attempting localization in this fashion for humans is far more challenging, and

initial testing of the accelerometer proved to be quite discouraging. Unlike a robot

or a wheeled vehicle, humans provide a relatively unstable platform for mounting

motion-sensing hardware, and attempting to integrate accelerometer data can lead

to very substantial approximation errors, often on the order of kilometers. The

difficulty arises from two fundamental problems: first, humans do not provide a

solid platform on which a sensor can be mounted, which makes determining the

specific axes of motion very difficult. Second, humans while walking exhibit a

wide range of “noisy” motions which cause errors to be greatly amplified when

integrating raw sensor output for more than a few seconds at a time, even under

the most carefully controlled conditions.
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TABLE 3.7

EFFECT OF STRIDE LENGTH ESTIMATION ON ACCURACY OF

TOTAL DISTANCE ESTIMATION FOR DEAD RECKONING

Trial Actual Estimated Accuracy

Number Distance (m) Distance (m) (%)

1 72.87 70.81 97.17

2 72.87 72.48 99.46

3 72.87 72.89 100.02

However, despite the inherent limitations of mounting sensor hardware to a hu-

man operator, the accelerometer is certainly useful for assisting localization. The

device can be used to detect specific motions of the body. Fastened to a person’s

shoelaces it can be used quite effectively to detect individual steps. Coupled with a

compass (discussed in Section 3.5), accelerometers can be used to provide location

updates when GPS is not available. The accelerometer functions as a pedometer

which detects individual steps taken. Each local minimum in the accelerometer

reading represents a step, as illustrated in Figures 3.12(a) through 3.12(c), and

by looking at values of jerk, i.e., the first derivative of acceleration, these local

minima can be detected effectively. All data read between each local minimum

represents a single stride. Using the local maximum and minimum values for the

acceleration along the Z (rotational) axis on each stride, the approximate stride

length is given as:
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stride length ≈ k 4

√

Amax − Amin

where Amax and Amin are the local maximum and minimum acceleration values

along the Z axis, respectively, and k is an empirically determined constant pro-

portional to the length of the individual operator’s leg. Naturally, to use this

model, the k value would have to be determined prior to using this dead reck-

oning system and the system calibrated for the particular user. This method for

determining stride length was used in the NavMote project (Fang et al., 2005).

Experience has shown this method to be quite effective, provided a suitable value

for k is selected. Table 3.7 shows the accuracy of stride length estimation. In

these trials, the results achieved over a distance of approximately 73 meters would

be acceptable for any application envisioned. Step detection using jerk has been

nearly 100 percent accurate consistently as well.

3.5 Digital Compass

3.5.1 Overview

With a suitable model for stride length estimation in place, localization can be

accomplished by combining the distance traveled with each step with the head-

ing Θ reported by the compass. Simple trigonometry can be used to determine

the change in position along the axes. For navigation purposes in the TeamTrak

testbed, a two-dimensional Cartesian plane is assumed. The changes in longitu-

dinal and latitudinal positions, ∆x, ∆y, respectively, are defined as:

∆x = stride length × sin(Θ) × 1.21 × 10−5
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∆y = stride length × cos(Θ) × 9.0 × 10−6

where the constants represent a distance of one meter at the latitude and longitude

at which the testbed is employed.

3.5.2 Sources of Error

In the TeamTrak platform, the compass is mounted on a standard ANSI Z89.1

safety helmet worn by the operator. Because of the uncertain motions that occur

not only from walking, but from various movements of the head, shoulders, and

neck, the compass is subjected to a great deal of pitch and roll variations in

practice which must be accounted for in practice. The original implementation

of TeamTrak included a non-tilt-compensated, two-axis digital compass. Such a

compass, if subjected to any tilt greater than approximately ten degrees in any

direction, would experience error on such a magnitude as to be unusable. The

nature of the testbed design demanded the use of a tilt-compensated compass,

which was acquired and incorporated into the platform.

Compass error evaluation was conducted in two parts. First, the effect of

pitch on the reported heading was evaluated. This was done by placing a cal-

ibrated compass on a level surface with a fixed, known heading, then rotating

the angle of pitch between -90◦ and 90◦ while recording the output. Since the

compass is tilt-compensated, the effect of pitch on heading proved to be minimal,

as shown in Figure 3.13(a). However, the device does not compensate for roll, as

the documentation warns. A graph of raw heading data versus roll angle is shown

in Figure 3.13(b). Even though the compass does not compensate for roll, the

heading can be improved by approximating the effect of roll using a simple sine

function and adjusting accordingly. The heading adjustment used to compensate
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for roll in this particular compass is:

heading = h − 70 sin
( π

90
r
)

where h is the uncorrected heading reported by the compass, and r is the amount

of roll, both expressed in degrees. The adjusted heading is shown in Figure 3.13(c).

Compass error follows a normal distribution with a mean of -0.794 degrees and a

standard deviation σ of 11.33.

Finally, effectively modeling the compass error, even with tilt compensation,

requires understanding the distribution of errors experienced in practice. To ac-

complish this, a three-axis compass connected to a TeamTrak tablet computer was

brought outdoors and fully calibrated in that particular environment. Then, with

a fixed, known heading, the data collector shot a simple azimuth and walked in

that direction, keeping the compass reasonably steady without being unduly care-

ful not to subject it to pitch and roll variations. The objective of the experiment

was to collect data about compass error which might realistically be experienced

in practice and characterize the distribution of that error. Figure 3.14 shows the

distribution of compass error.

3.6 Experiences With Dead Reckoning

3.6.1 Putting the Pieces Together

With the error in both the accelerometer and three-axis compass modeled and

accounted for, both sensor components can be combined into a single, cohesive

dead reckoning system. As alluded to in Section 3.1, the objective here is not

to build a flawless personal navigation system. Rather, it is to build a suitably

functional dead reckoning system that provides continuously available position-
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Figure 3.13: Effect of Pitch and Roll on
Compass Heading
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Figure 3.14. Distribution of Compass Error

ing, albeit with possibly significant error, so that the ideas about cooperative

localization discussed in Chapter 4 can be fully evaluated, either in practice with

a physical testbed implementation such as TeamTrak, or through experimental

evaluation by providing parameters which can be applied to modeling and simu-

lation.

With a good empirically determined constant coefficient for estimating stride

length as described in Section 3.4, the error in dead reckoning is dominated by

compass error and is very much dependent on the quality of the initial starting

point. If that point was determined via GPS during a period of substantial drift

or even a one-time “jump” in position, then localization, even with perfect dead

reckoning, can be no more accurate than the error associated with that drift.
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Figure 3.15. Dead Reckoning Versus GPS Accuracy

3.6.2 Dead Reckoning Error in Practice

To illustrate the effect of starting position accuracy on dead reckoning, Fig-

ure 3.15 shows the latitude and longitude of two sets of points along the same path.

One path was approximated using the two-axis compass, the other using the three-

axis compass in dead reckoning. In Figure 3.15(b), low accuracy of the GPS signal

used for the starting location results in a drift in position, which in some cases

might cause the dead reckoning approximation to be more accurate than the GPS

position. The inaccuracy of the dead reckoning in 3.15(b) is also attributable to

the use of uncorrected compass heading affected by tilt. In this experiment, the

two-axis compass was very carefully positioned and stabilized before each step

was taken; obviously, requiring such a task would make this device suitable for

use in production systems. The compass used in 3.15(a) is tilt-compensated, and
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therefore provides approximated positions of acceptable accuracy, even when less

care is taken to manually reduce error in heading.

Figure 3.16. Dead Reckoning Error In Practice

To further demonstrate the capability of the dead reckoning system constructed

for TeamTrak, two additional exercises were conducted to show the effect of the

combined error of both the compass and accelerometer. In the first exercise, the

operator simply traverses a straight path beginning from a well-measured starting

location. Figure 3.16 shows the path estimated by the dead reckoning system

compared to the path along the footpath which was actually traveled. While the

map shown in the figure has its own error of unknown magnitude, it is assumed

here to be correct. Along this 92-meter path, compass error accounts for at most

69



one or two meters laterally, and the stride length/step detection system accounts

for an error in the total distance traveled of less than 10 meters.

Figure 3.17. Dead Reckoning Error In Practice

Traversing a more complex path results in a more pronounced error. Fig-

ure 3.17 shows a path traversed from a starting point measured with multiple

independent GPS samples. While it is possible to attain a reasonable degree of

accuracy in the absence of GPS, the figure clearly shows that an error which occurs

early cannot be eliminated or even reduced with any certainty. Correction of dead

reckoning requires an additional localization method whose accuracy does not de-

cay with the number of steps taken. Furthermore, a larger number of turns taken
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in the path traversal increases the likelihood of substantial positioning errors.

3.7 The TT-Sim Simulator

While physical testbed implementations are invaluable for gaining practical

experience with systems in realistic environments, it is extraordinarily difficult

to use them to evaluate certain characteristics such as scalability. Modeling and

simulation can effectively substitute for real-world deployments and exercises, but

models must be carefully constructed to ensure validity. To the greatest extent

possible, simulation parameters in this work are derived directly from empirical

data collected in experiments with hardware devices operating under realistic

conditions.

Figure 3.18: Simulated Dead Reckoning Error
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TT-Sim is a simulator based on the TeamTrak platform which allows for flexi-

bility in creating evaluation scenarios. The simulator models a collection of mobile

TeamTrak nodes operating under conditions in which sensor error is present. Both

dead reckoning and GPS error are explicitly modeled using the data described in

this Chapter. Figure 3.18 shows a trace of a single node’s actual path along with

the estimated positions using modeled dead reckoning error as output by TT-Sim.

Parameters that can not be empirically measured fully are conservatively esti-

mated to avoid producing overly optimistic results. TT-Sim is used for most of

the evaluation tasks in this dissertation.

3.8 Conclusion

The work in this chapter evaluated the measurement error in an array of

commodity sensor devices: the Garmin GPS-18 and HP iPAQ GPS receivers,

the SparkFun SerAccel 3-axis digital accelerometer, and the OceanServer OS3500

3-axis digital compass, all of which are incorporated into the TeamTrak platform.

The purpose of these evaluations is to understand error modes in order to serve

two distinct objectives. The first objective was to gain practical experience with

sensor error and the limitations of low-cost commodity hardware which would arise

in real-world scenarios. This was accomplished through outdoor data collection

exercises using the GPS receivers as well as through experimental trials with dead

reckoning apparatus. The second objective was to understand and describe the

error using empirical data which would provide valid sensor error for constructing

models which could be incorporated into simulation efforts.

The accelerometer has provided a surprisingly robust means for detecting in-

dividual footsteps when employed as a digital pedometer, at least in the case
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when the operator walks with fairly deliberate steps. As mentioned previously,

no system is perfect, and successful attempts could be made to defeat the de-

tection mechanisms without a tremendous amount of difficulty. That limitation

is well understood, but is beside the point. This system of stride detection and

measurement exists only to provide a method for fine-grained navigation in the

absence of GPS and a platform for evaluating error correction techniques. That it

experiences error is not only expected here, but in some ways even desirable! No

sensor system exists without measurement error, and the type of compounding

error observed in practice using the stride detection component of the TeamTrak

dead reckoning system is representative of that exhibited by many types of com-

mercial pedometers. Having a representative model of this type of error assists in

any future evaluation tasks related to dead reckoning techniques in general.

Similarly, evaluation of the digital compass used in the TeamTrak platform has

provided insight into the range of error experienced when mounted to a human

platform, even when using the built-in tilt compensation for error correction. The

use of the compass for dead reckoning shows that overall localization error is far

more sensitive to measurement error in the compass heading that it is to that in

the stride length estimation. The photo in Figure 3.17 effectively illustrated the

effect of such. The difficulty lies in the coupling of the sensitivity of navigation

to compass error and the inability to fully correct the error using modeling. For

practical purposes, the implication is that dead reckoning systems cannot self-

correct and require assistance from external sources. This is certainly not a new

observation, but the lack of consistency among GPS localization from one device

to another suggests that lack of a GPS fix in one device implies that information

to correct positions which are stale or with significant error may still be available
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from other remote sources.

With the set of commodity sensors evaluated, the error in each can be mod-

eled such that at at least a qualitative assessment of the reliability of sensor data

can be completed. Since a single node will always experience measurement error

in localization, sometimes significantly, attention now shifts to external sources

for correction. External sources include collaborating peers sharing location data,

using a set of techniques aptly described as cooperative localization, a topic dis-

cussed in detail in Chapter 4.
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CHAPTER 4

COOPERATIVE LOCALIZATION

4.1 Introduction

Advances in wireless networking technology and integrated circuit design have

opened up vast possibilities for mobile applications and wireless sensor networks

(Akyildiz et al., 2002; Committee on Networked Systems of Embedded Computers,

2001; Correal and Patwari, 2001; Feder, 2004; Perkins et al., 2002), yet localiza-

tion still presents significant challenges to designers of location-sensitive mobile

applications. Localization of mobile nodes is frequently accomplished via GPS,

but as demonstrated in Chapter 3, GPS positions may be inaccurate, sometimes

significantly, under frequently encountered environmental conditions, even when

available metrics suggest otherwise. When operated in areas characterized by ob-

structed or partially obstructed views of the sky, obtaining a fix may be impossible

at times. To address this limitation, techniques have been developed or proposed

to facilitate correction of GPS error or lack of GPS availability altogether in spe-

cific locations using modified or additional receivers. Examples of such techniques

include using only those satellites positioned at the highest points in the sky as

opposed to those which produce the lowest dilution of precision value, increasing

the physical elevation of the receiver, and setting up a fixed offset point at which

a reliable GPS fix is available, then computing distance and bearing from each
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mobile receiver to that point (Corvallis Technology, Inc., 1996). However, none of

these are completely suitable for all applications. In a very remote location, such

assistance cannot be generally assumed.

Previous work and experiences with commodity sensor hardware incorporated

into the TeamTrak platform demonstrate that even when using an approximate

error model to account for and correct measurement error in sensor data, results

may still be unreliable at times, particularly when using pedestrian dead reckon-

ing. Any dead reckoning technique requires an accurate initial reference point,

which may not always be available, but most importantly, experiences compound-

ing measurement error as a function of the the number of steps taken due to

both approximation errors and sensor limitations at each step. Although existing

individual navigation systems have addressed this limitation by featuring some

mechanism for periodic correction (Leonard and Durrant-Whyte, 1991; Liu and

Pang, 1999; Pang and Liu, 2001), these techniques generally require preplanned

and preinstalled infrastructure, maps, or even manual intervention to correct po-

sitioning error. The inherent limitations of available localization techniques and

the demonstrated independence and variability of location quality among devices

suggest that correction, if at all possible, might be available through other con-

nected nodes sharing location information in a cooperative manner over an ad-hoc,

peer-to-peer network.

The work in this chapter is the natural consequence of three observations

made during a series of outdoor exercises using TeamTrak as a general-purpose

approximation of localized mobile ad-hoc networks:

1. Sensor error is certain. Naturally, this observation seems quite obvious.

However, it is also the observation that precludes attempts to simply buy
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more expensive hardware in the hope that doing so will solve a mobile sys-

tem’s localization requirements. Fundamental sensor limitations will exist

for well into the foreseeable future, regardless of hardware quality or type

of sensor, particularly for those sensors whose cost is sufficiently low to fea-

sibly permit deployment on an intermediate to large scale. Therefore, at a

minimum some type of software error detection and correction techniques

will continue to be a desirable, if not necessary, part of system design.

2. Even identical sensors experience error independently. Even with sensor

hardware equipment of the identical manufacturer and model, error fre-

quently occurs independently between devices. GPS receivers, for instance,

placed in the same physical location at the same time and loaded with identi-

cal almanacs will not necessarily acquire the same group of satellites with the

same geometry, or may acquire different numbers of satellites, resulting in

varying degrees of accuracy. The practical effect of this independence of er-

ror is that multiple human operators, each carrying portable GPS receivers,

may experience much different positioning even when standing beside one

another. If location data were shared between devices, the less accurate po-

sition could be adjusted accordingly. Localization through dead reckoning

starting at different times and with different GPS fixes will have different

estimated error. Similarly, a position estimated through dead reckoning

techniques requires periodic correction from a remote source if a local GPS

fix cannot be obtained due to the compounding measurement error.

3. Averaging reduces error. It is well understood that for stationary receivers,

averaging the reported positions over time can improve accuracy substan-

tially over any single position sample by smoothing out the random error

77



present in any position sample. With a cooperative data sharing approach,

averaging positions which represent the same physical point can improve

accuracy while reducing the amount of jitter experienced with many local-

ization techniques.

Techniques that exploit differences in location quality among connected nodes

through cooperative data sharing have existed for a number of years, but location

quality in many works is treated as a Boolean entity; generally speaking, nodes are

either fully localized or they are not. Even techniques employing stepwise refine-

ment of positions assume that locations of fixed anchor nodes are always accurate.

As previously demonstrated, even if these positions are obtained using GPS, that

is not necessarily the case at all times. Mobility and urban environments make

nearly certain the likelihood that nodes will have a much wider spectrum of loca-

tion qualities than would be found under more favorable conditions. Furthermore,

depending on the deployment and specific application scenario, the source of lo-

calization might not be limited to GPS: dead reckoning, manual configuration, or

perhaps some other scheme entirely might be used, each inherently having its own

unique failure modes which must be taken into account.

The focus of this chapter is an examination of the requirements for and im-

plications of sharing location data among connected mobile nodes and using such

data to adjust other positions. Shared data can be leveraged to improve individual

positions as long as a determination can be made as to whether doing so is likely

to be beneficial. This determination is based on probabilistic models derived from

empirical evidence which allow for an estimation of both the approximate error in

a remotely obtained position as well as the confidence level in that error estimate.

For background, possible methods of combining shared location data are reviewed,
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followed by an exploration of simple scenarios which demonstrate the strengths

and weaknesses of each method.

4.2 Combination Methods

• Assumed Collocation: This is by far the simplest approach to leveraging

shared data. A node that receives location information from another simply

localizes itself at that position. A few assumptions are required for this

method to be useful. First, as the name implies, both nodes must be at,

or very near, the same physical location. Second, this method also requires

an assumption that the node whose position is adjusted does not have any

reasonable estimate of its own position. If such an estimate were available, it

is easy to see why this approach would be less than ideal. Throwing out data,

even with a fairly high error magnitude, which suggests spatial separation in

favor of this approach would likely be ineffective at significantly improving

localization in general. Averaging two separated positions, for instance,

reduces the error attributable to spatial separation by as much as half. As

co-opting a neighbor’s position is equivalent to averaging when the number

of connected neighbors is one, the estimated error magnitude and confidence

values associated with the shared position would be retained for both.

• Averaging: As an alternative to assuming collocation, multiple position

samples can be combined through simple averaging. This method is intended

to remove or, at a minimum, smooth out much of the random error which

can occur in sensor data, thereby resulting in a more accurate and stable

position. Averaging of the x and y coordinates of n position samples is
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accomplished independently, i.e.:

x̄ =
1

n

n
∑

i=1

xi ȳ =
1

n

n
∑

i=1

yi

with standard error σ√
n
. Because averaging is intended to remove the

random error intrinsic to each data point, positions may be accepted and

used without regard to any associated error or confidence levels. However,

one of the most significant difficulties that arises when averaging positions

lies in the assumption that the node for which other positions are averaged

resides within a boundary established by the other points. Without any

notion of its own position but with connectivity to nodes which all lie in

roughly the same direction, averaging gives poor results. When nodes are

connected in an ad-hoc fashion via wireless radios whose antennas lack the

ability to determine angle of arrival, the assumption will likely fail, resulting

in a wildly inaccurate position. One of the initial experiences with averaging

in TeamTrak was a humorous example of what can go wrong. In this case,

while waiting for an initial GPS fix, an operator whose tablet was “local-

ized” using cached information (although the position itself happened to be

correct) from a previous exercise was surprised to see his location suddenly

jump dozens of meters away when connectivity was established to another

machine of whose presence he had not been aware. Figure 4.1 illustrates

this limitation.

• Trilateration: Trilateration is a method for determining relative positions

among objects based on their measured or estimated distance and their

relative bearing, both requiring prior localization of the reference points.
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Using the distance from reference points, or anchors, and the relative bearing

to each, determining the position of the unlocalized node is simple. Using

multiple reference points at different bearings, the estimated position can be

isolated to a single point, assuming no error. The presence of measurement

error, both in the anchors’ locations as well as in the distance measurement,

changes the estimated position from a point to a region. As Figure 4.2

illustrates, the error of the laterated position depends on that of the anchors.

In the figure, the shaded region represents the error of the estimated position

which may be attributed to combined measurement errors in the anchor

positions and in the distance measurements. Because trilateration generally

does not permit smoothing out random error to any significant extent, the

positions of the anchor nodes can not have large associated error.

Figure 4.1: Averaging Positions (Not in Triangle)
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Figure 4.2: Trilateration

4.3 A Cooperative Approach to Localization

Despite the presence of sometimes significant error in GPS, a single sensor-

laden node can localize itself with acceptable accuracy in most cases. However,

the independence of GPS error and the presence of other localization techniques

suggest that connected nodes will have varying degrees of location quality. Ide-

ally, much like the stepwise refinement found in localization techniques for static

sensor networks, the objective is to improve lower quality positions using higher

quality positions and distance estimations, where applicable. Naturally, it is im-

portant to define what is meant by “improve” location quality. Measurement has

two components: precision and accuracy. Accuracy refers to the “closeness” of

the measurement to ground truth, while precision refers to the repeatability of

subsequent measurement, as indicated by the variation among multiple samples.

Cooperative data sharing can improve both under most but not all conditions, so
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evaluation of this problem requires a scenario-based approach. First, a few simple

cases that likely would never occur or be implemented in practice, but are intended

for illustrative purposes, are presented. The following subsections describe these

simple evaluation scenarios.

4.3.1 Single Localized Node

In this case, a single node has multiple redundant sensors affixed to it, and

the error in each sensor’s output occurs independently of the others. Such a sce-

nario could occur, for instance in the case of dead reckoning, if one compass were

mounted on a helmet, while a second one were mounted on a belt, and so on.

In practice, compass error has a more significant impact on localization accuracy

than stride length estimation in dead reckoning systems. With a sufficiently well-

estimated constant k in the stride length estimation described in Chapter 3, total

distance traveled, as defined by the number of steps detected multiplied by the

estimated length of each stride, can be as accurate as within roughly three percent

or better of the actual distance, assuming careful, deliberate steps and the user

keeps the compass pointing in the actual direction of travel at all times. A com-

pass heading error of 30 degrees, for example, would have a far greater effect on

accuracy of dead reckoning localization over time than a stride length estimation

error of 3 percent over any nontrivial distance, which for most applications is neg-

ligible, or at least well within acceptable limits. For this reason, dead reckoning

error, while the result of error in data from a combination of sensors, is generally

dominated by the measurement error in the compass heading that results from

internal measurement errors in the hardware as well as any uncompensated effects

of pitch and roll.
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(a) None (x̄ = 16.63; σ = 9.87)
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(b) Two (x̄ = 13.08; σ = 6.68)
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(c) Three (x̄ = 12.59; σ = 5.61)
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(d) Four (x̄ = 11.80; σ = 5.08)
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Figure 4.3: Dead Reckoning Averaging (w/GPS Error)
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Using a single node removes many of the fundamental challenges arising from

cooperative localization models and is described here for simplicity. Namely, dis-

tance measurement, an important but notoriously tricky component to implement

in practice, is not a factor with collocated sensors. Additionally, all sensor data

are measuring the same physical location, as all hardware is mounted on the same

device or on the same human operator, so any resultant error can be attributed to

random variation and can simply be averaged away. In a case such as this, trilater-

ation is not an appropriate method, as the inter-node distance is zero and relative

bearing is undefined. Additionally, assuming a single shared position makes no

sense, despite the fact that the sensors are in fact collocated, because in this case

multiple samples representing the same point exist, and one position will not be

discarded in favor of another. Since all samples are independently measured es-

timates of the same physical location, the most reasonable cooperative method

to use in this scenario is averaging. As mentioned earlier, averaging smooths the

random jitter from the position estimates attributable to compass error and pro-

vides a more precise measurement as determined by the standard deviation σ of

the dead reckoning error.

Figure 4.3(a) shows the distribution of error in the estimated position of the

final point of a path of length 340 meters. In this experiment, a simulated node

traversed a straight path. At the end of each trial, the Euclidean distance from

the last point estimated by the dead reckoning system and the true final location

is determined and recorded. The figure shows the distribution of these dead reck-

oning errors over 1,000 independent trials. The mean dead reckoning error, i.e.,

distance between estimated and true endpoints, is 16.63 meters with a standard

deviation of 9.87. Figure 4.4 illustrates the true path taken and the corresponding
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path estimated via dead reckoning for a single trial with no averaging. Each unit

along the axes represents a distance of one meter. In each trial, dead reckoning

begins with a GPS position determined from a probabilistic model based on data

collected experimentally as described in Section 3.3.2 of Chapter 3. Compass er-

ror at each step is determined from a model based on the distribution of actual

measurement errors observed in practice. In the figure, the solid line represents

the actual path taken and the dotted line represents the same path estimated via

dead reckoning, to include measurement and approximation errors.
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Figure 4.4. Dead Reckoning Versus Actual Path (One Node)

Figures 4.3(b) through 4.3(f) show the effect of averaging a varying number

of positions estimated by independent sensors but representing the same physical
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(c) Three (x̄ = 9.64; σ = 0.54)
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(d) Four (x̄ = 10.40; σ = 0.96)
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 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20

N
u

m
b

e
r 

o
f 

In
s

ta
n

c
e

s

Distance Estimation Error (m)

(f) Ten (x̄ = 9.67; σ = 0.48)

Figure 4.5: Dead Reckoning Averaging (No GPS Error)

87



location. Not surprisingly, these results demonstrate that averaging such posi-

tions reduces mean error and variance, which suggests that sharing data among

collocated sensors can improve both precision and accuracy in dead reckoning sys-

tems. Note that the error may still be as large as approximately 20 meters when

traversing a 340-meter path. This error is due to both the dead reckoning error

and the error in the GPS positions which provide the initial starting point.

In both Figures 4.3 and 4.4, the dead reckoning technique begins with a posi-

tion determined via GPS, which is subject to measurement error of its own. To

evaluate the effect of averaging dead reckoning positions without the uncertainty

of additional error, the assumption of the accuracy of the starting location is

changed to a known, perfectly measured, fixed location. Figure 4.5(a) illustrates

the effect of such a perfect starting location on dead reckoning accuracy without

averaging. As before, the histogram shows the distribution of error in the final

position over 1,000 independent trials. Figures 4.5(b) through 4.5(f) show the

effects of averaging positions using a variable number of concurrent, but indepen-

dent, samples each representing the same physical location. In general, both the

mean error and standard deviation σ decrease with an increase in the number of

position samples. Table 4.1 lists the mean error x̄ and standard deviation σ for

each case.
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TABLE 4.1

EFFECT OF POSITION AVERAGING ON PRECISION AND

ACCURACY (DEAD RECKONING)

Averaged Starting Mean Averaged Starting Mean

Samples Position Error σ Samples Position Error σ

1 GPS 16.63 9.87 1 Actual 10.19 1.09

2 GPS 13.08 6.68 2 Actual 9.94 0.75

3 GPS 12.59 5.61 3 Actual 9.64 0.54

4 GPS 11.80 5.08 4 Actual 10.40 0.96

5 GPS 11.51 4.71 5 Actual 9.65 0.51

10 GPS 10.29 3.55 10 Actual 9.67 0.48

4.3.2 Two Localized Nodes

Evaluating the effects of averaging independent position estimates collocated

on a single platform simplifies cooperative localization by assuming away the in-

herent difficulty in estimating or otherwise accounting for separation distance,

or quantitatively evaluating location quality as a function of a random variable.

In this section, the effect of sharing data among spatially separated independent

nodes is evaluated. In each of these scenarios, the positions are not assumed to

be averages of multiple samples. Figure 4.6(a) illustrates an example scenario

with two nodes moving along parallel paths, while Figure 4.6(b) illustrates the
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paths taken in a scenario in which assumptions about distance cannot be made.

A scenario in which nodes are moving along parallel paths would occur, for in-

stance, when two operators are walking together towards the same destination,

a case commonly encountered among military troops, for whom walking alone

in relatively high threat areas is not advisable. As noted in practice, two nodes

physically present in close proximity may have much different location quality,

even using identical localization hardware. In each of the figures, the solid line

represents the actual path taken and the dotted lines are the approximated po-

sition at each step based on sensor data and illustrate the error associated with

each position sample.

In scenarios in which two nodes travel along parallel paths, there are two

cases to consider. First, a case in which an estimation of the distance between

nodes is unimportant. An example of such a scenario would be two operators

walking side by side at the same speed with no more than a meter or so separation

between localized devices. For practical purposes, these devices could essentially

share the same reported physical location since the granularity of the separation

is sufficiently small that the distance would not matter for most applications.

Both nodes, then, could share the same estimated position. Detection of remote

nodes located within such a small distance could be accomplished using a wireless

communication protocol such as Bluetooth.

The case of parallel paths at similar speeds is important for two reasons. First,

it maximizes the amount of data which might be shared among nodes over the

length of the path as they are always in communication with each other. Second,

it permits additional simplifying assumptions that the general case of random

motion does not. The possibility of sharing a position is one assumption. In
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Figure 4.6. Dead Reckoning Versus Actual Path (Two Nodes)
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addition, the failure of one node’s sensors does not preclude its localization using

cooperative data sharing, since location information may be available from the

adjacent node. Since both can share a position at sufficiently close range, averaging

shared data provides additional reliability through redundancy and elimination of

random error. However, a small spatial separation is very important, as using

an averaging technique with positions from both nodes will result in large error

without sufficiently proximate placement. Similarly, since trilateration frequently

offers little benefit without a sufficient number and placement of anchors, for a

case in which two nodes of roughly equal location quality this method would not

offer any meaningful improvement.

A more interesting scenario arises when operators traversing parallel paths

are separated by some nontrivial or variable distance and collocation cannot be

assumed. While location information can be shared, averaging might not be inap-

propriate as the error of the averaged position would be at best half the distance

from each node to the centroid. If the separation distance is known, then a sim-
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ple lateration scheme might be used to estimate the actual positions of both.

Figure 4.7 illustrates such a case. However, this approach generally fails with

two nodes because any lateration originating from the centroid simply restores

the original error-prone position. Therefore, in this case assuming collocation is

inappropriate and averaging positions is ineffective if the centroid is computed

using shared dead reckoning information, even if the distance estimation between

nodes is perfect. There is not enough available location information for either esti-

mated position to converge on the true position. Dead reckoning error increases at

roughly the same rate from the initial position, and there are no anchors present,

so sharing data in this case would take increasingly bad positions and make them

slightly to moderately worse. This is generally the case in scenarios with two

nodes whose positions have roughly equal measurement or estimated error.

As an illustration, consider the graph in Figure 4.8. Figure 4.8(a) shows the

distribution of error in the case of two nodes localized using dead reckoning without

data sharing for 1,000 independent simulation trials with an actual separation of

10 meters. The starting positions for both nodes are determined with a GPS error

model. In this case the mean error x̄ is 10.45 meters with a standard deviation σ of

1.30. If both positions are averaged, as shown in Figure 4.8(b), then x̄ increases to

11.09 meters and σ increases to 1.56, a six percent increase in x̄ and a 15 percent

increase in σ, which suggests that in this case averaging reduces both the accuracy

and precision of the positions. Therefore, while averaging positions can improve

localization by reducing the jitter from compass error, it is only to the point at

which separation between nodes becomes sufficiently large that error attributable

to the spatial separation of nodes is greater than the tolerance of the application

requirements.
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Figure 4.8: Averaging Two Dead Reckoning Positions
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4.3.3 More Than Two Nodes

In scenarios in which the paths traveled by the mobile operators are more

random in nature and the number of nodes increases, assumptions used within

the previous, much simpler cases no longer apply, and fewer methods may be

used for combining positions. The most significant challenge when dealing with

arbitrary paths is accounting for spatial separation between nodes with a wireless

connection. Unfortunately, the current state of the art in accurately measuring

distance using wireless connectivity is quite poor. However, there is some utility

in using radio frequency propagation for localization purposes. Consider a case in

which a device is completely unlocalized, yet is able to connect to another node

which has a GPS fix. Clearly it is reasonable to conclude that the unlocalized

node is within some radius of the GPS location, with the radius bounded by

the maximum wireless propagation distance in the specific environment. If the

application requirement is such that even a very rough approximation of position

is acceptable, assuming collocation can be a reasonable approach.

In the absence of a reliable method for estimating distance using wireless con-

nectivity, and alternative approach to dealing with spatial separation is simply to

ignore it altogether and average the positions of connected remote nodes. Doing

so can be beneficial in cases such as previously described, in which a node is fully

unlocalized or has such a substantial position error that even an error on the order

of the communication range would be an improvement over its existing position

or perhaps even acceptable for the application.
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4.3.4 Connectivity

For purposes of cooperative localization, the collocation method may be un-

acceptable in many cases. As demonstrated in Section 3.3.2 in Chapter 3, error

attributable to GPS drift can be as large as several kilometers. Coupled with

possibly several hundred meters of wireless radio range, a collocated approach can

exhibit very substantial localization error. Using a cooperative approach over non-

trivial distances to establish an initial position may in many cases be ineffective

in general, at least with a very small number of anchors, and experiences with

very small scale experiments have shown that to be the case. However, as before,

a poor quality location may be better than none. Instead of further examining

collocation, this work explores the use of wireless connectivity in cases in which all

nodes have at least some notion of their own location to varying extents, although

some of which may be of very poor quality. Of course, it is important to note,

although should be obvious, that wireless connectivity is not a singular, mono-

lithic entity. Several types of wireless protocols can be considered for localization

purposes, three of which are examined here:

1. Short Range Connectivity. At very close range, Bluetooth connectivity

can be used to determine proximity between nodes. Since most commercial

Bluetooth radios have a maximum effective range of 10 to 15 meters for Class

2 radios or approximately one meter for Class 3 (Bluetooth SIG, 2004), this

may possibly be an effective method of detecting nearby localized nodes for

purposes of sharing location information. Moreover, short range connectivity

may also be used among multiple connected nodes to determine outliers

among positions in close proximity.
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2. Intermediate Range Connectivity. As shown in Chapter 3, the use of

802.11 wireless Ethernet in ad-hoc mode can be another method for de-

tecting proximity and roughly estimating distance. The effective range of

wireless Ethernet varies, but previous experiments in this work show that it

can be determined for a particular wireless card with acceptable reliability.

In the case of the Intel PRO/Wireless 2915ABG wireless card used in the

TeamTrak platform, a maximum consistent wireless range of roughly 300

meters was empirically determined, as shown in Figure 4.9. This figure was

constructed using data from an outdoor exercise involving 14 GPS-enabled

nodes moving around the Notre Dame campus over a period of an hour. One

of the machines consistently experienced substantial GPS error; its data was

excluded. The others show the distance and direction at which at least one-

way connectivity was established between pairs of nodes. The graph is a

composite of all connectivity between all exercise participants.

3. Long Range Connectivity. WiMax (IEEE 802.16 Working Group on

Broadband Wireless Access Standards, 2005) is a much more recently intro-

duced technology that, while yet to be widely adopted, potentially can be

used for purposes of localization by detecting the presence of nodes that are

far more widely dispersed, as it has maximum effective range of as much as

several kilometers.

With each type, the establishment of a connection is what facilitates local-

ization, particularly trilateration, since the edge of wireless range can provide a

somewhat reliable upper bound on distance estimation. Of course, the presence

of substantial obstructions and other factors which affect RF propagation and

would commonly be found in urban environments reduce the accuracy of any dis-
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Figure 4.9: Wireless Connectivity

tance estimation, particularly for long range connectivity such as WiMax, but at

much shorter ranges such methods can be useful. It is important to note that

for trilateration, the distance at which an initial connection between node pairs

occurs is what is important; once a connection has been established and there is

further mobility within each node’s communication range, the distance estimation

becomes far less reliable with the number of steps taken by either node’s operator.

As an aside, there has been much work towards constructing reliable distance

estimation techniques within the range of wireless connectivity, to include methods

such as received signal strength, time of arrival (the technique used in the GPS

system), time difference of arrival, angle of arrival, and so on. However, none

have proved to be very accurate or reliable except under very carefully controlled

conditions or, in the case of GPS, augmented with heavy infrastructure, precise

clock synchronization, and maintenance tasks infeasible at a much smaller scale.
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Existing methods of precision distance estimation over more than trivial ranges

using wireless signals are ineffective or impractical for systems such as mobile ad-

hoc networks. The best currently available method for gauging distance under

outdoor conditions in urban settings is the maximum wireless propagation model

for Bluetooth, 802.11, and WiMax, but is largely limited to purposes of detecting

errors (and possibly correcting at short range, i.e., Bluetooth Classes 2 and 3).

Some research is currently being done with laser range finders, which may not be

suitable for production systems, but is sufficiently accurate to evaluate ideas in

cooperative localization at this time. However, such work is still in its relative

infancy.

Anchor A

Node B
Possible Positions for Node B

r

(a) No Estimate

Anchor A

Node B

r

Θ

(b) With Estimate

Figure 4.10: Trilateration With Two Nodes

Localization in the case of two mobile nodes at the edge of wireless connectiv-

ity can be accomplished through trilateration as long as the node to be further

localized has some notion of its own position. Otherwise, the estimated position

can only be determined to lie on the edge of a circle (assuming roughly isotropic
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RF propagation) at a distance of r, where r is the maximum wireless range of the

anchor node. Figure 4.10(a) illustrates the possible range of positions without an

initial estimate, while Figure 4.10(b) shows the effect of an initial estimated posi-

tion. Given the importance of an initial estimate, using a cooperative localization

approach, even if it does not produce an ideal result immediately, may produce

a sufficient initial estimate for further improvement. Of course, the greater the

variability in RF propagation, and thus the more uncertainty in the distance mea-

surement, the more stepwise refinement required.

With an approximated position for the unlocalized node the relative bearing

between it and the anchor can be estimated, which can then reduce the number

of points at which the adjusted position can lie. The presence of additional an-

chors further narrows the number of possible points as well. The unpredictable

connectivity patterns in mobile ad-hoc networks imply that a desirable number of

anchors may not be available at all times. This variability affects the quality of

locations of other nodes attempting to localize based on available anchors sharing

location data while moving in various patterns.

Throughout this section, a scenario-driven approach to evaluation is used, with

each scenario derived from a single, overarching problem domain. The problem

statement can be specified as follows:

Situation: Assume n mobile nodes in the field. A subset of nodes have a

functioning GPS receiver. Those that do not rely on dead reckoning for local-

ization. The initial reference point for dead reckoning is determined via GPS,

but after establishing the initial point, GPS is no longer available to those nodes.

Each delta in position computed by the dead reckoning apparatus is affected by

both compass error and stride length estimation error at each step. Additionally,
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all GPS positions have measurement error, which may be substantial.

Objective: Each node must compute an estimate of its current physical loca-

tion to display to its human operator. Nodes may combine information collected

from multiple remote sources to determine a final result.

Hypothesis: Quality of position estimates from dead reckoning can be im-

proved by sharing information once measurement error grows sufficiently large.

The remainder of this section describes two methods of combining shared lo-

cation samples based on whether distance measurement is available.

4.3.5 Combining Positions

When using shared location data, ultimately the non-localized or poorly-

localized node must combine this information to estimate its own position. Re-

gardless of the type of sensors used for localization or the communication range of

the mobile nodes, remote positions are acquired, and these are used to establish

or improve its position using one of several methods:

Simple Averaging. With this approach, the mean position of all n nodes

within communication range of node N , as well as N ’s own position, is determined,

and this mean position is used as the new “interpolated” position. The average x

and y positions, x̄ and ȳ, respectively, are determined separately:

x̄ =
1

n + 1

(

xN +
n

∑

i=1

xi

)

ȳ =
1

n + 1

(

yN +
n

∑

i=1

yi

)

The algorithm for the case of simple averaging connected nodes is as follows:

Averaging (Non-Inclusive). In this case positions of remote peers are av-

eraged as in the simple averaging case, but no local position is included. Such a
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Algorithm 1 Simple Averaging

1: (x, y, e) ⇐ Location-Use-Best(N )
2: if Location-Source(N ) = GPS then
3: return (x, y, e)
4: end if
5: for i = 1 to n do
6: if Connected(N , i) then
7: x̄ ⇐ x̄ + xi

8: ȳ ⇐ ȳ + yi

9: etotal ⇐ etotal + errori

10: count ⇐ count + 1
11: end if
12: end for
13: if count 6= 0 then
14: x̄ ⇐ x̄ / count
15: ȳ ⇐ ȳ / count
16: end if
17: return (x̄, ȳ, etotal)

scenario would occur among nodes which are entirely non-localized; for instance,

a node with neither GPS capability nor any starting position for dead reckoning.

x̄ =
1

n

n
∑

i=1

xi ȳ =
1

n

n
∑

i=1

yi

Selective Averaging. This method only averages the k remote positions

whose estimated error is no greater than that of N . The purpose of accounting

for error in such a way is to eliminate very poor positions which might skew the

mean position, particularly among a small sample of remote peers.

x̄ =
1

k

∑

∀i | ei≤eN

xi ȳ =
1

k

∑

∀i | ei≤eN

yi

Filtered Trilateration. Trilateration is a commonly proposed method of

localization in sensor networks. The most significant advantage is that is can
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provide a very precise and accurate position, assuming the proximity of anchors.

An unlocalized node uses the positions of neighboring anchors nodes in conjunction

with a distance estimation to estimate its own position. The algorithm used in

the evaluation sections of this chapter is as follows:

To filter positions for trilateration from peers in the presence of both localiza-

tion error and mobility, let PN be the (possibly empty) set of all location samples

of preferred quality and confidence level at Node N , the node to be localized.

Here, τ is the error tolerance and cmin is the minimum confidence level for each

error value as determined for the application. Positions of lower error and higher

confidence are accepted.

PN =
{

(x, y, e, c)
∣

∣ (x ∈ R) ∧ (y ∈ R) ∧ (e ≤ τ) ∧ (c ≥ cmin)
}

(4.1)

and P ′
N be the (possibly empty) set of all location samples of arbitrary quality and

confidence levels generated by N as it self-localizes, which may include positions

of significant error magnitude or low confidence:

P ′
N =

{

(x, y, e, c)
∣

∣ (x ∈ R) ∧ (y ∈ R) ∧ ((e > τ) ∨ (c < cmin))
}

(4.2)

We take ℓN to be the locally determined position of highest quality:

ℓ =























(x0, y0,∞, 0.0) if (PN ∪ P ′
N ) = ∅

(xi, yi, ei, ci)
∣

∣ ∀i∀j
(

(pi, pj ∈ PN ) ∧ (pi.e = min{pj .e}
)

if PN 6= ∅

(xi, yi, ei, ci)
∣

∣ ∀i∀j
(

(pi, pj ∈ P ′
N ) ∧ (pi.e = min{pj .e}

)

if PN = ∅
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Let L be the set of all location samples among n nodes directly connected to N :

L =
{

(x, y, e, c)
∣

∣ (x ∈ R) ∧ (y ∈ R) ∧ (e ∈ R) ∧ (c ∈ [0, 1])
}

(4.3)

There are five cases which must be considered depending on the estimated error

value e and the associated confidence level c of each remote peer node i, where

i = 1..n.

• Case 1: ei ≤ τ and ci ≥ cmin

• Case 2: ei ≤ τ and ci < cmin

• Case 3: ei > τ and ci < cmin

• Case 4: ei > τ and ci ≥ cmin

• Case 5: eN ≤ ei

Which case represents the minimum threshold for acceptance depends on the

application, and different cases can produce much different levels of accuracy. For

each of the above cases, we find the set of remote positions R and corresponding

distances D among nodes in R which are directly connected to node N , whose

best position is represented by ℓN :

R =































































{

p ∈ L
∣

∣

(

p /∈ (PN ∪ P ′
N )

)

∧
(

p.e ≤ τ
)

∧
(

p.c ≥ cmin

)}

if case 1

{

p ∈ L
∣

∣

(

p /∈ (PN ∪ P ′
N )

)

∧
(

p.e ≤ τ
)

∧
(

p.c < cmin

)}

if case 2

{

p ∈ L
∣

∣

(

p /∈ (PN ∪ P ′
N )

)

∧
(

p.e > τ
)

∧
(

p.c < cmin

)}

if case 3

{

p ∈ L
∣

∣

(

p /∈ (PN ∪ P ′
N )

)

∧
(

p.e > τ
)

∧
(

p.c ≥ cmin

)}

if case 4

{

p ∈ L
∣

∣

(

p /∈ (PN ∪ P ′
N )

)

∧
(

q ∈ (PN ∪ P ′
N )

)

∧
(

p.e ≤ q.e
)}

if case 5

(4.4)
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D =
{

d
∣

∣ r ∈ R =⇒ d =
√

(r.x − ℓN .x)2 + (r.y − ℓN .y)2
}

(4.5)

Next, use the points contained in the set R and the pairwise distances to create a

set of points P̂N , with each member representing a possible position of node N .

Here, θi represents the bearing from N to node i.

P̂N =
{

pi ∈ R, di ∈ D
∣

∣

(

[pi.x − di cos θi], [pi.y − di sin θi], ei, ci

)}

(4.6)

Then average the positions:

p =



















(

1
n

∑

p∈P̂N
p[x], 1

n

∑

p∈P̂N
p.y

)

if ℓ = (x0, y0,∞, 0.0),
(

1
n+1

(

ℓN .x +
∑

p∈P̂N
p.x

)

, 1
n+1

(

ℓN .x +
∑

p∈P̂N
p.y

)

)

otherwise.

Thus p̄, the estimated position of N , is determined with a simple filtered

trilateration algorithm (in this example for Case 1), which is shown in Algorithm

2. Algorithm 3 is used to determine whether correction is required for node N

with associated set of positions P determined via local sensors.

4.4 Experimental Setup

Evaluation of the scenarios in this section is accomplished via discrete-event

simulation, much like the work in sections 4.3.1 and 4.3.2 using the TT-Sim sim-

ulation environment. In this section, the effect of sharing location data among a

larger number of nodes moving in random patterns is studied and attempting to

improve positions using the combination methods described in Section 4.3.5.

Simulation parameters are determined empirically based on data collected us-
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Algorithm 2 Filtered Trilateration

1: if Correction-Required(N ) then
2: (x, y, e, c) ⇐ Location-Use-Best(N )
3: for i = 1 to n do
4: if i 6= N and Connected(N , i) then
5: L[i] ⇐ Location-Use-Best(i)
6: if L[i].e ≥ τ ∧ L[i].c ≥ cmin then
7: R[i] ⇐ L[i]
8: θ[i] ⇐ arctan ((L[i].y − y) / (L[i].x − x))
9: d[i] ⇐

√

(x − L[i].x)2 + (y − L[i].y)2 + ǫ
10: R[i].e ⇐ |R[i].e| + |ǫ|
11: end if
12: end if
13: end for
14: end if
15: if R = ∅ then
16: return (x, y, e, c)
17: else
18: for i = 1 to n do
19: if R[i] 6= 0 then
20: R[i].x ⇐ R[i].x − d[i] cos θ[i]
21: R[i].y ⇐ R[i].y − d[i] sin θ[i]
22: end if
23: end for
24: end if
25: x̄ ⇐ 1

#R

∑

r∈R r.x

26: ȳ = 1
#R

∑

r∈R r.y

27: e ⇐ 1
#R

√
∑

r∈R(r.x − x̄)2

28: c ⇐ min ∀r ∈ R | r.c
29: return (x̄, ȳ, e, c)

Algorithm 3 Correction-Required

1: for i ∈ P do
2: if min (P [i].e) ≤ τ and P [i].c ≥ cmin then
3: return false
4: else
5: return true
6: end if
7: end for
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ing TeamTrak discussed in Chapter 3. For GPS error, the magnitude of the error

and both the expected length of the drift and the expected direction towards

which the position drifts given a specific GPS error are explicitly modeled. The

distribution of errors in recorded GPS positions from both receivers was incor-

porated into a single CDF. The model of GPS error takes the actual position of

a node at a given time and perturbs it with an offset based upon the CDF. A

pseudo-random number is generated using drand48(), the value of which is input

to an inverse CDF to obtain the magnitude of the error. Once the error value is

determined, a similar approach is used to determine the length of the drift and

the bearing of that specific error, again based on empirical data incorporated into

probabilistic models.

A similar approach is taken for dead reckoning error. Since the distribution of

compass error is generally Gaussian, a random number with such a distribution is

generated within the range observed in live experiments with three-axis compass

hardware. The mean and standard deviation of compass error were empirically

determined. Similarly, the error in stride length is determined, and is combined

with heading to determine the next measured position (again, independently of

the actual position).

The simulation is intended to model a localized mobile ad-hoc network at

steady state. The initial placement of nodes is random with uniform distribution

across the simulation field. Various network densities were modeled to simulate

operations over broader ranges, as illustrated in Figure 4.11. For each evaluation

scenario, a high, intermediate, and low density network was modeled. Mobility

is modeled using Random Waypoints, a method selected due to its generality,

i.e., most real-world scenarios would not involve random patterns of motion and
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the use of a random model in this work is not likely to produce overly optimistic

results. Finally, the speed of each agent in the simulation is random with a mean

of 1.56 meters per second, the average walking speed of an adult male, and with

normal distribution.

In the cases of trilateration, at each step in the simulation, every node evaluates

its own position based on estimated error and the confidence in that error based

on probabilistic models. For dead reckoning nodes, the quality of the position

decays based on compass error and stride length estimation models. Once a

node’s position is determined to be either outside the application tolerance, which

in these trials is 15 meters, or below a threshold of 70% confidence, it is deemed

to require correction. The node’s position is estimated based on the positions of

and distances to its neighbors, but only using those positions of sufficiently high

quality and confidence, regardless of the specific source of localization. With the

exception of the results described in Section 4.5.9, for simpler evaluation scenarios,

no self-assessment of localization error is accomplished.

Because dead reckoning error itself is generally a function of the number of

steps taken, over time this error can significantly eclipse the measurement error of

the initial GPS position. Therefore, running simulations for longer periods of time

would result in higher average error, but such error changes proportionately with

the length of the simulation. In this paper, experiments simulate motion over a

period of 20 minutes, over which our experiences with such systems show is suffi-

cient time for uncorrected dead reckoning error to grow quite large. Figure 4.12

illustrates. In the figure, the length of a simulation was gradually increased, and

each curve reflects the mean position error of all points over all steps in the simu-

lation. Increases in the number of steps results in an increase in the mean error,
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Figure 4.11: Example Initial Node Placements
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Figure 4.12. Effects of Simulation Time on Mean Position Error

as would be expected. The variability in the case of 99 anchors reflects the vari-

ability in dead reckoning error for a single node, which unlike the other cases, does

not become smoothed out by averaging over multiple nodes. Since this case only

examines dead reckoning error, the number of anchors is irrelevant to the mean

error here, but was varied in simulation trials and included in the figure as a basis

for comparison in later figures.

4.5 Results

While Sections 4.3.1 and 4.3.2 demonstrated the improvement in location ac-

curacy through averaging independent samples, in those cases there was either

no spatial separation or the distance between nodes was both fixed and known.

This section examines the effects of combining multiple position samples where

there is a variable and non-trivial separation that may or may not be known, and

connectivity between any set of nodes may be sporadic. Section 4.5.1 discusses

the effects of simply averaging the reported positions of connected nodes, while
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Sections 4.5.8 and 4.5.9 discuss variations on simple averaging which exclude some

positions based on specified criteria. Finally, Section 4.5.10 discusses the effect on

position error using the filtered trilateration technique presented in Section 4.3.5.

4.5.1 Simple Averaging: 300-Meter Range

In this scenario, any node whose location is determined via dead reckoning

attempts to correct its location by averaging its own position with the positions

of all nodes directly connected within its communication range without regard

to the source of each neighbor’s position, i.e., nodes use Algorithm 1 to combine

positions and nodes localized via GPS, dead reckoning, or cooperative averaging

may be considered anchors. Each position included in the average is weighted

equally. Nodes each have a variable communication range between 200 and 300

meters depending on direction, intended to model the anisotropic RF propagation

commonly found in wireless radios. At each step, prior to any averaging, a node

first localizes itself using the best possible location information using estimated

error, which may be either its uncorrected dead reckoning position determined

from the sensors or an averaged position from the previous step. With 100 nodes in

total, the number of GPS anchors in the system was increased in increments of 10.

Rather than consider less interesting cases in which there are zero or 100 anchors,

scenarios with either a single anchor or 99 are included. Previous experiences

attempting to correct erroneous GPS positions by averaging other GPS positions

proved fruitless; therefore the case of averaging in which all 100 nodes are GPS-

enabled anchors is not examined, nor is any attempt made to correct one GPS

position with another in the cases of simple averaging. If a GPS fix is available,

using it uncorrected for localization is probably the better option compared to
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averaging remote positions which may lie in a radius of up to 300 meters. Since

the measurement error of each remote position might lie even farther away from

the position to be adjusted, a relatively small position error could quickly become

quite large. When averaging a GPS position with a dead reckoning position, there

is a tendency for a relatively accurate position to be skewed, often dramatically,

by another with a high estimated error, and this worsening quickly propagates

among the connected nodes in the system.

Figure 4.13 shows the effect of simple averaging for dead reckoning nodes with

at least one GPS anchor among them. Each subfigure 4.13(a) through 4.13(c)

shows the mean position error of all nodes over all time steps in the simulation

over 10 independent simulation runs. In each of the three network densities mod-

eled, increasing the number of anchors in the system reduces the overall average

position error, but to realize any improvement in mean error, the ratio of anchors

to other nodes would likely need be at least 70 percent, but to achieve significant

improvement, that ratio would likely need to be even higher.

It is important to note that when averaging, the error in the adjusted posi-

tions is a function of both the separation between nodes and the dead reckoning

error. Even in cases where dead reckoning positions are freshly reset, such as at

the beginning of each simulation trial, the localization error after adjustment is

highly dependent on the arrangement of connected anchors. Existing localization

techniques such as APIT assume an unlocalized node is surrounded by anchors

relatively symmetrically. In a case where mobility invalidates such an assumption

in general, having very few anchors results in an average position error for dead

reckoning nodes that is several times worse than in the case of doing nothing.
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Figure 4.13: Averaging (300 m Range)
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Figure 4.14: Averaging (150 m Range)
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4.5.2 Simple Averaging: 150-Meter Range

Because position error among averaged samples is dependent on both mea-

surement error among each anchor’s reported position and the spatial separation

between nodes, particularly given an asymmetrical arrangement of anchors, a re-

duction in such error can be effected in part by reducing the communication range,

thereby only considering positions of more proximate nodes.

As in the case of 300-meter communication range, Figure 4.14 also shows the

effect on the average position error of all nodes among over all time steps, but in

this scenario the communication range is reduced to a maximum of 150 meters. In

this configuration, while the mean position error in the worst case (a configuration

with a minimal but nonzero number of available anchors) is roughly the same as

that in the case in which nodes have a 300-meter communication range. However,

simply by averaging, the mean position error is reduced to less than half that

of uncorrected dead reckoning while using fewer anchors, i.e., in this case 20 as

opposed to 50 or more out of 100 nodes in total when sharing location data over

a much longer range. As in the previous case, increases in the total number of

anchors effect reductions in the mean position error overall. It should be noted

that in the worse cases, despite a reduction in the mean position error compared to

that of the case of a 200- to 300-meter range, average error remains several times

worse than that of the uncorrected case. To provide a meaningful correction

scheme, these errors should be reduced further.

4.5.3 Simple Averaging: 125-Meter Range

Further scaling back the communication range results in a further reduction

of the mean position error in the cases where few anchors exist, as shown in
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Figure 4.15: Averaging (125 m Range)
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Figure 4.16: Averaging (100 m Range)
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Figure 4.15, while still retaining the reduction in mean error exhibited in the

previous cases. In this simulation scenario, the effects of different network densities

still do not show to any significant extent, suggesting that the mean position error

is less sensitive to density than it is to communication range, i.e., whether the

case is very frequent averaging which occurs in the highly dense network or very

sporadic averaging which occurs in the low density network, such adjustments

do not affect the mean position error as much as changes over a long distance.

This also appears to be the case when connectivity is frequent enough to impact

the mean position error, but sufficiently infrequent that the compounding dead

reckoning error may grow to be fairly large. With an intermediate node density,a

reduction in the communication range to a maximum of 125 meters produces

an average position error in the worst case of less than four times the mean in

comparison to doing nothing, but begins to realize improvement in position error

at or above a roughly 20 percent ratio of anchors to other nodes.

4.5.4 Simple Averaging: 100-Meter Range

In this scenario, the communication range is reduced to no more than 100

meters, and again nodes without local GPS information average their positions

with all of their connected neighbors, the effect of which is shown in Figure 4.16.

In this configuration, the mean error in the worst case is less than twice that of

the uncorrected case, and the variance is less than three times. Increasing the

number of anchors in the system results in an improvement in the dead reckoning

positions by more than 50 percent in the cases of networks which are relatively

saturated with anchors. The majority of the improvement resulting from averag-

ing is due to the prevention of growth in the dead reckoning error over a large
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number of steps. The mean error with uncorrected dead reckoning, as shown in

Figure 4.12 is dominated by the error towards the end of each simulation, i.e.,

generally speaking, the larger the number of steps since the last reset, the larger

the error. Averaging therefore serves as a reset for dead reckoning, but without

accurate ranging techniques the accuracy is sensitive to communication range. To

illustrate what happens when positions are averaged, Figure 4.17 shows a trace of

a simple scenario with two GPS-enabled nodes and a single dead reckoning node

(labeled Node 2). In this case, Node 2 is navigating via dead reckoning starting

at coordinates (1000, 0) and at the outset its interpolated position is the same as

its estimated dead reckoning position.
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Upon establishing communication with an anchor (Node 0), its position is ad-

justed by simply averaging the two positions together. This causes the adjustment

shown by the arrow at the top of the figure. Note that the adjusted position even-

tually moves much closer to the actual path traveled, shown by the heavy dotted

line. This is where the overall improvement is realized. Eventually, Node 2 estab-

lishes connectivity with another anchor (Node 1), and in this case the adjusted

position is made worse by averaging with the anchor’s, as shown by the arrow

on the lower right of the graph, but due to both the limited range and the paths

traveled, the adjusted position eventually converges closer to the actual path.

4.5.5 Simple Averaging: 30-Meter and 15-meter Range

The idea behind averaging positions over lower communication range is to re-

duce the error introduced as a function of the spatial separation between nodes

when the geometry of connected anchors is unbalanced. Intuitively, an even

shorter range than used in Figure 4.16 should reduce mean position error further,

as each position sample represents locations much closer to the same physical

location. However, a further reduction in the communication range to within a

minimum of 20 and a maximum of 30 meters, produces little benefit, as shown in

Figure 4.18. In this case, because the communication range is short, connectiv-

ity is far less frequent, and therefore fewer opportunities to correct bad positions

exist. The effect is the same as in previous cases with extremely low network

density; not enough data is shared to make significant corrections.

While the mean position error is much better in the cases of low anchor density,

i.e., fewer than 20 anchors in total, the improvement at higher anchor densities is

not sufficient to justify the added expense of sharing location data. Finally, reduc-
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Figure 4.18: Averaging (30m Range)
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Figure 4.19: Averaging (15m Range)
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ing the location even further to that of Bluetooth, as shown in Figure 4.19, realizes

no significant benefit to improving localization, primarily due to the unlikelihood

that in general, two nodes would be sufficiently close to exchange location data.

4.5.6 Distribution of Error

To further evaluate the effectiveness of cooperatively sharing location infor-

mation and using such to reduce position error, the distribution of measurement

error, as determined by the distance from each position estimated via dead reck-

oning apparatus or through cooperative averaging, to the actual position for each

node at each time step, is shown in Figure 4.20. The figure shows the effect of

three different communication ranges on the overall distribution of position error:

Figure 4.20(a) shows the distribution of errors when nodes are capable of a max-

imum 300-meter wireless range, while 4.20(b) shows the result with a 100-meter

range, and 4.20(c), a 30-meter range. In each case, the error distribution with

varying number of anchors is shown, and each histogram is normalized to account

for the differing number of nodes whose positions have been adjusted.

In Figure 4.20(a), a significant number of samples exhibit a very large magni-

tude of error with a low density of anchors. In the case of a 10 anchors among 100

nodes, the distribution is normal, but very flat, indicating a high variance of error

with fewer occurrences of each. Increasing the number of GPS-enabled anchors

among in the network, reduces both variance and mean error. However, as shown

previously in Figure 4.13, in this case the resultant mean error is unacceptably

large, particularly in the cases with low anchor density, due primarily to the wide

spatial separation, reflected in the error histogram.

Similarly, with a very short communication range, shown in Figure 4.20(c),
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121



there is relatively little difference in the histograms among all of the anchor ra-

tios due to highly infrequent connections. In the case of 100-meter range (Fig-

ure 4.20(b)), the histograms for different anchor ratios are grouped much more

closely, suggesting that when using a simple averaging technique, provided a suffi-

cient deployment scale, localization error is less sensitive to changes in the number

of anchors than it is to changes in the maximum communication range.

4.5.7 Distribution of Connectivity

As with any distributed localization scheme, accuracy of positions determined

via averaging or dead reckoning is greater with a larger number of connected an-

chors. For these simulations, the total number of connected anchors was recorded

at each step among all dead reckoning nodes in cases where the total number of

anchors in the system varied from 1 to 99, roughly in increments of 10. Early

field tests with averaging locations using TeamTrak produced results not likely to

be acceptable in real-world commercial or military applications, due primarily do

the limited scale of the tests, which involved a very low number and density of

anchors. To get a better sense of how an averaging technique might work at a

larger scale, the number of connected anchors at each time step for each node was

recorded during simulation trials using 100-meter communication range. In all of

these simulations, the actual anchor positions are offset by modeled GPS error,

and each graph has a logarithmic scale in the y axis.

Figure 4.21 is a histogram showing the distribution of anchors in an intermedi-

ate density network where the total number of GPS-enabled anchors varies from

one, 10, 20, and so on up to 99. For clarity, only select cases are shown in the

figures. The figures show that as the total number of anchors in the system or the
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density of the network increases, the number of time steps in which connectivity

to at least one anchor is established similarly increase, suggesting that averaging

would be more effective in networks of higher anchor density, whether that den-

sity is determined by the ratio of anchors to non-anchors overall or by the relative

proximity of all deployed nodes.

4.5.8 Inclusive Averaging

Having looked at cases in which positions are accepted and averaged with-

out consideration of any additional information, it is also worth examining some

alternative schemes for averaging positions, to account for error estimates easily

obtainable from connected neighbors. Since the intent of averaging positions is to

improve one with a high degree of error, it would make sense to eliminate the po-

sition to be corrected and only consider those of its connected neighbors. The risk

in this case is where a particular position error would normally be acceptable but

is adjusted anyway (due to the assumption that estimating dead reckoning error

is inherently difficult and any estimate has a degree of uncertainty. Therefore it

would be better to attempt correction whenever possible), it is possible to inject

error on the order of the maximum communication range when a connection is

initially established.

Figure 4.22 illustrates the effect of averaging remote positions with the position

to be corrected, which may have a high degree of error. In this case the maximum

range is 100 meters. In the steady-state cases illustrated in the figure, the error

in the stale dead reckoning positions is significant enough to skew mean error

upwards by roughly 100 meters in the worst cases, while showing no appreciable

difference in cases with larger numbers of anchors in the system.
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Figure 4.22: Inclusive Averaging (100-
Meter Range)
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Figure 4.23: Selective Averaging (100-
Meter Range)
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4.5.9 Selective Averaging

In the cases of simple averaging, in which a position which is known to be

bad is thrown out, in this case, dubbed selective averaging, a position that is

determined to have a higher measurement error than the position to be adjusted

is not considered. Such a case is the logical next step from the simple case, and

requires that a node to be localized consider the estimated error of all positions,

including its own, which could easily be reported along with the location itself

in any data sharing protocol, and only include those whose estimated error is

no greater than its own. If a dead reckoning node has a more accurate position

than its connected neighbors based on its own estimate of its localization error,

no adjustment occurs.

Figure 4.23 shows the effect of such selective averaging in a scenario with 100-

meter maximum range. Note that while the mean error in the cases of relatively

high anchor density is similar to that of the case of simple averaging, the worst

cases is roughly the same as for uncorrected dead reckoning, so this method has

the advantage of not making positions worse on the average. By accounting for

estimated error, the dramatic increases in mean error which occur whenever one

dead reckoning node averages its position with either another or an anchor whose

GPS position is drifting substantially can be reduced. A selective averaging tech-

nique would most likely be used to correct positions in urban environments where

anchors exist but with occasional areas in which GPS fixes are poor or cannot be

obtained, so an approach such as this could be effective in the absence of ranging

techniques, particularly since this method offers significant improvement without

increasing mean overall position error. While some positions may be worsened,

the overall net effect is a reduction in dead reckoning error.
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4.5.10 Filtered Trilateration

Having examined the effects of variations of range-free averaging techniques,

focus now shifts to the use of trilateration, which requires an estimate of both the

distance and bearing between a node and multiple anchors. Naturally, since no

distance measurement technique for outdoor mobile ad-hoc networks is sufficiently

mature and reliable at the present, this work is based largely on an assumption

that such a method exists.

Simulation setup is the same as the previous cases, except instead of averaging

the positions of neighbors, Algorithm 2 as specified in Section 4.3.5 is imple-

mented. Here, because of the error present in GPS positions as well as in distance

measurement, averaging is used to smooth out the random error present in both.

Nodes localized with GPS have a mean measurement error of approximately 12

meters based on empirical measurement, and dead reckoning error is essentially

unbounded. Distance measurement error follows a Gaussian distribution with σ

equal to half of the maximum communication range. As shown in Figure 4.24,

by using the filtered trilateration algorithm similar accuracy can be obtained, but

these results depend on the existence of a reliable distance determination. To

reduce the number of assumptions required in the model, bearing is determined

using the simulated GPS measurements at the anchors and the estimated position

using dead reckoning at the other nodes.

Given the uncertainty of making deterministic correction decisions based on

the values of random variables, it is important to look at the effect of implement-

ing an algorithm such as this with a filtering mechanism to rule out the use of

positions with large measurement error. Since error metrics are not completely

reliable, it is possible to make positions worse based on erroneous data. As long
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Figure 4.24: Trilateration (300 Meter Range)
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as the number of positions improved is greater than the number worsened, and

the mean improvement is greater than the mean worsening, the algorithm can be

effective. Tables 4.2 through 4.17 show the percentage of positions in total which

are improved and worsened in a number of different cases, with the mean and

standard deviations for each.

To understand the effects of this variability, an evaluation using only three mo-

bile nodes is considered, as the additional complexity provided by the interaction

of more than two nodes provides more interesting scenarios, but is small enough

to enumerate more possible cases. As before, discrete event simulation is used

for evaluation with several variable parameters: the number of anchors, i.e., GPS

enabled nodes, relative to others, the communication range of each node, ranging

from distances commensurate with Bluetooth Class 3 and increasing through that

of WiMax, the mobility model, to include both Random Waypoints and parallel

motion, as well as the presence of distance estimation error. In all of these trials,

a total of three nodes performed as agents. Wireless range parameters were em-

pirically measured, where possible, or taken from published specifications or other

empirical data in the literature. Distance estimation error is modeled with a Gaus-

sian distribution with standard deviation one-fourth the wireless range. This is

intended to keep error a function of distance, with the extreme cases within ap-

proximately one half of the estimated range. The application error tolerance is

15 meters and the minimum confidence threshold is 70 percent. The 15-meter

error tolerance was selected as a commonly published 2σ measurement for many

GPS receivers, and the minimum confidence level determined for each estimated

position error described in Chapter 3.

The following tables show the effects of varying the number of anchors available
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in the system in total, relative to the other nodes, as well as the communication

range of the nodes. Communication range, as previously demonstrated, has a

significant impact on the effectiveness of cooperative localization. Consider the

case of long range communication in the presence of distance measurement error,

shown in Tables 4.4 and 4.5. In particular, the case of the general mobility model

shows that the percentage of points in the system that are actually made worse, as

well as the average magnitude of the increased error, are greater than those in the

improved cases, which suggests that data sharing in this case has a net negative

effect on the quality of positions in the system, and would therefore be ineffective

at improving localization. However, looking at cases of shorter range, such as the

WiFi range shown in Table 4.8, both the number of points whose error increased

and the average change in those points is less than those of the improved cases.

This suggests that, at least for relatively short ranges, cooperative data sharing

can have a net positive effect on the locations of the nodes.

TABLE 4.2

RANDOM WAYPOINTS, WIMAX RANGE, NO DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 7.026 (σ = 6.71) 8.35 10.37 (σ = 13.5) 19.9

2 8.40 (σ = 7.94) 6.67 18.3 (σ = 14.8) 17.7

1 6.571 (σ = 6.65) 5.82 17.468 (σ = 13.10) 9.77

0 3.885 (σ = 0.00) 0.01 3.140 (σ = 0.00) 0.00
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TABLE 4.3

PARALLEL PATHS, WIMAX RANGE, NO DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.773 (σ = 5.36) 18.4 4.060 (σ = 4.67) 18.4

2 6.669 (σ = 5.94) 22.8 3.309 (σ = 3.80) 10.4

1 6.396 (σ = 5.94) 17.96 0.894 (σ = 4.73) 19.9

0 1.680 (σ = 3.24) 0.01 0.503 (σ = 0.26) 38.29

TABLE 4.4

RANDOM WAYPOINTS, WIMAX RANGE, WITH DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 8.181 (σ = 7.85) 2.77 165.899 (σ = 179.67) 35.85

2 106.806 (σ = 126.54) 9.34 155.057 (σ = 170.05) 26.39

1 157.025 (σ = 184.95) 10.82 162.954 (σ = 192.05) 13.46

0 4.895 (σ = 0.00) 0.01 2.220 (σ = 0.00) 0.00
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TABLE 4.5

PARALLEL PATHS, WIMAX RANGE, WITH DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.745 (σ = 5.57) 19.44 4.854 (σ = 4.42) 19.52

2 6.348 (σ = 5.82) 21.16 3.852 (σ = 3.60) 10.81

1 6.294 (σ = 5.56) 8.75 4.119 (σ = 3.97) 5.40

0 10.150 (σ = 0.00) 0.00 10.260 (σ = 0.00) 0.00

TABLE 4.6

RANDOM WAYPOINTS, WIFI RANGE, NO DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.419 (σ = 5.16) 6.28 3.580 (σ = 4.89) 6.21

2 6.276 (σ = 5.55) 6.75 3.360 (σ = 4.13) 3.68

1 6.419 (σ = 6.03) 4.66 1.399 (σ = 3.80) 6.58

0 1.037 (σ = 2.14) 0.16 0.950 (σ = 1.47) 14.3
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TABLE 4.7

PARALLEL PATHS, WIFI RANGE, NO DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.355 (σ = 5.01) 0.20 2.635 (σ = 5.49) 0.20

2 6.675 (σ = 6.05) 22.8 3.306 (σ = 3.76) 10.4

1 5.132 (σ = 5.94) 3.43 1.718 (σ = 4.74) 7.29

0 1.621 (σ = 3.09) 0.07 0.503 (σ = 0.23) 38.0

TABLE 4.8

RANDOM WAYPOINTS, WIFI RANGE, WITH DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 6.369 (σ = 5.98) 5.10 6.596 (σ = 9.87) 7.94

2 7.571 (σ = 7.07) 5.33 7.819 (σ = 9.62) 5.75

1 7.472 (σ = 7.89) 4.55 3.300 (σ = 10.54) 5.86

0 6.409 (σ = 5.82) 4.75 1.355 (σ = 4.47) 7.48
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TABLE 4.9

PARALLEL PATHS, WIFI RANGE, WITH DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.637 (σ = 5.41) 19.00 3.997 (σ = 4.65) 19.31

2 7.495 (σ = 7.01) 5.43 7.708 (σ = 9.55) 5.76

1 6.173 (σ = 5.89) 18.09 1.091 (σ = 4.83) 18.25

0 1.619 (σ = 3.07) 0.08 0.504 (σ = 0.28) 38.66

TABLE 4.10

RANDOM WAYPOINTS, BLUETOOTH CLASS 2 RANGE, NO

DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.419 (σ = 5.16) 6.28 3.580 (σ = 4.89) 6.21

2 6.127 (σ = 5.32) 0.19 1.927 (σ = 4.59) 0.08

1 6.263 (σ = 5.32) 0.16 2.258 (σ = 3.97) 0.66

0 1.504(σ = 2.69) 0.00 0.347 (σ = 1.09) 0.05
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TABLE 4.11

PARALLEL PATHS, BLUETOOTH CLASS 2 RANGE, NO DISTANCE

ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 0.902 (σ = 2.23) 0.11 0.886 (σ = 1.52) 0.12

2 6.434 (σ = 5.47) 19.2 1.878 (σ = 3.71) 6.83

1 6.614 (σ = 6.02) 7.89 2.782 (σ = 4.39) 3.98

0 1.503 (σ = 2.59) 0.07 0.413 (σ = 0.38) 31.9

TABLE 4.12

RANDOM WAYPOINTS, BLUETOOTH CLASS 2 RANGE, WITH

DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 4.339 (σ = 3.34) 0.33 4.496 (σ = 1.55) 0.27

2 4.994 (σ = 2.94) 0.30 4.094 (σ = 1.82) 0.27

1 6.311 (σ = 5.41) 0.30 5.357 (σ = 2.38) 0.05

0 3.790 (σ = 0.00) 0.03 3.190 (σ = 0.00) 0.02
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TABLE 4.13

PARALLEL PATHS, BLUETOOTH CLASS 2 RANGE, WITH DISTANCE

ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.225 (σ = 5.35) 7.83 4.175 (σ = 4.01) 7.92

2 4.918 (σ = 5.03) 7.13 4.300 (σ = 4.23) 5.60

1 4.104 (σ = 3.58) 5.23 3.598 (σ = 3.39) 3.32

0 9.250 (σ = 0.00) 0.02 5.910 (σ = 0.00) 0.02

TABLE 4.14

RANDOM WAYPOINTS, BLUETOOTH CLASS 3 RANGE, NO

DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 1.255 (σ = 0.25) 0.03 0.000 (σ = 0.00) 0.00

2 1.255 (σ = 0.25) 0.03 0.000 (σ = 0.00) 0.00

1 1.130 (σ = 0.00) 0.02 0.000 (σ = 0.00) 0.00

0 0.000 (σ = 0.00) 0.00 0.000 (σ = 0.00) 0.00
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TABLE 4.15

PARALLEL PATHS, BLUETOOTH CLASS 3 RANGE, NO DISTANCE

ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 5.152 (σ = 5.07) 14.38 4.642 (σ = 4.40) 14.13

2 5.444 (σ = 5.07) 12.97 4.251 (σ = 4.23) 9.98

1 4.537 (σ = 4.07) 9.18 2.848 (σ = 2.72) 5.47

0 0.000 (σ = 0.00) 0.00 0.000 (σ = 0.00) 0.00

TABLE 4.16

RANDOM WAYPOINTS, BLUETOOTH CLASS 3 RANGE, WITH

DISTANCE ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 1.255 (σ = 0.25) 0.03 0.000 (σ = 0.00) 0.00

2 1.255 (σ = 0.25) 0.03 0.000 (σ = 0.00) 0.00

1 1.130 (σ = 0.00) 0.02 0.000 (σ = 0.00) 0.00

0 0.000 (σ = 0.00) 0.00 0.000 (σ = 0.00) 0.00
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TABLE 4.17

PARALLEL PATHS, BLUETOOTH CLASS 3 RANGE, WITH DISTANCE

ERROR

# Improved Percent Worsened Percent

Anchors (mean) (m) Improved (mean) (m) Worsened

3 4.957 (σ = 4.82) 7.72 4.432 (σ = 4.31) 7.67

2 5.249 (σ = 5.22) 7.93 4.432 (σ = 4.33) 5.90

1 3.722 (σ = 3.22) 5.85 2.995 (σ = 2.87) 3.52

0 0.000 (σ = 0.00) 0.00 0.000 (σ = 0.00) 0.00

4.6 Limitations

4.6.1 Stability of Dead Reckoning

Figure 3.14 in Section 3.5 shows the distribution of error in a tilt-compensated,

three-axis digital compass. This error distribution was obtained through repeated

outdoor trials to collect empirical data. It is important to point out that any

human-mounted dead reckoning system can be defeated without a great deal of

difficulty. In the case of TeamTrak, with its head-mounted compass, simply look-

ing in a direction other than that in which one is traveling is sufficient to skew

the heading enough to produce inaccurate results. Compasses mounted elsewhere

can be similarly affected with appropriate body movements. All dead reckoning is

simulated with the assumption that while taking a step, the operator looks in the

direction of travel and does not look down, to the sides, and so forth. Furthermore,
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the operator is assumed to travel with a normal walking gait.

4.6.2 Trilateration Challenges

Trilateration presents a number of significant challenges in practice, particu-

larly when localization of mobile nodes at arbitrary distances is required. Using

this method in a static system has advantages in two respects. First, an individual

node’s sensor measurements can be averaged over time to reduce random error, re-

sulting in a more accurate and precise position. Second, distance estimation using

wireless signals is a fundamentally difficult problem, and existing implementations

experience very high error rates under all but the most carefully controlled con-

ditions at short range. At first, RSSI might appear to be a promising method for

estimating distance, with the relationship

RSSI = 10 log
d

d0

where RSSI is the signal strength indicator, measured in dBm, d is the esti-

mated distance between radios, and d0 is a predetermined reference distance.

Most work with RSSI is for indoor use, as in practice it experiences very high

rates of error at greater distances or in noisy environments. Approximations of

range errors observed in practice form the basis for the error model in this work.

One alternative approach is DV-HOP, which can determine the average distance

between connected nodes, but accuracy is highly dependent on network topology.

If there are “folds” in the topology, the estimated error can grow very large. In

our experiences with TeamTrak, connectivity can be unpredictable and the types

of topologies which would cause DV-HOP to experience large errors are com-

mon (Niculescu and Nath, 2003). Another alternative for estimating distance is
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using round trip time of packets sent between nodes. However, initial experiments

with such an approach outdoors at short range using non-specialized hardware

showed no promising results at all.

Probabilistic approaches can account for much of the noise which plagues other

approaches, but are still far from ideal. As an example, Madigan et al proposed

a probabilistic distance estimation method based on Bayesian graphical models

for indoor applications. Even under the relatively friendly conditions found in-

side structures (as compared to outdoor environments), the authors could attain

average accuracy of around seven or eight meters at best (Madigan et al., 2006).

One promising potential alternative to measuring arbitrary distances using

range-based techniques is simply using maximum communication range for a given

protocol to correct locations immediately upon connection. For instance, connec-

tivity using a Bluetooth Class 2 radio, can narrow down a node’s location to

within 10 meters of another. If one is well-localized, i.e., has low positioning error

with a high confidence level, a node with a higher positioning error can adjust its

position accordingly to an accuracy within the 10-meter maximum range. The

effectiveness of such an approach would be quite similar to the results shown in

Tables 4.10 through 4.17 due to the short ranges involved.

4.7 Conclusions

In this chapter a number of techniques for exploiting location data shared

among connected mobile nodes have been presented along with an evaluation

of the effects and benefits of such sharing on position error under a variety of

constraints and system parameters. Different specific application scenarios and

available technologies call for different data sharing, filtering, and combination
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techniques. Cooperatively sharing location information can reduce overall local-

ization error even without the ability to accurately measure spatial separation

between nodes.

Assuming that multiple nodes are collocated and may use a single location sam-

ple for all, collecting and averaging shared positions are appropriate techniques

to use when nodes are in reasonably close proximity. This has the advantage

of providing location data to completely unlocalized nodes nearby or smoothing

out random errors among GPS-enabled nodes, thereby providing a more precise

and more accurate position for both. However, it is clear that such an approach

breaks down rapidly with increased separation between nodes as well as with sig-

nificant variations in GPS location quality. For this reason, shorter-range wireless

protocols such as Bluetooth may be the most appropriate connectivity for data

sharing in such cases. Since many consumer-grade GPS receivers have a 2σ ac-

curacy rating of 15 meters, which is acceptable for most commercial applications,

the 10-meter maximum connectivity range of Bluetooth Class 2 radios should not

pose any significant concerns in practice.

With arbitrary distances of inter-node separation, averaging positions of con-

nected neighbors can reduce error in dead reckoning localization, provided that

such localization is relatively stale. Because using a simple combination method

to average position introduces error as a function of such separation, cooperative

localization is most effective if the communication range is relatively short, but

not excessively so. An overly long range introduces error from wide separation,

while an excessively short range does not facilitate connectivity without requir-

ing human intervention. The results show that with the error experienced in the

commodity off-the-shelf sensor hardware such as that found in TeamTrak, a range
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of approximately 100 meters can reduce mean position error by roughly half in

anchor-rich environments, while at the same time minimizing the compounding

error resulting from a network with a low anchor density. Furthermore, filter-

ing based on error metrics can reduce the rapid increase in error in low density

deployments.

Even better results can be achieved by simply filtering positions using es-

timated measurement error associated with each position. Excluding positions

with large measurement error reduces the likelihood of worsening positions, while

simultaneously using anchors with accurate localization to reset dead reckoning.

The implication might seem to be that adjusting positions determined via similar

means, e.g., dead reckoning versus dead reckoning or GPS versus GPS, would

be ineffective, but that is not generally the case. While adjusting GPS positions

versus GPS positions with a simple averaging technique frequently worsens local-

ization overall due to the error attributable to spatial separation dominating the

2σ measurement error of GPS, the growth of error in dead reckoning techniques

frequently can be sufficiently large and varied across nodes that such an averaging

technique may be beneficial in many instances.

Traditional trilateration can be improved to account for measurement error in

localization by simply filtering positions using available metrics associated with

each position. Excluding positions with large measurement error or low confi-

dence levels reduces the likelihood of worsening positions, while simultaneously

leveraging anchors with accurate localization to reset dead reckoning. With filter-

ing, trilateration could improve dead reckoning localization to approximately that

of GPS. Although mature technology does not currently exist for these types of

applications, with even a reasonably robust distance estimation scheme, whether
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from a range-based scheme or simply from using the maximum communication

range of the wireless protocol (assuming it can be accurately determined at longer

ranges), sharing location data among connected nodes can improve localization

accuracy, even in cases where the corrections are intermittent and infrequent.

This assumes a filter is in place to exclude remote positions which are clearly

unsuitable or whose reliability has a high degree of uncertainty. As better rang-

ing techniques are developed, a more general purpose trilateration scheme that

accounts for sensor error, such as that proposed in this chapter, could be feasible.
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CHAPTER 5

ON-DEMAND DATA BACKUP AND RECOVERY IN MOBILE SYSTEMS

Mobile computing devices have become increasingly ubiquitous over the last

several years. Such devices have been employed in a wide array of applications,

exemplified by such disparate information systems as cell phones, UHF radios,

and PDAs. While using such devices for recreational purposes is commonplace,

critical applications such as coordination of search and rescue and emergency re-

sponse operations are also becoming widespread. Using such a system for military

or paramilitary command and control purposes places a high premium on data

availability, security, and internode communication. An abundance of real-world

cases demonstrate that without efficient data sharing in a crisis environment, suc-

cessful mission accomplishment is very difficult, if not impossible.

While mobile information systems enable coordinated operations through real-

time communications, the underlying mobile networks which facilitate data shar-

ing are frequently problematic; ad-hoc topologies are inherently unstable, unpre-

dictable, and pose a significant challenge to providing reliable access to distributed

data. Network partitions and churn are a certainty in any mobile network of more

than trivial size or deployed over more than a very limited geographic area, which

implies that despite the continual evolution of robust routing protocols, reacha-

bility from one node to any other at a given time is far from guaranteed. While

also affected by changing network connectivity, availability of data and services
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provided by a particular device is also impacted by the limited computing capac-

ity inherent to mobile computing. In very remote locations without the benefit

of fixed, preinstalled infrastructure, mobile computing devices relying solely on

battery power will eventually become unavailable and unusable before completion

of any likely real-world mission due to limited system resources. Because of the

significant likelihood of device and network failures in such an operational de-

ployment scenario and the potential mission criticality of the data stored on such

networks, it is necessary to have a reliable means of off-device data backup and

retrieval, even if only for short durations.

It has been well established in practice that when it comes to data, more is not

necessarily better. In typical mobile networks, devices cannot simply and naively

broadcast all data recorded by all participants to all other devices within range and

flood the network with large amounts of traffic. An indiscriminate data transfer

model such as this has several serious drawbacks. First, such an approach can

consume tremendous amounts of bandwidth and storage space, which are limited

in the first place. Second, it places an undue burden on all computing devices in

the network to process volumes of extraneous data, imposing a severe performance

penalty on computing devices and possibly even hindering the effectiveness of

human operators, resulting in impaired mission. Third, heavy resource utilization,

particularly wireless radio transmission, has substantial system availability costs

due to shortened battery life on each mobile device.

Conversely, some preservation of transient data is required. For instance, sen-

sor data which may be considered extraneous at one time may in fact be required

later as the situation on the ground changes, necessitating its preservation. Also,

the criticality of much of the data in a crisis response environment is a function
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of location. For instance, the threat posed by specific hazards may be highly lo-

calized and of concern to operators only in the immediate vicinity, and may not

be significant enough to warrant a broadcast notification to all users of the sys-

tem, particularly in light of limited computing resources and available bandwidth,

but may still require preservation for reporting purposes and after-action analysis.

To ensure such data preservation without the benefit of more robust computing

capability, what is needed is a cooperative data sharing protocol for networks of

localized mobile nodes. The use of context for data transmission decisions limits

the total amount of wireless broadcasting required by each node while at the same

time maximizing the pairwise availability between any two adjacent nodes. The

term cooperative is used here under the assumption that all users of a system

are considered friendly to each other and willingly share available computing re-

sources to ensure successful completion of a common objective. An exploration

of the social aspects related to cooperative computing in general are beyond the

scope of this work.

Maximizing availability of connected peer nodes is important because of the

nature of ad-hoc networks. Links are frequently broken, and outdoor environ-

ments can be quite noisy, particularly those in and around populated, urban areas,

with both factors contributing to overall unreliable connectivity and low available

throughput. Additionally, maximizing availability is important because command

and control systems typically employ encrypted communications, which impose

additional, oftentimes significant, overhead in any data exchange. While there is

an abundance of past and ongoing research in the field of mobile networks, work

specifically in the area of availability prediction in such systems is much more lim-

ited. While a few works attempt to predict future availability by tracking position
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history, routing protocols that incorporate system state of nodes at the next hop

into routing determinations, or those which combine system state with mobility

are rare or nonexistent.

The objective of the work in this chapter is a new method for context-aware

cooperative data transfer for the purpose of short-term data backup and recov-

ery. Context is described by available system capacity, geographical positioning

through accurate localization, and the tracking of relative motion patterns among

connected peer nodes in mobile ad-hoc networks. First, a method is presented for

context-aware peer selection using location-based single-hop routing, to include

the initial evaluation process and the final selection through availability predic-

tion, in which availability is a function of expected mobility. Next, several issues

related to data recovery are discussed and the effectiveness of the method is evalu-

ated through simulation trials. Results are presented along with some concluding

remarks.

5.1 Context Aware Data Replication

In the literature, mobile networks are frequently assumed homogeneous, con-

sisting of a collection of identical hardware platforms with roughly similar capa-

bilities and deployed with each node generally having the same overall capacity.

In practice, despite similar configurations, it is common for devices to be deployed

with significantly varying states such as battery level or available storage space,

and any underlying system configuration would consist of dissimilar hardware,

such that each node may be either a laptop computer, PDA, or even a stationary

desktop workstation located at a command post, each of which having varying

capabilities in terms of processing power, available storage space, and wireless
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communication range. Despite differences in capability, what is important is that

these devices are connected to an ad-hoc routing network and are able to receive

accurate positioning data perhaps, but not necessarily, through a portable GPS

receiver, and cooperatively share such information with other nodes.

In addition to the heterogeneity of the overall system, as with any ad-hoc net-

work a deployed system can also be expected to experience a substantial amount

of churn as operators enter and leave the network, either by traveling beyond the

maximum communication range of individual wireless radios, entering shielded

structures, experiencing device failure and network partitions, or as other such

events occur. Device failure can occur either through physical destruction of the

device in certain circumstances or through gradual loss of battery power. The

potential loss of power is significant as continuous operations in very austere lo-

cations may preclude swapping batteries when required. In military applications,

soldiers laden with 100 pounds or more of gear while simultaneously operating an

array of mission-related equipment in hostile areas cannot be reasonably expected

to swap batteries in mobile communication devices with any frequency.

The wireless communication range for each mobile device is assumed to be a

predetermined system parameter. This is not a new assumption, and was argued

previously in (Deng et al., 2004) among others. Despite variations in RF signal

propagation which occur in practice, a conservative, but consistently determined,

measurement is all that is required, so estimate the approximate wireless range

is not unreasonable. For instance, for the Intel PRO/Wireless 2915ABG wireless

card factory installed in the Lenovo Thinkpad tablets used in the baseline Team-

Trak configuration, a wireless range measurement of approximately 200 meters is

shown in Section 4.3.4, Figure 4.9. While there are variations in the communica-
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tion range, consistent connectivity is most important, so even given anisotropic

radio propagation, longer ranges in different directions can be effectively ignored

since they generally do not contribute to consistent connectivity.

The transient data may be arbitrary depending on the specific application and

scenario, but generally can be assumed to be logs of events recorded internally

by the device or externally by either peripheral sensor devices or the operator.

As data is collected, eventually that which is deemed critical may need to be

replicated on a neighboring node to ensure persistence. The need for replication

may be based on internal factors such as a determination of impending device

failure due to critical system state or external factors such as the possibility of

device loss or destruction due to entering a hostile area.

5.1.1 Peer Selection

In traditional distributed systems built on fixed infrastructure, it is common

practice to maintain a single catalog that describes the available capability of all

nodes in the system. An example of such a system is the Chirp personal file

server (Thain et al., 2008), which uses a well-known, designated catalog server

updated periodically by each individual file server. Clearly, a catalog server in a

mobile network would be impossible to implement effectively in such a fashion. A

more decentralized approach might be through the use of distributed hash tables,

but even that would be impractical in a highly dynamic wireless ad-hoc network.

Maintaining static information about the capability and availability of nodes in

the system is unworkable in such a dynamic environment, as such information

rapidly becomes stale and useless, so one alternative is for each node to simply

monitor the state of its peers for as long as they are directly connected and then
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select one as needed.

Selection of a peer node depends on several factors. The first step in per-

forming a data transfer is determining the amount of data that must be moved.

Once the data size is known, the next step is finding a location with sufficient

available space. Because criticality of data depends mostly on the application or

situation, the specific data set is best determined with policy, which can simply

specify a prioritized list of files that are to be offloaded. To determine the remote

storage requirement, the volume of data is measured with an internal resource

monitor that periodically records the total size of the files expressed in the pol-

icy specification. The resource monitor also checks the current battery state and

available local storage space. With this information and knowledge of the system

state of neighboring nodes, it is trivial to determine whether its peers have suffi-

cient available storage which may be used as temporary scratch space. Gathering

this information requires advertisements of available storage space from each peer

node, much like notifying catalog servers in traditional distributed systems, and

such advertisements may be included as packet fields in a routing protocol or

transmitted separately. In this work the advertisement is part of a distance vector

routing protocol implemented within the TeamTrak testbed.

In addition to determining the size of data which must be preserved, a resource

monitor task periodically polls the battery level and available local storage space

and records it. Such state information is transmitted to its peers as data fields

in the packets in the routing protocol, and is used in conjunction with other

device state information such as physical location determined via a connected

GPS receiver, dead reckoning, or through a cooperative localization technique as

described in Chapter 4. All nodes in the system are localized.
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As routing packets are received from remote devices, each node constructs a

routing table that contains the battery state, available free storage space, and

latitude/longitude position of all connected peers. At the time a data replication

operation is required or requested, the current view of the network based on the

routing table is used to select a peer within range of a single hop. Selecting a

closely connected peer is desirable for two reasons. First, it is extremely chal-

lenging if not downright impossible to determine with any reasonable degree of

certainty the properties of the wireless connection between two arbitrary remote

nodes. More importantly, however, in many operational scenarios moving or repli-

cating the data is time-sensitive or time-critical and storing it in a geographically

proximate location may be more beneficial to recovery. In other words, placing

data at an arbitrary connected node that may only be reachable across several

hops may not be advantageous despite the potential availability of greater system

capability at that node. This does not take into account the higher probabil-

ity of failures and retransmissions introduced when moving data over additional,

intermediary nodes as described in (Rohner et al., 1998).

Peer selection in this approach consists of a two-part scoring method which

can augment existing routing protocols in mobile ad-hoc networks. Whichever

routing protocol is employed would need to include, or be modified to include,

system state and geospatial location information about each node as described

previously. Such information could easily be inserted into many types of routing

packets, as long as the mobile devices themselves have some notion of location

built in, e.g., are affixed to a GPS receiver.
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5.1.1.1 Initial Scoring

In order to find a suitable peer node, it makes sense to quickly eliminate from

further consideration those devices which are obviously not appropriate candidates

based on their available system capability. For instance, if a peer has insufficient

battery power to receive, for example, a 1 MB file transfer, or is unlikely to be able

to hold the data for very long, then it should not be considered after the initial

examination of its system state, unless the state were to change either through

battery replacement if possible or by freeing storage space.

The first step in peer selection, then, is to make a rough initial evaluation of

all nodes in the routing table, intended more to eliminate clearly unsuitable nodes

than to find an optimal node, and assign a score to each that reflects whether its

capability warrants further consideration. Any node with very low battery power

or available storage space less than the amount required to complete the transfer

is assigned an initial score of zero. Nodes that are more than a single hop away are

also scored zero. All remaining nodes are assigned an initial score of one. These

nodes are the candidates for possible data transfer.

5.1.1.2 Availability Estimation

When a data transfer is requested or required, the candidate nodes, which are

indicated in the routing table with an initial score of one, are then re-scored based

on an estimated window of opportunity. The window of opportunity, expressed in

units of time, is determined by extrapolating the peer’s location history over time

to some approximate point at which either connectivity will likely be very poor

or the node will move out of wireless range entirely, rendering any further direct

data transfer impossible. The window of opportunity is illustrated in Figure 5.1.
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Figure 5.1. Candidate Peer Node Selection

Once the window of opportunity is computed for each possible candidate node,

the node requesting the transfer simply performs a greedy selection and chooses

the peer with the largest window of opportunity.

This method ensures that nodes near the fringes of the wireless range are less

likely to be selected than those nearby if they are moving away from the requesting

node, but more likely if they are moving towards it, and that nodes which are

stationary relative to the requesting node are the most likely to be selected as their

windows of opportunity are considered infinite. Figure 5.1 provides an illustration

of the peer selection method. In this scenario, a node with insufficient battery

power is eliminated from consideration in the first step. Other candidate nodes

are then considered based on the predicted window of opportunity, illustrated

with arrows and dotted lines, which indicates the estimated length of time of

availability. In the figure, two candidate nodes are in motion, so they have a

limited window. Since one of the two candidates has critically low available system

resources, the other node is the one selected. If there are multiple nodes with
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acceptable resources available, that with the highest score among those would be

selected.

A very simple distance equation is used to determine the window of opportu-

nity between the peer’s current location and the intersection point of the wireless

radio range. Because wireless range is generally not isotropic, any empirically or

analytically determined range can be used; as long as the boundaries are roughly

known, the intersection points can be computed. For each candidate node ci,

scoreci
=

√

(xint − xit)
2 + (yint − yit)

2

ti − ti−1
(5.1)

where (xint, yint) is the intersection point between the candidate node’s extrap-

olated current path and the estimated limit of the wireless radio range. Because

only a conservative estimate of availability is required, the communication range

is considered to be the maximum range at which nodes have two-way connectivity.

For simplicity, in this case an isotropic model of connectivity is sufficient, although

it certainly does not need to be. Given the approximate communication range r,

the intersection points xint, yint) are determined as follows:

a = (xit − xit−1
)2 + (yit − yit−1

)2 (5.2)

b = 2
(

(xit − xit−1
)(xit−1

− xji
) + (yit − yit−1

)(yit−1
− yji

)
)

(5.3)

c = x2
ji

+ y2
ji

+ x2
it−1

+ y2
it−1

− 2(xji
xit−1

+ yji
yit−1

) − r2 (5.4)

Because connectivity between node j and each candidate node i is a given,

there are always two points of intersection between the path taken by i and the

outer range of the wireless radio. The intersection point that lies behind i is

ignored. Therefore we have:
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µ1 = −b +
√

b2 − 4ac (5.5)

µ2 = −b −
√

b2 − 4ac (5.6)

with intersection point (xint,yint), where xint and yint are expressed as:

xint = xit−1
+ µ1(xit − xit−1

) (5.7)

yint = yit−1
+ µ1(yit − yit−1

) (5.8)

5.1.2 Data Management and Recovery

The focus of this work is a backup and recovery scheme based on localization

for application scenarios in which data replication is necessary or desirable in

the short term. Because of the dynamic nature of mobile ad-hoc networks, a

distributed storage system for longer-term applications built on mobile networks

is not likely to be feasible, although some work has been done to address the

fundamental issues associated with data replication in MANETs (Hara, 2005).

Nodes which store data on behalf of another use whatever scratch space is

available on its local storage device to do so. Eventually, however, that stored

data might need to be either retrieved or purged. The node which originated the

data must either fetch the data or inform the peer that any of the replicated files

it stores on its behalf no longer need to be maintained. This might result from

replacing a battery or the operator’s successful return from a potentially hazardous

location. In a traditional distributed system build on a wired network with fixed

infrastructure, control of replicated copies is not difficult. On the other hand, in

a wireless network, particularly a MANET, data recovery is a nontrivial problem.
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If a node transfers data just before leaving the network, the only metadata that

might be known to the transferring node is the initial location of the transfer, but

even that is hardly guaranteed. The node performing the temporary storage may

have further transferred its data to a subsequent node. Since most peer-to-peer

networks assume either a fairly static locality of data or multiple replicated copies

of data, traditional approaches to data recovery are unsuitable for this system.

In most cases, there is only a single replicated copy of data for each node to

be managed. For sensor network applications, this data would generally consist

of time sequenced sensor data or system logs, largely obviating many of the most

significant challenges inherent to effective data management in an unstable en-

vironment. Still, effectively managing data is inherently challenging under such

conditions. Due to rapidly changing topology and frequent disconnects, providing

data for recovery or purging can be at most a best-effort service. For the types

of scenarios in which this method might be employed, it is generally more criti-

cal simply to ensure data is preserved somewhere than to guarantee a complete

restoration on the originating node in a timely manner. The practical implication

is the possibility that a redundant copy of data may reside on the network but

be unreachable by its originator. Alternatively, while peers which are reachable

only through multiple hops are not considered initially for transferring data, it is

possible that over time, multiple transfers by several peers or changes in topology

due to mobility may position the data more than a single hop away from the

originating node.

When remote storage of replicated data is no longer needed, it can either be

retrieved by the originator or simply purged. Naturally, a successful restore would

result in purging of the replicated copy as well, since generally mobile devices
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are resource constrained. In a manner somewhat reminiscent of the Access Log

location management method for accessing replicated copies (Hara, 2005), the

originator sends a unicast message to the node corresponding to the data items

maintained in a table, which requests the particular operation. If the replicated

data is available on the node originally selected and there is a connection, even

indirect, between it and the originating node, then recovery is simple, assuming

the data can be successfully transmitted without disconnects or partitioning.

A node attempting to rejoin the network will check for the presence of the peer

to which its data was transferred. If the node is present, then the originator either

recovers the data, the replicated copy is deleted, or the node holding the replicated

copy forwards the request while informing the originator of the new location. If the

replicated copy is unreachable, nothing more can be done until either a route can

be established or the mission ends. The tradeoff for ensuring higher availability of

data in a mobile network is the possibility of redundant copies, and in the general

case, possible inconsistency between such replicated copies.

5.2 Evaluation

This section demonstrates that the context-aware selection method outper-

forms selection by either random choice or geographic proximity under most con-

ditions with a variety of assumptions. In this work, a selection is considered

superior if it remains within wireless range, and thus available, for a longer period

of time using various patterns of motion. The effectiveness of this approach was

initially evaluated through a series of discrete event simulations using a very simple

linear and random movements among remote peers. The Random Walk mobility

model was selected because of the obvious difficulty in predicting availability when
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nodes make frequent changes of direction. The simulations were conducted in two

parts, discussed here separately. The first part is an evaluation of the quality of

the initial selection, based on the criteria needed to conduct data transfer. The

second part evaluates the quality of the selection over a longer period of time in

order to determine whether a context-aware approach yields a selection with a

higher average availability, as determined by both system state and connectivity.

Unless otherwise stated, in the initial simulations 50 nodes were placed at ran-

dom within the node of interest’s wireless range of 300 meters, with uniform distri-

bution, and assigned random speeds and directions. Because having nodes remain

stationary relative to the node of interest does not yield interesting evaluation

results, as the availability of any such node would not be affected by movement,

focus of the evaluation tasks is limited to nodes actually in motion. For these

simulations, a minimum speed of one meter per second and a maximum speed of

four meters per second were selected. This is intended to model a range of speeds

of human operators from a slow walk to running quickly.

5.2.1 Initial Selection

TABLE 5.1

INITIAL SELECTION (LINEAR MOTION)

Success Optimal

Method Rate (%) Failures Selections (%)

Random 74.27 187.00 10.43

Nearest 84.47 113.00 5.79
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TABLE 5.1

Continued

Success Optimal

Method Rate (%) Failures Selections (%)

Context Aware 100.00 0.00 100.00

Table 5.1 compares the ability of the context-aware approach to initially choose

an optimal peer node moving linearly with constant speed to that of the random

and geographic selection methods. For initial selections, a successful selection is

one in which the chosen peer has ample battery life and storage space to complete

a 50 MB data transfer and lies within a 300-meter wireless radio range. Because

all nodes are initially within range, a selection in this case is considered a failure

only when the selected node has insufficient system state. Optimal selections

are those with the largest composite evaluation score among all nodes, and for

the random and nearest selection methods, an optimal selection is one that was

also chosen by the context-aware approach. Context-aware selection will always

choose a node with sufficient system state for the size of the data assuming one

is available; hence the 100 percent success rate shown in the table. These results

are shown for simulations of 1,000 independent runs.

Table 5.2 further compares the context-aware approach to random and geo-

graphic selection when peer nodes move randomly in both speed and direction.

Other simulation inputs are the same as in the linear model.
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TABLE 5.2

INITIAL SELECTION (RANDOM WALK)

Success Optimal

Method Rate (%) Failures Selections (%)

Random 73.11 195.00 9.43

Nearest 84.30 114.00 5.64

Context Aware 100.00 0.00 100.00

For both patterns of motion, even using a random approach can produce rea-

sonable results, with an selection success rate of about 74 percent in simulations

where the initial system states among nodes are randomly generated with a dis-

crete uniform distribution. As shown in the table, the random selection method

generally chooses a higher number of unsuitable nodes compared to selecting the

most geographically proximate node, but this is more likely due to the randomly

generated system state than fundamental limitations of the selection method. By

eliminating the possibility of selecting unsuitable nodes, the context-aware ap-

proach does not experience the failures exhibited by the other selection methods.

It is always possible in a given scenario for no suitable peers to exist, but no selec-

tion algorithm would work in such a case, and as in the case of stationary nodes,

is a much less interesting simulation scenario.

Due to the greedy nature of the selection algorithm, it is possible that multiple

peers may select a single stationary node for data backup simultaneously. To avoid
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a single node becoming a bottleneck for multiple transfers, a policy mechanism

can be used to select other nodes in such an event. Similarly, an access control

policy could be used to prevent unauthorized placement or retrieval, but such

policy and access control schemes have not yet been explored within the context

of this work.

5.2.2 Availability

After the initial evaluation and selection, the selected nodes were reevaluated

after increasing periods of time to measure the quality of the selection using the

length of time connectivity is maintained. While it is certainly true that nodes out

of wireless range of a specific device may still be reachable over multiple hops, the

likelihood that data transmissions will fail increases significantly with the number

of hops (Rohner et al., 1998), so the ideal case would be to select nodes that can

later be reached directly if possible, with the goal to find the peer with the greatest

availability. This section evaluates the ability of the context-aware approach to

do so.

To evaluate the longer-term suitability of the selections, both random and lin-

ear motion patterns were simulated among 50 nodes over a period of 700 seconds,

and at 5-second increments, reevaluated the availability of the selection. Batteries

discharge at a constant rate with a total lifetime of 3 hours. For each selection

time, 1,000 independent simulation runs were conducted and the mean success

rate for each method was recorded.

Figure 5.2 shows the effectiveness of the context-aware approach as compared

to a random or strictly geographic approach when peer nodes move in a constant

linear fashion, starting at random locations to simulate a steady state scenario.
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Figure 5.2: Availability With Linear Motion
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Figure 5.3: Availability With Random Walk Mobility Model
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Once the initial selection is made, the simulator attempts to contact the selected

node again after a designated time interval Any selected node with critically low

battery power or storage space, or has moved out of wireless range, is considered

a bad choice. By selecting nodes with an acceptable system state that also max-

imize the conservatively estimated availability window, the probability of easily

retrieving data is higher than that obtained using the other approaches. Figure 5.3

shows similar effectiveness of the context-aware method using remote peers that

move randomly.
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Figure 5.4. Effect of Data Requirement on Success Rate

Figure 5.4 shows the effect of increasing data requirements on the success rate.

In these simulations, nodes are assumed to have available storage space ranging
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from a minimum of 50 MB to a maximum of 150 MB. As the size of the data

requirement increases up to the limit of available storage resources, the success

rate for all three methods approach zero, with the context-aware approach having

a much higher success rate overall.

Finally, the effect of the number of nodes and the size of the wireless radio range

on the average length of time before each approach fails is evaluated. Table 5.3

shows the amount of elapsed time, i.e., the availability period, averaged over 1,000

independent trials for each node/range pair, before each method’s selection fails

due to insufficient system state or eventual movement out of communication range.

In each case, the context-aware method produces a selection with a higher average

availability time than the other methods, in some cases by as much as six times

that of the random selection.

For very small-scale networks, both in terms of wireless capability and number

of nodes, the context-aware method does not provide enough of a benefit to be

worthwhile, since availability is extremely limited in any case. The results indi-

cated with a 1 highlight one example of such. However, as the size and capability

grow significantly larger, as shown, for example, with a 2, the context-aware ap-

proach gives dramatically better results than either nearest-neighbor or random

selection. This suggests that as wireless capability increases and ranges grow sub-

stantially larger, a context-aware approach for maximizing availability may have

substantial benefit for improving reliability of data sharing in mobile networks.
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TABLE 5.3

AVERAGE TIME BEFORE FAILURE

Number Selection Maximum Wireless Range (m)

of Nodes Method 10 50 100 500 1,000 5,000 10,000

10

Random 3.21 19.7 33.8 147.7 275.9 1,190.3 2,108.2

Nearest 3.91 31.2 50.5 217.7 426.2 1,805.7 2,998.0

Context 3.91 47.6 91.5 439.1 852.2 3,356.1 4,768.6

50

Random 8.6 19.2 32.1 148.8 297.2 1,219.7 1,926.8

Nearest 10.9 31.0 53.1 221.4 434.8 1,897.5 3,127.4

Context 11.0 67.7 133.6 633.8 1,227.7 4,377.9 5,523.7

100

Random 9.8 19.8 35.3 146.9 278.4 1,275.0 2,043.0

Nearest 13.3 30.3 52.8 225.1 429.0 1,872.3 3,143.4

Context 13.5 75.4 149.6 699.0 1,338.6 4,715.0 5,131.8

500

Random 10.1 19.5 34.5 152.7 303.9 1,198.5 2,020.5

Nearest 15.8 31.2 21.7 219.2 440.6 1,920.9 3,304.8

Context 16.4 88.3 172.4 819.8 1,545.8 5,034.0 5,041.0

1,000

Random 10.1 19.9 33.6 153.1 285.5 1,234.4 2,082.1

Nearest 16.6 31.2 53.2 225.3 435.8 1,846.8 3,195.9

Context 17.3 92.4 179.7 846.6 1,618.0 5,049.9 4,993.4

5,000

Random 10.0 19.6 34.5 152.8 276.1 1,231.0 2,061.1

Nearest 17.5 31.3 54.4 227.4 433.3 1,973.3 3,179.1

Context 18.7 99.1 192.7 903.0 1,706.2 5,038.4 5,188.5
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TABLE 5.3

Continued

Number Selection Maximum Wireless Range (m)

of Nodes Method 10 50 100 500 1,000 5,000 10,000

10,000

Random 10.1 19.8 33.1 156.1 291.2 1,233.2 1,903.02

Nearest 17.8 31.0 53.1 228.1 432.0 1,978.8 3,319.02

Context 19.2 101.1 195.2 919.4 1,735.4 2,853.4 5,356.52

5.2.3 Random Waypoints

In the previous sections, the selection algorithm was evaluated using simple

linear or random mobility models. Additionally, the node making the selection

was assumed stationary. The limitation of such models and assumption is that

while effective in highlighting the differences in efficacy of the selection algorithms

evaluated, neither are likely to occur in practice, and may ultimately be overly

simplistic. To further evaluate the selection algorithm under more challenging

conditions, the mobility model is changed to Random Waypoints for all nodes in

the system, to include the selector. This change in assumption effects a change

in the way peers are tracked and scored; it is the relative motion rather than

absolute, that affects availability. In addition, sudden changes in direction may

occur among any node in the system at any time. For purposes of evaluation,

the Random Waypoints model was again selected due to its generality and that it
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provides a more difficult scenario than would likely to be encountered in practice.

In this scenario, the random, nearest neighbor, and context-aware selection

algorithms were executed among a network of 100 nodes with varying commu-

nication ranges and varying network densities. Initial placement of the nodes is

random with uniform distribution about the simulation field. Communication

ranges vary from 10, 50, 100, 300, 500, 1,000, and 10,000 meters with gradu-

ally decreasing densities commensurate with each successive increase in maximum

communication range. All nodes in the system are in motion with an average

speed of 1.56 meters per second, which is the average walking speed of an adult

male.
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Figure 5.5. Selection: Arbitrary Mobility

Figure 5.5 illustrates the number of selections made by each algorithm over
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1,000 independent trials where the selected peer had the longest actual availability

starting from time of selection. Availability can be terminated by either moving

out of communication range or loss of battery power. In the simulation trials whose

results are shown in the figure, GPS is perfect and RF propagation is isotropic.

At very short ranges, the likelihood of establishing connectivity is remote (at least

with a random model of mobility this is the case; in a real-world scenario operators

may congregate together, which would facilitate connectivity). The likelihood of

further finding a peer whose system status is sufficient is even less; hence, the

very low histogram bars for short ranges. If no peer is found when a transfer

is required, the selection fails. Conversely, despite much longer communication

ranges, the decreased network density in such cases diminishes the probability

of establishing connectivity and thus selecting a suitable peer. Indeed, only the

availability of a connected neighbor would be impacted by the increased range.

Multiple selection methods choosing the same node explains the similar results

for very long ranges; a limited number of peers are available as the nodes are

dispersed over a much wider area.

5.2.4 Anisotropic RF Propagation

In addition to the random mobility model introduced in the previous scenario,

the effect of anisotropic RF propagation is introduced. In these simulations, the

variation in RF propagation is as much as 15 percent of the maximum communi-

cation range with propagation in each direction randomly determined based upon

the difference between the lower and upper bounds. This parameter was estimated

based on empirical tests using wireless Ethernet, but is used here for illustrative

purposes rather than providing a rigorously constructed model of wireless com-
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munication range, which is beyond the scope of this work. In these simulations,

the context-aware selection algorithm generally considers only the lower bound of

full connectivity, thereby behaving similarly to the isotropic case with a somewhat

shorter communication range. As in the previous section, Figure 5.6 illustrates

the total number of selections per algorithm in which the selected peer had the

longest actual availability time, determined over 1,000 independent simulation tri-

als. Because the connectivity model is essentially the same as the isotropic case,

the results do not substantively differ.
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Figure 5.6. Selection: Anisotropic RF Propagation

5.2.5 Localization Error

Finally, in addition to the revised mobility and RF propagation models, the

evaluation of the context-aware selection algorithm is now subjected to the addi-
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Algorithm 4 Weighted Peer Selection

1: for i = 1 to n do
2: if Connected(k, i) then
3: if (Space-Available(i) ≥ Space-Required(k)) ∧ ¬ State-Critical(i) then
4: Score(i) ⇐ 1
5: else
6: Score(i) ⇐ 0
7: end if
8: end if
9: end for

10: if select = true then
11: for j = 1 to n do
12: if (Score(j) 6= 0) ∧ (j 6= k)) then
13: v = 1

∆t

√

((xit − xkt
) − (xit−1

− xkt−1
))2 + ((yit − ykt

) − (yit−1
− ykt−1

))2

14: ∆x = (xit − xkt
) − (xit−1

− xkt−1
)

15: ∆y = (yit − ykt
) − (yit−1

− ykt−1
)

16: ∆r =
√

∆x2 + ∆y2

17: D = (xit−1
yit) − (xityit−1

)

18: intx =
D∆y− ∆y

|∆y|
∆x
√

range2∆r2−D2

∆r2

19: inty =
−D∆x−|∆y|

√
range2∆r2−D2

∆r2

20: wi =
cit

+cit−1

eit
+eit−1

21: Score(i) = wi

√
(xint−xit

)2+(yint−yit
)2

v

22: if Score(i) ≥ scoremax then
23: selected = i
24: scoremax = Score(i)
25: end if
26: end if
27: end for
28: end if
29: return selected
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Figure 5.7. Candidate Selection (With Localization Error)

tion of modeled localization error. Each node’s position is subject to both error

and uncertainty, as illustrated in Figure 5.7. In this particular scenario, GPS error

was used as a representative method of producing localization error in all nodes.

The introduction of error and uncertainty means that selections must be made

based on each neighbor’s reported position, which may be subject to substantial

error and uncertainty, as in a real-world scenario may be determined from any

of several available methods. In this case, only reported positions are evaluated,

and all positions are assumed to be error-free for purposes of selection, i.e., no

accounting for such error is done yet.

Compared to the previous cases, the introduction of localization error in this

case causes the context-aware approach to slightly underperform relative to sim-

ilar cases with perfect localization. Moreover, for short communication ranges,

the random and nearest-neighbor approaches both outperform the context-aware

method due to the granularity of GPS error in relation to the short potential
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Figure 5.8. Selection: Localization Error

availability times, as shown in Figure 5.8. In such cases, particularly when the

positions become jittery, e.g., short GPS drift lengths, but error is pronounced,

even a short window of opportunity cannot effectively be determined. However,

as the communication ranges increase, the effectiveness of the algorithm similarly

increases (assuming a reasonable network density to provide an adequate number

of nodes to select from). Even with GPS error, the observed tendency of such

error to drift in the same general direction for several sections actually assists

the algorithm, and such drift is incorporated in the GPS error model used in this

evaluation. If the direction of the error were strictly uniformly distributed and

changed at every time step, the algorithm would be far less effective in estimating

availability. Note that such a phenomenon is not impossible; a very unfortunate

GPS fix with a jittery position could render estimating an availability window

with any degree of accuracy much more difficult. Other localization techniques,

172



e.g., dead reckoning in particular, are subject to far less jitter from one location

measurement to the next.

5.2.5.1 Weighting Localization Error

To help mitigate the effects of localization error on the selection algorithm, it

is possible to weight the score of each candidate to account for both error and

confidence levels. Doing so requires both available metrics from each localization

technique as well as a predetermined model of confidence for those techniques.

Clearly, a node whose location information has either high error magnitude or

low confidence should have a lower score than another whose estimated error is

low and confidence level is high. One very simple weighting scheme is to simple

multiply each candidate’s score by the ratio of confidence to horizontal error, i.e.,

for node i, the score wi is modified such that w′
i = ci

ei
wi.

Therefore, the algorithm with modifications in its entirety is specified in Al-

gorithm 4. In this algorithm, node k is the selector.

To evaluate the effect of this modified scoring method, the maximum actual

localization error and the maximum horizontal error metric was increased inde-

pendently for a system of 100 nodes. As before, the Random Waypoints mobility

model was used, as was a 300-meter maximum communication range. Figure 5.9

shows the increase in average availability as a result of weighting each score based

on estimated error and confidence. The graph shows an increase in mean avail-

ability of as much as 20 percent by simply lowering the score of those nodes whose

available metrics suggest poor localization. When localization error is small, how-

ever, weighting the score based on estimated metrics produces results very similar

to the unweighted case. As either the actual error, the estimated error, or both,
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increase, then increases in mean availability can be realized. Additionally, it is

possible that a more sophisticated weighting scheme could produce further im-

provements.

5.3 Conclusion

In this chapter a method for selecting peers to offload transient data is proposed

that accounts for both heterogeneous and dynamic system state among nodes as

well as estimated availability through mobility. Previous work has shown that

mobility prediction can improve overall availability and link longevity, which is

important for data transfer operations, but this work goes a step further and in-

corporates dynamic state information in the peer selection process. This approach

has the advantage of choosing nodes most likely to remain available for recovery
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in applications for which transient data has high value. Further improvements

can be realized by accounting for localization error in the scoring process.

Simulation results show that this approach improves the success rates of both

the initial selection and data recovery. For small scale networks, to include those

with very limited wireless range, accounting for predicted availability may be of

limited benefit. However, as the network scales, particularly with more powerful

wireless radios, using a fully context-aware selection method can significantly in-

crease the availability of temporarily replicated data, which in turn can lead to

greater success for operations which depend on the reliable access to and avail-

ability of sensor information.
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CHAPTER 6

CONCLUSION

Component-based approaches to building systems offer many advantages in

terms of cost savings and lower development times, given the availability of com-

modity hardware components with standard interfaces. However, many of the at-

tributes that provide such advantages simultaneously pose challenges for develop-

ers of robust mobile applications. Understanding interfaces to sensor components

or even examining metadata from each device is insufficient. For robust mobile

applications dependent on location information, error metrics must be explicitly

understood and modeled, as many types of sensors, for instance GPS receivers,

often exhibit error in unexpected ways. The foundation of this work is an eval-

uation of an array of existing sensor hardware for location-sensitive applications

and mobile ad-hoc networking.

While it is well understood that GPS localization can be very accurate and

precise, the most accurate positioning, such as found in military-grade applica-

tions, typically requires expensive hardware, laborious offline analysis, etc., and

thus is not feasible at a large deployment scale or in real time. The expected

error in low-cost, commercial GPS systems is still acceptable for localization at

human scale, but the fundamental limitations of GPS which manifest in many en-

vironments must be addressed for any general purpose mobile application. Robust
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personal navigation in arbitrary environments presents tremendous opportunities

for system and application developers.

As application requirements specify fine-grained positioning for human-scale

navigation or other location-sensitive applications, robust performance necessi-

tates the use of techniques to augment existing sensors. Of course, this idea

is well understood among researchers and developers of mobile sensor networks,

but existing correction techniques in general have proven to be inadequate. The

example of mobile backup systems shows that even with localization quality gen-

erally deemed acceptable, application performance can still suffer if error is not

accounted for in some way.

In this work, I presented and evaluated several methods to account for local-

ization error. Starting with a standalone dead reckoning system incorporated into

TeamTrak, which can augment GPS in environments in which GPS positioning

is inconsistent or error-prone. However, localization via dead reckoning alone is

insufficient, as periodic corrections are required, with frequency depending largely

on the number of changes in direction as well as the quality of the initial position,

which may be quite poor. I presented two methods for providing such correction,

depending on available technology.

Whether a reliable ranging technique is available or not, correction of pedes-

trian dead reckoning systems can be accomplished by cooperatively sharing loca-

tion information. With no means of measuring spatial separation between nodes,

combining positions by simply averaging those of connected neighbors places an

upper limit on position error as a function of both communication range and mea-

surement error, which can increase accuracy of positions whose measurement error

is effectively unbounded. Therefore, even with a very limited amount of informa-
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tion, cooperatively sharing data can effect improvements. Of course, with more

information available, better results can be achieved. Averaging positions which

are filtered by estimated error can improve positions, while simultaneously avoid-

ing the poisoning effects of highly inaccurate positions. For such simple correction

schemes, the extent to which the accuracy of a position is improved is a function

of all of the following: measurement error of the positions used for correction, the

density and geometry of the anchors, communication range, and the “staleness”

of the position to be corrected.

If ranging is available, additional options for correction positions are available.

Not only can the accuracy of localization measured via dead reckoning be improved

using trilateration, but correcting GPS positions subjected to drift may be possible

using other GPS positions. It may also have the effect of reducing jitter. However,

doing so requires a filtering mechanism to screen out positions with high error or

whose error metric has low confidence. This requires both a model of GPS error

as well as a protocol for cooperatively sharing location information. Particularly

in the case of GPS-to-GPS error correction, error in position must be accounted

for in order to avoid making locations worse, particularly in environments with

poor anchor node density or unreliable metrics.

Even with a discipline for effecting improvements in localization using shared

sensor data, the presence of (occasionally significant) measurement error is a cer-

tainty, particularly due to the effects of mobility and, more significantly, funda-

mental limitations of localization techniques. This will continue to be the case

for the foreseeable future. For applications in which precise localization is a re-

quirement, such error must still be taken into account. One possible way to do

this, demonstrated in this dissertation, is by weighting the utility of a localized
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node with both the magnitude of the estimated position error and the confidence

level in such estimates. Such accounting can facilitate better selection decisions

in protocols such as geographic forwarding of routing packets.

While I have showed how significant gains in location quality can be realized

through sharing information, this work has only barely scratched the surface of

the larger problem of localization in mobile sensor networks. Some challenging,

and potentially quite daunting, challenges remain open problems, particularly rig-

orous evaluation of the error of positions determined via the simplest cooperative

localization schemes.
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