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ABSTRACT

In recent years, there has been a renewed interest in laregiagd
systems for large scale distributed computing. Unfortalyaimost
systems available to the end user use a custom descriptien la
guage tightly coupled to a specific runtime implementatioak-
ing it difficult to transfer applications between systenwadldress
this problem we introduce Makeflow, a simple system for ssprg
and running a data-intensive workflow across multiple ekeou
engines without requiring changes to the application or kfiow
description. Makeflow allows any user familiar with basicixJn
Make syntax to generate a workflow and run it on one of many
supported execution systems. Furthermore, in order tosaste
performance characteristics of the various execution eegjavail-
able to users and assist them in selecting one for use wedinte
Workbench, a suite of benchmarks designed for analyzingnmom
workflow patterns. We evaluate Workbench on two physicéli-arc
tectures — the first a storage cluster with local disks andcavslr
network and the second a high performance computing clustbr
a central parallel filesystem and fast network — using a \tgrigf
execution engines. We conclude by demonstrating threécappl
tions that use Makeflow to execute data intensive applicatomn-
sisting of thousands of jods.

1. INTRODUCTION

Many problems in both science and industry ranging from web

very effective at expressing highly parallel data inteasapplica-
tions. To this end, we present a new implementation calale-
flow (Make + Workflow) that can portably run the same applica-
tions across multicore processors, dedicated clusterE)S$cle
scavenged grids (Condor), storage clouds (Hadoop), antiicam
tions of the above (Work Queue), without requiring any clesntp
the application or the workflow description. This makes ggble

to develop an application on a personal computer, and them-se
lessly move it between institutional clusters and comnaédouds
without any restructuring.

Of course there have been mapgrallel implementations of
Make presented previously [5, 24, 4, 27]. These all assun® a h
mogeneous set of reliable processors, all connected to enoom
shared filesystem. Makeflow goes beyond these previousnsyste
with a truly distributedimplementation that runs on heterogeneous,
failure-prone distributed systems, taking advantage tf teality
when the implementation allows it. To enable this, we rezjair
small but important change to the semantics of Malata depen-
dencies must be completely elaborat€to be clear, Makeflow is
designed for data intensive scientific applications, ambigpartic-
ularly suited for compiling and linking programs.)

Because Makeflow provides transparent portability of ayapli
tions across systems with significantly different propestiit al-
lows us to perform an objective comparison of the relativeaté-
ities of each system for different types of workloads. Te thind,
we have created/orkbencha system-independent set of workflow

indexing to genome analysis can be expressed as a graph bf smabenchmarks that measures dispatch latency, job throughgit

sequential programs with a high degree of parallelism. A lpeim
of workflow systemfl1, 17, 19, 22, 12, 9, 35] have been created
to express and execute such programs. While these systeras ha
many virtues, they typically couple a custom language toshorn
runtime implementation, making it difficult to move applicas
across systems, or even to evaluate which system is mosi@ppr
ate for a given application.

We argue that there has long existed a portable and effdative
guage for data parallel computing. Traditional Make [18h@ugh
most commonly used for compiling and linking programs, &oal

1This work was supported in part by National Science Foundati
grants CCF-0621434 and CNS-0643229.
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throughput, and interprocess communication. We evaluaigk\W
bench on two distinct architectures — a storage cluster amgra
performance computing cluster — using each of the exection
gines supported by Makeflow. These results help the end aser t
select the right type of execution system for the workloalzarid.

Makeflow is open source software that is currently in proidunct
use by a number of scientific communities. We conclude witis-a d
cussion of several bioinformatics and biometrics appiicet using
Makeflow at Notre Dame.

Several previous publications have mentioned Makeflow §spa
ing. A journal article [34] and a book chapter [29] briefly cliss
Makeflow as an example of one of several kinds abstractions fo
distributed computing. This is the first publication to diss Make-
flow in detail, to present the Workbench benchmarks, andatuev
ate workloads across multiple implementations.

2. THE MAKEFLOW LANGUAGE

The Makeflow language is very closely related to the tradéio
language of Make [13]. A valid Makeflow program consists of a
sequence of assignments and rules. assignmentindicates the
name and value of an environment variable, which appliedito a



Figure 1: Example of a Bioinformatics Application in Makeflo

following items in the file. Arule indicates a command line to be
executed, along with the input files required by that command
the output files that it will create.

A Makeflow rule has slightly different semantics than trendial
Make. Traditional Make simply requires that a rule stateyahk
files that may have changed, but assumes that any other file in
the filesystem is available for use by the command. In contras
a Makeflow rule must accurately speciil of the filesthat a com-
mand requires as both input and output, because this is osed t
create the correct execution environment.

For example, this is amcorrect Makeflow rule:

out . dat:
simul ate. exe in.dat -o out.dat
In contrast the following rule isorrect, because it specifies all
of the input dependencies, including the executable aralfdat

out.dat: sinulate.exe in.dat
sinmul ate. exe in.dat -o out.dat

Figure 1 is a visualization of a relatively small bioinfortica
job expressed in Makeflow, consisting of 33 jobs (circles) Hre
interdependent files (squares). In practice workflows aenofery
large, consisting of thousands to millions of jobs proaggger-
abytes of data. (The largest are difficult to present in ggbh
form.) As seen in Figure 1, the graphs may be highly irregular
and thus not easily expressed in a fixed abstraction such ps Ma
Reduce [11]. Once a workflow is expressed with fully elabeatat
data dependencies, a number of opportunities for exectltiag
workflow efficiently and scalably become possible:

e Job migration. When the full dependencies of each job are
known the single job may be moved to a remote execution
site without requiring any particular runtime support on a

shared filesystem. This enables harnessing of resourdes tha

are outside the immediate execution environment.

Workflow migration. When the inputs and outputs of the
whole workflow are known it becomes easy to move the en-
tire workflow to another site. For example, one might allo-
cate a cluster on a commercial cloud, send the inputs, execut
the entire workflow remotely, and then retrieve the outputs.

Workflow decomposition. Given sufficient information about
jobs and data it may make more sense to partition the graph
and run sub-graphs in distinct systems. As we show below,
some execution systems are more effective at partitionted da
and others are better at shared data.
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Figure 2: Architecture of Makeflow

e Co-location of computation and data.When operating on
distributed data it is often beneficial to move computatimn t
where the data is located or vice versa. With information
about the data needs of each application an implementation

of Makeflow can seek to put them together.

Resource managementCloud computing environments in
particular require the user to make resource management de-
cisions: allocating more machines always costs more money
but may not necessarily improve performance. Accurate in-
formation about the computation and data needs of a work-
load makes it feasible to select appropriate resourcesnfor a
execution.

In order to exploit these management and performance pieper
we have very deliberately chosant to include any of the higher-
order constructs found in other versions of Make, such adiéinp
and pattern rules. For example, if we include pattern rides it is
no longer possible to measure the width or depth of the gragt w
out actually executing it. Makeflows must also be acycliccley
introduce ambiguity into the correct execution and are gnlydg-
ingly permissible in traditional Make due to pattern rulediich
Makeflow excludes. Furthermore, as in traditional Makeehgno
inherent facility for time-sensitive execution. Makeflosva static
declarative specification and nothing more.

We have not found any of these exclusions to be a serious lim-
itation in practice: where more dynamic behavior is needasd i
accomplished by writing a script which generates the désitark-
flow, which can then be processed as an independent stepoSee
earlier paper on Weaver [6] for examples.) Essential néinite
cycles can usually be accommodated with renaming and irrem
tal names, and time-sensitive execution can be accomgligize
cron or simple shell scripts. By analogy, HTML has achieved
universal success by aiming simply to be a declarativersié of
the structure of a web page; programmability has been cdatdig
a variety of languages that generate HTML.

3. IMPLEMENTATION

We have created an initial implementation of Makeflow that-ex
cutes complex workflows effectively on several differeré@xtion
platforms. Our implementation is open source software uade
tive development, with a growing user communftjhe work here

2http://www.nd.edu/ ccl/software



describes version 3.4.2 of the software, and exploits mantyr(ot
all) of the opportunities made possible by the graph reptesen.
Figure 2 shows the architecture of the current implememtati
The user provides a workflow in the form of a Makefile, then exe-
cutes tharakef | owprogram. The Makeflow core logic manages
the graph of processes and data, submits jobs to the absysct
tem interface, and records events in a transaction log. bt
system interface provides an API for submitting a single gola
time, indicating input and output dependencies, and thityabd
wait for the completion (or failure) of any previously sultted job.
Drivers for multiple execution systems are hidden behirelah-
stract interface, and include Local execution, Condor,/Gtacle
Grid Engine, Hadoop, and Work Queue, which we describe below
Events in the life of the workflow are recorded in a transachog,
which is used for both failure recovery and system monitprin

3.1 System Drivers

Two details of the system drivers are worth noting. Firsthea
driver is a combination of a computation environment wittghtty-
coupled storage systeni.ocal is actuallyLocal processes and a
local filesystemwhile Condoris actuallyCondor execution with
file transfer and so forth. Each represents a significantly different
method of accessing data at runtime. We will elaborate osethe
properties in each section below, but use the short namediotyc

Second, we have found that many execution environments have
poor support for monitoring the status and completion ofyrjahs
asynchronously. All provide some interactive command ob we
page for observing system or job status, but this is unwietdy
access from within Makeflow because the information may ke pr
sented poorly, or the call may be very slow to invoke. Thusaiche
case we describe the method by which we monitor the status of e
ecuting jobs, and in many cases it involves a creative workzat
to bypass the limitations of the system.

Local Driver. In Local execution mode, all jobs with satisfied
data dependencies are forked as new processes that exedhte o
local machine. Makeflow then monitors the status of eachdchil
process and marks the job description as completed or failed
the child exits. The local engine uses the local filesysteriisas
storage component. Where multiple cores are availabletiptaul
processes can run simultaneously. Local execution is afted for
testing workflow descriptions to ensure they are constduptep-
erly before scaling up.

Users can recommend local execution for specific jobs evemwh
executing on a distributed system by prefixing the rule wité t
LOCAL keyword. This informs Makeflow that a particular com-
mand is optimally run locally, due to filesize, permissiomsgon-
figuration constraints, while still allowing the command®man-
aged as part of the workflow.

Condor Driver. Condor [30] is a distributed batch computing
system that can be used across hardware ranging from desktop
chines to high performance clusters. Condor provides a oemp
hensive matchmaking system to match jobs to their hardweare r
quirements as well as to ensure fair usage of shared resowitte
out inconveniencing their owners.

Figure 3 shows the interaction between Makeflow and Condor.
For each job to be executed, Makeflow creates a job submiilgon
and invokecondor _submi t , which queues the job with the lo-
calcondor _schedd daemon. The job submission file indicates
the input and output files required for the jabondor _schedd
communicates with the matchmaker to find a compatible execu-
tion machine. At the execution site, the input files are egtrd
from the submission site, the job is executed, and outpwt &ite
moved back. When multiple jobs execute simultaneous|ytréres-
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fers may happen concurrently.

To provide lightweight natification of job status Condor pro
duces auser log filethat indicates when a job starts, completes,
migrates, and so forth. Makeflow monitors job status by pkrio
cally looking for new data appended to the file.

SGE Driver. Sun/Oracle Grid Engine (SGE) [14] is a batch sys-
tem for managing large clusters. SGE schedules jobs adness t
nodes in a cluster, typically requiring the use of a sharexys-
tem such as NFS or AFS to provide uniform data access acress th
cluster. Unlike Condor, the queue of jobs in SGE is storeddara
tralized location, which exercises absolute control ohenode
in the cluster.

Figure 4 shows the interaction between Makeflow and SGE. To
submit a job, Makeflow invokes thgsub command, indicating a
wr apper script and an executable. No information about required
datais communicated. The job is runin the shared filesysteenav

administrator permissions to install.) Makeflow spawnsvitidial
streaming commands for each job and tracks the exit codes-to d
termine success or failure.

Work Queue Driver. Most of the available job execution en-
gines are managed via a queue system, where jobs are subtoitte
a central manager which then dispatches jobs based on the ava
able resources and system policies. As we show below this can
result in long dispatch times with jobs sitting in a queue rfon-
utes or longer. For long-running or data-intensive jobs tigpatch
time may be subsumed by the computation time of the job jt&wlf
a job which consists of huge numbers of short-running inddpet
jobs the problem can be mitigated by batching many togethér;
for a workflow containing many small jobs, where most are depe
dent on the output of one or more previous jobs, this type stiesy
may impose 10-100 or more seconds of wait time for each second
of computation.

thewr apper script can be accessed and executed by the node. The To address this problem we have created Work Queue, a master-

job’s executable and its data are also accessed througinaineds
filesystem. Thewm apper script writes to a log file the job’s start
time, completion time, and exit status. Makeflow monitoes lhg
files of all running jobs to observe completion events.

Hadoop Driver. Hadoop [17] is an open source implementa-
tion of the Map-Reduce [11] distributed computing concéfibFS
is the file system component, corresponding to Google GFE [15
Normally, to interact with Hadoop, one submits a Java pnogra
with a Map component and a Reduce component. This program
is distributed to all nodes simultaneously and used to cocisthe
graph of communicating processes.

It can be challenging to convert an existing application kédegp-
Reduce form. A native Map-Reduce translation must accept in
put data via thé&Recor dReader class, which may return records
from any arbitrary point in the input file. The programmer twri
ing the translation must decide how to divide program logioag
the Map and the Reduce components and how to partition data
horizontally, neither of which may have obvious solutionBi-
nally, many translated applications will require multipieroca-
tions of Map-Reduce to complete the computation, adding-ove
head on each pass.

Legacy applications can be run using the Hadoop streamiag-wr
per. However, Hadoop streaming passes its input data tortygped
command via standard input and assumes that the appliczdion
handle arbitrary splits in the input file. For applicatiohattrely
on accessing whole files the most common workarounds eigrer i
nore any data locality or run the risk of repeating jobs, ptadly
corrupting any output files. Furthermore, this still regsira po-
tentially brand-new user to construct a wrapper script aad the
appropriate Hadoop and HDFS commands.

With Makeflow our objective is to make it possible to run ex-
isting, unmodified applications within the Hadoop envir@amh
achieving acceptable parallelism and performance withimah
effort by the user. If all the user’s code and data are alréady
Hadoop, Makeflow provides a way to execute applicationsdteat
not obviously of a Map-Reduce form.

Figure 5 shows how this is achieved. Makeflow passes its jobs
to Hadoop as single-node Map-only jobs. Each job consistiseof
streaming wrapper program, the desired executable andthe of
its input dependencies. Hadoop will then execute the jodalig
on a node close to the input data. The job is completely ureawar
of the Map-Reduce framework and will attempt to access fites i
the normal way through the filesystem. To enable this, we rely
on the Parrot [28] interposition agent to transparentlyveanthe
application’s system calls into the analogous HDFS libreaifs.
(FUSE [1] can also be used for the same purpose but may require

worker framework designed to work natively with Makeflow. ko
Queue provides fast invocation times, local storage managg
and a means to rapidly deploy an execution environment #@r th
user that is not already invested in a batch system.

Figure 6 shows the relationship between Makeflow and Work
Queue. The system consists of a lightweight worker procedsaa
master library which is linked into Makeflow. Workers may s
mitted as jobs to one or more distributed systems (such addton
or SGE), or run by hand on machines accessible to the useheAs t
workers are run, each initiates a TCP connection to the Makefl
process. The tasks for execution are stored in an interredeu
within Makeflow, and executed as resources become avail@ble
execute a job, the master simply transmits the required ifiles,
tells the worker to execute a command line, and then resitdve
outputs. Both inputs and outputs can be cached at the woriker w
the knowledge of the master, so that commonly used data des n
need to be re-transmitted.

The Work Queue system achieves fault tolerance in the fatigw
manner: The connection between each worker and the master is
via TCP. If the worker or the network fails the master drops it
internal record of the worker, assumes any running jobdaidend
reschedules it for another worker. If the master or the net\iails
the worker stops the running job, cleans up any cached dath, a
then attempts to connect again, up to a configurable timélths.
system safely accepts workers joining and leaving at rumtatbeit
with some performance penalty.

By having the Makeflow process manage the individual tagks th
negotiation or matchmaking time required by many undeggr-
ecution systems can be amortized across all of the tasksitexkc
by a worker rather than incurring that cost on each indiviidask.
Additionally, Figure 7 shows how Work Queue can be used to-com
bine resources from multiple sources into a single "prizioed".
The Worker process can be submitted as a batch job to systems
such as Condor and SGE or executed on resources allocated fro
commercial cloud. Regardless of how the worker is startexri-
tacts the master process and begins to execute jobs anddztehe
From the perspective of Makeflow the set of workers forms aalo
of both computation and storage resources.

3.2 Transaction Log

As Makeflow processes a workflow it produces a transaction log
This is a complete description of the life of the workflow, lumting
all job submissions, completions, and failures. The logddeves
two purposes: it facilitates recovery from failures andribnyides
data for troubleshooting and performance analysis. Thésl&gpt
by Makeflow at the submission site, and is independent of éiie v



ous logs produced by the batch systems.

Fault tolerance is critical in a distributed computing eowi
ment. Makeflow must operate with multiple distributed cotimu
systems over the wide area, each with their own peculianriil
modes. It is not uncommon for the network or a batch system to
fail during a job execution. A job within a workflow might run
for hours or days, during which time Makeflow may become dis-
connected from the batch system or killed outright. A ca®lap-
proach to job submission may result in multiple jobs beirgnsit-
ted unnecessarily, or orphaned jobs left running in theesystith
no corresponding record in Makeflow.

To address these problems, every event in the lifetime df é&jo
recorded in the transaction log. Rather than rely on thegpies of
files (as traditional Make would), Makeflow examines the $em
tion log to recover the state of running jobs. This allows kfdw
to crash and restart while its jobs continue to run. If Makeflo
receives a signal to abort it works to remove jobs from thetbat
system, logging as it goes. Interacting with the batch systan
take time, so if Makeflow crashes and restarts during an abort
will pick up the current state and then continue to abortrdiea

Ideally, batch systems would facilitate this by providiny ia-
terface fortwo-phase commitThis would allow Makeflow to first
request a job number from the batch system, record it to &mesir
action log, and then commit the job within the system. To our
knowledge, no batch system provides this through a pubtardn
face. (Condor does this internally, but does not expose an) AP
As such, our implementation has a short time window in which a
failure could result in duplicate job submission.

The use of the log has the side effect that Makeflow can be
killed and moved to a completely different machine, and ag las
the corresponding workflow, transaction log, and depenidsrare
available, the workflow can be restarted without dupligativork.

It also allows the user to switch execution engines mid-fovk If
the initial execution engine bogs down under externalstapart
of the system fails permanently the user can stop the worldliugv
restart it using a different engine while preserving all leé tvork
done up to that point.

The provenance information provided by the transactioraleg
makes debugging, performance analysis, and job statugenogi
much easier. By maintaining the logs of which jobs fail, hoany
times they are retried, and what times the failures occunakkes
tracking down the problem easier. The details of the log fllaa
users to keep track of which jobs are unexpected bottlermdiew
close to completion the workflow is. The real-time timestarap
low the user to correlate job events with the logs maintaibgd
many of the Makeflow subsystems in order to identify problems
with the subsystem as well as to correctly identify whichuias
are due to the application itself and which are caused byxbele
tion engine.

4. WORKBENCH

Makeflow allows one to run workflows across several different
execution engines and physical architectures, includingicore
systems, shared-nothing clusters, shared-filesystenecdyusand
distributed transient caches. As a result, one would expatdif-
ferent kinds of workflows would be better suited to differ&intds
of architectures.

To evaluate the essential performance characteristicssysa
tem, we created Workbench, a set of simple workflow benchsnark
implemented using Makeflow. Figure 8 shows the basic pattern
which are parameterized to run at various scales. Of conose, of
these patterns is representative of a complete workflow exer-
cises a different aspect of the system, including dispatenh@ad,

job throughput, 1/O throughput, and interprocess commnatiog.
By understanding these basic parameters we can better fhdge
expected performance of a real workflow, which consists afyma
of these patterns put together.

We note that Workbench very deliberately exercisespitho-
logical casesn workflow performance. We expect that any execu-
tion system would be effective at running a large number déin
pendent processes that each run for hours with minimal iapdt
output. The differences between systems are apparent omihei
cases that stress I/O and/or large numbers of short jobs.

The five Workbench patterns are:

Chained(J,T) consists of a chain of jobs running forT" time,
each producing one empty output file that is consumed by tkie ne
WhenT = 0 the chained benchmark measures the average latency
to submit a job, which puts a lower bound on the execution gf an
job. As we show below, many systems have a surprisingly tagh j
latency.

Concurrent(J, T) consists of a set of independent running for
T time and producing no input or output. This benchmark mea-
sures the throughput of job dispatch and completionT If> 0
then the throughput is likely to vary with the number of azhie
processors.

FanIn(J,T,F,S) consists of a set of jobs running forT" time,
each readind files of sizeS as input. This benchmark measures
the ability of the system to deliver input data. At largeout small
S it stresses the number of file transactions, while at siiadind
large S it stresses the total data throughput.

FanOut(J,T,S) consists of a set of jobs running forT" time,
with a common file of siz&s' as an input and independent files of
sizeS as outputs. This type of workflow is common in simulations,
where the input file represents the starting data and eadb jmoie
run of the simulator with varying input parameters. The lenark
measures how well a system can exploit commonality of inpta,d
typically whenS is large andJ is less than the number of cores.

Map(J,T,S) consists of/ independent jobs running far time,
each of which reads one input file of si%eand writes one out-
put file of sizeS. Maps occur in many transformative workflows,
where a series of operations are performed on each of many in-
put files, such as video transcoding or data exploration fiawis.
The Map benchmark also allows us to measure the aggregate 1/0
capacity of the system on independent tasks.

5. EVALUATION

We evaluate the Workbench benchmarks on two different physi
cal architectures and four software systems.

The first architecture is a Storage Cluster (SC) that reflbets
hardware philosophy of commercial clouds: large numbeshafed-
nothing machines with large local disks, cost-effectivenomod-
ity processors, and inexpensive mid-speed network intesliThe

Storage High-Performance
Cluster (SC) Cluster (HPC)
Size 26 Machines hundreds
CPU || 2.4 GHz 16-core] 2.6 GHz 6-core
Intel Xeon AMD Opteron
RAM 2GB per core 2GB per core
Local Storage|| 20TB SATA 160GB SATA
Network || 1 Gb/s Ethernet| 10 Gb/s Ethernet
Bandwidth

Table 1: Cluster Statistics
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Figure 8: The Five Workflow Benchmark Patterns

second architecture is a High Performance Cluster (HPG)#ia
flects a more traditional cluster architecture: large nuisiloé ma-
chines that share a common high-performance filesystemared h
minimal scratch disk on each machine, along with a high-dpee
network connection for communication. The capabilitiestio

system we rurranl n(1,0,1 — 256, IMB) and varied the number
of files in powers of two. The results are shown in Table 4.

In this test we see significant differences in the ability atle
system to complete small file transactions. The distribebest
cution systems are all at least an order of magnitude worse th

two systems can be seen in Table 1. We evaluated the Condor andocal storage, as they must transfer any files over a netw/dtk
Hadoop systems installed on the Storage Cluster and SGEeon th Queue’s simple file transfer protocol manages to transtes §lightly

High-Performance Cluster. Work Queue was able to be run tin bo
The results of these benchmarks are a function of both the-phy
ical architecture of the clusters available to us and thegdex the
software system in use. As such, we caution the reader notte ¢
pare the absolute results across clusters. Rather, tHesnesigal to
what extent each software system can exploit the uniquesptiep
of each cluster.
To establish a baseline for /0 operations, we measured &xe m
mum throughput achievable by a single client on each clusttewn
in Table 2.

System || Storage | Read (MB/s) | Write (MB/s)
SC Local 137.24 549.24
SC HDFS 19.78 55.94

HPC Local 110.73 290.50
HPC NFS 93.14 133.29

Table 2: Basic I/O Throughput

Job Latency and Throughput. To measure the latency of job
submission we ra@hai ned( 128,0) and to measure the through-
put of job submission we ra@oncur r ent (128, 0) on all config-
urations. The results are shown in Table 3.

System Engine Latency | Throughput

Sec/Job Jobs/Sec

SC Local 0.006 227.928
SC Condor 28.065 1.940
SC Hadoop 23.340 0.417
SC WorkQueue 0.060 11.424
HPC WorkQueue 0.016 115.711
HPC SGE 7.659 6.261
HPC Local 0.016 229.688

Table 3: Chained and Concurrent Results

The results of these tests demonstrate that the real boujudbon
throughput is the submission time of the system. SysterasAiérk
Queue that are controlled and scheduled directly by Makefimve
relatively short dispatch times and can push out 100+ jebsfd.

In contrast, systems like Condor and Hadoop that use annakter
scheduler have dispatch times orders of magnitude largen- C
strained as they are by the speed of the system’s nativetclspa
these drivers can only start at best a few jobs each second.

File Transfer. To measure the whole file throughput of each

faster than Condor or Hadoop to the Storage Cluster, butrid-ha
ily beaten by the high-speed central fileserver utilized BESN

the High Performance Cluster. Condor and Hadoop end up with
similar performance numbers, reflecting the slower digptitnes
required by negotiating job placement or packaging andéhgetp

the Hadoop streaming jobs, balanced by the increased &gl

in file transfer.

Aggregate 1/0. To measure aggregate 1/0 performance on large
workflows, we rarFanQut (128, 0, 1IMB/16MB/64MB) and
Map(128, 0, 1IMB/16MB/64MB) on both clusters. The SC results
are shown in Figure 9 and the HPC results are shown in Figure 10

For the Storage Cluster architecture the results indibaterthen
dealing with small files (a few MB or less) systems with mini-
mal overhead and short dispatch times like Work Queue Wilyi
dominate, achieving remarkably steady throughput regasdbf
the number of workers used. As the size of the files incredmsgs t
gap closes. Work Queue’s caching behavior provides a natdra
vantage for computing Fan-Out patterns, allowing it to rremits
performance lead up through 64MB files.

For Map patterns, where each file must be transferred fresksic
the network, both Condor and Hadoop begin to catch up. At file-
sizes around 16MB Condor consistently achieves betteopeence
than Hadoop, reflecting Condor’s substantially better fabugh-
put for independent jobs. At 64MB Condor catches up to Work
Queue, as the time taken to transfer the data begins to stibfija
outweigh the submission times of each system.

The results on the HPC also demonstrate the dominance df shor
submission times when working with low file sizes. Even com-
pared to SGE, which is supported by a large, fast, paralkyfg-
tem, Work Queue still performs the best at small filesizes.

SGE'’s advantage in parallel acquisition of files begins tem
earlier than Condor or Hadoop. At large numbers of workers fo
even 16MB files SGE begins to perform better than WorkQueue,

System Engine Files/s
SC Local 911.54
SC Condor 7.37
SC WorkQueue 8.54
SC Hadoop 6.18

HPC SGE 23.53
HPC Local 475.75
HPC WorkQueue 13.00

Table 4: Fanin 256 1MB Files
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Figure 9:Storage Cluster: Fan-Out and MapThese graphs display the average and standard deviatiateoftdoughput for data intensive
workflows, Map and FanOut. The workers execute ¢hefunction on the input to create a copy output file. The dataubhput is calculated
based on the size of the input data beirgad . The time used to calculate this value also includes the taken to return output, that is,
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write data. To keep runtimes reasonable, the benchmarks omitersrfdy 1-2 workers on Condor and Hadoop.
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reaching twice the data throughput withp (128, 64, 0, 16MB).

At the largest filesizes SGE quickly dominates both other sys
tems. Lacking the bottleneck of sending all of the requidiaéa
through a single master process, SGE is able to satisfy eadteris
data dependencies faster and thus achieve much betterparfce
than Work Queue.

Large File Transfer. Given Hadoop’s bias towards working
with large data sizes we were curious to see how well it scaled
We ran additional testfanQut (128, 64, 0, 128MB/1GB) and
Map(128, 64, 0, 128MB/1GB) on Hadoop, Condor and Work Queue.
The results can be found in Figure 11.

As previously demonstrated, both Work Queue and Condor per-
form substantially better for small file sizes. For the 128kéBt
the three systems perform approximately the same, eachnivigta
a throughput of about 40-50MB/sec. Once the filesize grows to
1GB, Condor’s performance seems to have plateaued, likelytal
network saturation across the slower campus links. Worku@ue
due to its need to transfer files serially, obtains verydittaral-
lelism and thus ends up reducing performance.

Hadoop’s performance, on the other hand, dwarfs that of @ond
and Work Queue by at least a factor of four. This is in large par
due to the ability to harness the disk output of an entiretefus
combined with the cluster’s relatively high-speed inténetwork.

Work Scaling In order to examine Makeflow’s ability to scale
to large worker pools we ran some additional concurrencts tes
at relatively high worker count. We ra@oncur r ent (2048, 0)
andConcur r ent (2048, 60) on worker pools of various sizes (be-
tween 16 and 1024 simultaneous workers). The results amensho
in Figure 12. The job throughput numbers scale directly it
number of workers, in proportion to the amount of computatio
time for each individual job.

search, bioinformatics research, and more. Some of the mere
treme examples of these workflows can be seen in Figure 13.

Biocompute An early adopter of Makeflow was Biocompute [7],
a bioinformatics data analysis facility at the UniversitiyNotre
Dame. Users interact with the system via a web portal to selec
various applications, choose parameters and input files ttzan
run various data analysis jobs.

The first implementation of Biocompute ran only BLAST [3]
jobs, required custom-designed scripts for each stageedbaiok-
end processing, and only ran on the Notre Dame Condor pool. It
was complex to implement, difficult to modify, and very faiu
prone because of the large number of component parts tlest int
locked in complex ways. The second implementation of Biocom
pute was developed using Makeflow for expressing these work-
loads. Instead of writing, testing, and debugging custoriptscto
handle data management and fault tolerance for each basligleno
these tasks could be delegated to Makeflow itself. Furthegrito
became easy to implement more complicated workflows hangess
bioinformatics tools such as SHRIMP, SSAHA, or SNPexp. The
same infrastructure for submitting, running, monitorimgl aeport-
ing the status of each BLAST job could be reused and mairdaine
independently of each workflow, and new types of workflows can
be introduced by merely setting up an interface page andngrit
a module to generate the necessary workflow. Figure 13 shows a
selection of these applications.

BLAST (Fig 13a). The primary use of Biocompute is to allow
users to run their BLAST jobs against large reference datsbim
a reasonable amount of time. Most attempts to parallelizABL
take one of two approaches. The first approach, taken most fa-
mously by mpiBLAST [10], is to segment the database and ran th
entire set of query sequences against each segment inghaféak
second approach, used by AzureBLAST [20] among others, is to

6. APPLICATIONS distribute multiple copies of the reference database(d)spfit up
Makeflow is available as an open source project and has a grow-the set of query sequences, running each query sequencestagai

ing community of users building scalable applications ildesuch the entire reference database in parallel.

as bioinformatics, image processing, data mining, and codtéde Biocompute takes the second approach to distributed BLAST.

dynamics. In this section we will give some examples of monat Query sequences are provided by users via a web portal and par

makeflows and our experience in executing them at large.scale titioned for processing. The tasks are then coded into a fioake
While Makeflow’s simplicity makes it useful as a prototyping and run by the Biocompute server. Due to the frequency ofagtgu

tool or a mechanism for domain scientists to write their ows: d  the large reference databases have been prestaged to kades n

tributed applications, it is also useful for running largeriflows and the execution of the Makeflow is limited to only those reode

in an efficient manner. Regularly, Makeflows will run harriegs with databases present. While this somewhat limits theezabie

hundreds or thousands of workers to process hundreds dfydesm parallelism, we've found the time savings for data trangbesut-

of image, video, and/or genomic data in support of biometrés weigh those limitations.
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Figure 13: Biocompute Workflows

Biocompute runs an average of 785 BLAST subtasks per day degrades as the remaining work in the queue is exhaustedaBy h
against reference datasets totaling up to 128 GB of unignetge  nessing an extreme amount of parallelism the EST Pipeline ma

ics data per task. It has been operating without major injption ages to complete within an hour and avoids any system failoire
for three years, marshaling approximately 23 CPU days diulise interruptions.
computation per day of real time. SNP Exploration(Fig 13c) Another example of a bioinfor-

For practical reasons the BLAST workflows are constrained by matics analysis pipeline made easily distributable by Maleis
the number of nodes to which we have prestaged the large BLAST the SNP Exploration [26] (SNPEXxp) pipeline. SNPExp is used t
databases. Replication is based on frequency of use, angthas help researchers identify interesting regions of asseirgd@omes

sulted in replicated reference database size upwards ofFR.i® through analysis of Single Nucleotide Polymorphisms, oPSN
total. This limits the number of workers potentially avaik to The SNPEXxp pipeline is similar in nature to the EST pipeline.
any BLAST makeflows in theory but prevents the campus network The data to be analyzed is preparsed and split into subskéeseT
and storage systems from being overwhelmed. are then distributed for individual analysis and the resaie com-

The limitimposed by our prestaging requirement also mdaatst  bined into a single report for the researcher. The complefithis
the largest BLAST workflows can run for days or even weeks; sub
jecting them to system disturbances like network or filemysfail-
ure. Figure 14a provides a good example with hiccups on deg's 4
12, and 16 causing the number of workers running to drop to. zer
Makeflow recovers from these disruptions, returns quicklyutl
operating capacity and completes the job without losing hmiifc
any, work.

EST Pipeling(Fig 13b) One of Makeflow's major advantages is
that it is easy for researchers who are experts in a field dtizer
distributed systems to pick up and use. One example of thieis
work done by Thrasher, et al. [31] in developing a pipelinetfe Yo 2 4 & 8 10 12 12 15 18
analysis of Expressed Sequence Tags, or ESTs. Time (Days)

The EST Pipeline was originally developed as a series optscri () BLAST Example: This is an example of a typical large blast job.
with multiple dependencies on uncommon and custom-bhbithties.  The job runs for over 16 days, computing tens of thousandshiifisks.
The pipeline was designed to be run by hand on a single machineThe job also experiences major communication failuresyefear days
with all of the relevant dependencies preinstalled. Makeflsith or so (marked by+). Each time the job recovered and continued run-
its ease-of-use and integral dependency tracking, wastalse- ning automatically.
ploit a fair amount of natural parallelism within the EST ¢lipe
and provide a scalable solution portable between the CoBdsiE, 10000 ; Queued w0000
and Work-Queue based systems available at Notre Dame. : Running ——

The EST Pipeline workflow is dynamically generated by the Wéea
workflow compiler [6] based on user-provided input data. The
workflow is typical of many bioinformatics applications.plit data
is initially split for parallel processing, followed withahain of in-
termediate steps massaging data into readable forms acelsing
it with the desired bioinformatics tools. After processisgcom- 1
plete the results are then usually combined into a singlertdpr

the scientist to examine. . Lo .
; . S (b) EST Example This EST Pipeline run demonstrates a single make-
Figure 14b provides a good example of an EST Pipeline work- 0" simultaneously making use of nearly 3000 cores, enghiirto
flow taxing the boundaries of the systems we have availabie. T rapidly complete the massively parallel portion of the ESoFktlow.
EST pipeline shows a reasonable queuing period before pgnpi

to well over 2000 concurrently running jobs, a number thetvs} Figure 14: Example jobs from Biocompute
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workflow stems primarily from the preparation steps neagssa
make the data readable by the analysis package.

The SNPExp is a good example of how Makeflow can allow re-
searchers to rapidly prototype complicated workflows fdvieg
intermediate-sized problems. The SNPExp pipeline is of dano
ate size, small enough that it could theoretically be run simgle
core in a manageable amount of time, but large enough that eac
test run could take an hour or longer. By using Makeflow to eixpl
the nascent parallelism this turnaround time was reducedine
utes, allowing the researcher to quickly test and refine ibieflor-
matics algorithms while leaving most of the complicatiomposed
by distributed systems to be handled automatically by Makefl

7. RELATED WORK

Stu Feldman presented the original Make [13] as a means for

maintaining dependencies in compilation. In the yearsesthere
have been many variations on Make that expbaitallel comput-
ing systems which assume a fault-free environment and aablob
filesystem namespace, which is required for the traditiduelke
semantics. For example, Amoeba pmake [5] made minimal modifi
cations to make to allow jobs to be distributed across an Arag21]
cluster, relying on the central fileserver for a common ngaes.
ISIS pmake [24] took the unusual approach of forking commsand
for all rules simultaneously, relying on a object space ksimio
Linda [2] to block rules whose dependencies were not yessati
fied. PGMAKE [4] employed PVM to fork processes on a large

of simple query-like operators that are all implementedadls ¢o
Map-Reduce. Cascading [8] is a similar idea, but is ablepelpie
multiple operations together for higher efficiency. Hiv@[8yers
a table structure on top of files within Hadoop, and then &gpli
Map-Reduce programs to implement a query language.

8. CONCLUSIONS

Makeflow. Many common problems in science and industry can
be easily expressed as a graph of small sequential progrems e
hibiting a high degree of natural parallelism. These canupeon
a variety of dedicated systems, but each requires the usavi®
some expertise with a custom language and runtime system. Th
makes it difficult for users to learn new systems, limiting tle-
sources available to them.

We address this problem with Makeflow: a scalable, faultrtole
ant workflow manager based on and using syntax nearly iggntic
to that of UnixMake, a language familiar to many users.

Makeflow scales in size, allowing users to run workflows con-
sisting of anywhere from a handful of jobs to millions. It cam
thousands of jobs concurrently, automatically handling d@pen-
dencies and failure conditions. Makeflow can run anythirognfr
simulations that require a few kilobytes of data per job toaiie
analyses that require gigabytes or more.

Makeflow scales in time. Depending on the execution driver
chosen, Makeflow can efficiently run jobs that last anywhesenf
seconds to days. Makeflow can run for days at a time, effigientl

cluster, and NFS to provide access to data files. The SGE batchhandling remote node crashes, network disruptions, loeahine

system provides gmake [14], which dispatches each rule 8&&h
job, again relying on a shared filesystem. GXP make [27] Uses t
standard GNU make [13], but interposes on 8tELL variable
to dispatch commands to various remote filesystems, relying
shared filesystem for data access. Makeflow builds upon tug b
of work by showing how a slight twist to the semantics allowkda
to function correctly on fault-prone, shared-nothing riligtted sys-
tems constructed from clusters, clouds, and grids.

Explicit statement of dependencies is not the only way ofagan
ing workflows. DAGMan [9], the workflow engine provided with
Condor [30], states the control dependencies between faitsh
and has no direct information about data needs. This candfelus
if the jobs have side effects that are reflected in some exttelier
vice such as a database or a physical actuator. Anotheritgehn
is transparent result caching [33], in which the actual ddpacies
of a program are observed by interposition on file operatidings
is useful for accelerating the performance of a repeatechagidy
uniform job, but offers no assistance in resource managenoren
the first execution of a workflow. In a cloud environment where
data movement has real costs, we believe that explicitratateof
dependencies is of greater utility.

In recent years, cloud computing systems have emphasieed th
Map-Reduce programming model, popularized by Google [fdl] a
the Hadoop [17] open source implementation of the same .ideas
Map-Reduce is, by design, less flexible than a generalizaghgr
programming model, but this makes it much more tractableliees
problems of data partitioning, data locality, and faultetaince.
The concept of Map-Reduce is portable to other architestsueh
as multicore [25] and graphics processors [18]. Systemi asc
Dryad [19] and Sphere [16] provide a more generalized graph p
cessing model than Map-Reduce, but also focus on the stohagie
ter architecture.

It is common to view Map-Reduce programs from the perspec-
tive of query processing. A number of small domain specific la
guages have been created to simplify multiple invocatidndap-
Reduce for this purpose. For example, Pig [23] consists efies

crashes, resource allocation changes, and more, withgingleub-
stantial amounts of useful computation.

Makeflow scales across systems. A workflow can be initially
developed on a single workstation, tested on a local cl{SeE,
Hadoop), scaled up using a global computational grid (Condo
and deployed for production using any combination of thevabo
plus whatever flexible commercial cloud resources are elg@$iVork
Queue). The same workflow description can be moved between
these resources without change.

Makeflow scales across user expertise. Makeflow has been suc-
cessfully used as everything from an instructional tool ialer-
graduate courses to a platform on which production-levstesys
are developed. The languageMk e without the pattern rules and
other complex constructs is extremely simple and fairlyitite,
and a reasonably efficient workflow can be built and run on any
system using only the default settings. At the same timeemxp
users can carefully tune their workflows to the executioriesys
available, establishing requirements or constraints emgmote re-
sources used and employing the fairly extensive debug ayging
system to identify bottlenecks and eliminate them.

Workbench. Makeflow’s inherent portability makes it easy to
run the same workflow on each of the supported systems. This
prompted our development and introduction of Workbenchoekw
flow benchmark suite for measuring the performance chaiacte
tics of common workflow patterns on a variety of systems. \WWe al
expect that Workbench can be useful for profiling and imprgvi
bottlenecks in both new and existing distributed systemseiV
running Workbench we observed that workflows with small files
are much more affected by dispatch latency than data thpaigh
We also found that asynchronous file transfer provides tbatgr
est benefit to high-data reasonably-parallel workflows that for
low-data jobs the infrastructure necessary to run the jobstaw
dispatch to the point of reducing performance.

Future Work. There are a variety of directions we can take
this work. Makeflow’s knowledge about the data dependerafies
workflow offers many exciting opportunities to optimize enéon.



Data-local computation, resource management, and graggnde
position are three areas we've already begun investigating
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