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ABSTRACT
In recent years, there has been a renewed interest in languages and
systems for large scale distributed computing. Unfortunately, most
systems available to the end user use a custom description lan-
guage tightly coupled to a specific runtime implementation,mak-
ing it difficult to transfer applications between systems. To address
this problem we introduce Makeflow, a simple system for expressing
and running a data-intensive workflow across multiple execution
engines without requiring changes to the application or workflow
description. Makeflow allows any user familiar with basic Unix
Make syntax to generate a workflow and run it on one of many
supported execution systems. Furthermore, in order to assess the
performance characteristics of the various execution engines avail-
able to users and assist them in selecting one for use we introduce
Workbench, a suite of benchmarks designed for analyzing common
workflow patterns. We evaluate Workbench on two physical archi-
tectures – the first a storage cluster with local disks and a slower
network and the second a high performance computing clusterwith
a central parallel filesystem and fast network – using a variety of
execution engines. We conclude by demonstrating three applica-
tions that use Makeflow to execute data intensive applications con-
sisting of thousands of jobs.1

1. INTRODUCTION
Many problems in both science and industry ranging from web

indexing to genome analysis can be expressed as a graph of small
sequential programs with a high degree of parallelism. A number
of workflow systems[11, 17, 19, 22, 12, 9, 35] have been created
to express and execute such programs. While these systems have
many virtues, they typically couple a custom language to a custom
runtime implementation, making it difficult to move applications
across systems, or even to evaluate which system is most appropri-
ate for a given application.

We argue that there has long existed a portable and effectivelan-
guage for data parallel computing. Traditional Make [13], although
most commonly used for compiling and linking programs, is also
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very effective at expressing highly parallel data intensive applica-
tions. To this end, we present a new implementation calledMake-
flow (Make + Workflow) that can portably run the same applica-
tions across multicore processors, dedicated clusters (SGE), cycle
scavenged grids (Condor), storage clouds (Hadoop), and combina-
tions of the above (Work Queue), without requiring any changes to
the application or the workflow description. This makes it possible
to develop an application on a personal computer, and then seam-
lessly move it between institutional clusters and commercial clouds
without any restructuring.

Of course there have been manyparallel implementations of
Make presented previously [5, 24, 4, 27]. These all assume a ho-
mogeneous set of reliable processors, all connected to a common
shared filesystem. Makeflow goes beyond these previous systems
with a trulydistributedimplementation that runs on heterogeneous,
failure-prone distributed systems, taking advantage of data locality
when the implementation allows it. To enable this, we require a
small but important change to the semantics of Make:data depen-
dencies must be completely elaborated.(To be clear, Makeflow is
designed for data intensive scientific applications, and isnot partic-
ularly suited for compiling and linking programs.)

Because Makeflow provides transparent portability of applica-
tions across systems with significantly different properties, it al-
lows us to perform an objective comparison of the relative capabil-
ities of each system for different types of workloads. To this end,
we have createdWorkbench, a system-independent set of workflow
benchmarks that measures dispatch latency, job throughput, I/O
throughput, and interprocess communication. We evaluate Work-
bench on two distinct architectures – a storage cluster and ahigh
performance computing cluster – using each of the executionen-
gines supported by Makeflow. These results help the end user to
select the right type of execution system for the workload athand.

Makeflow is open source software that is currently in production
use by a number of scientific communities. We conclude with a dis-
cussion of several bioinformatics and biometrics applications using
Makeflow at Notre Dame.

Several previous publications have mentioned Makeflow in pass-
ing. A journal article [34] and a book chapter [29] briefly discuss
Makeflow as an example of one of several kinds abstractions for
distributed computing. This is the first publication to discuss Make-
flow in detail, to present the Workbench benchmarks, and to evalu-
ate workloads across multiple implementations.

2. THE MAKEFLOW LANGUAGE
The Makeflow language is very closely related to the traditional

language of Make [13]. A valid Makeflow program consists of a
sequence of assignments and rules. Anassignmentindicates the
name and value of an environment variable, which applies to all



Figure 1: Example of a Bioinformatics Application in Makeflow

following items in the file. Arule indicates a command line to be
executed, along with the input files required by that command, and
the output files that it will create.

A Makeflow rule has slightly different semantics than traditional
Make. Traditional Make simply requires that a rule state only the
files that may have changed, but assumes that any other file in
the filesystem is available for use by the command. In contrast,
a Makeflow rule must accurately specifyall of the filesthat a com-
mand requires as both input and output, because this is used to
create the correct execution environment.

For example, this is anincorrect Makeflow rule:

out.dat:
simulate.exe in.dat -o out.dat

In contrast the following rule iscorrect, because it specifies all
of the input dependencies, including the executable and data file:

out.dat: simulate.exe in.dat
simulate.exe in.dat -o out.dat

Figure 1 is a visualization of a relatively small bioinformatics
job expressed in Makeflow, consisting of 33 jobs (circles) and the
interdependent files (squares). In practice workflows are often very
large, consisting of thousands to millions of jobs processing ter-
abytes of data. (The largest are difficult to present in graphical
form.) As seen in Figure 1, the graphs may be highly irregular
and thus not easily expressed in a fixed abstraction such as Map-
Reduce [11]. Once a workflow is expressed with fully elaborated
data dependencies, a number of opportunities for executingthe
workflow efficiently and scalably become possible:

• Job migration. When the full dependencies of each job are
known the single job may be moved to a remote execution
site without requiring any particular runtime support on a
shared filesystem. This enables harnessing of resources that
are outside the immediate execution environment.

• Workflow migration. When the inputs and outputs of the
whole workflow are known it becomes easy to move the en-
tire workflow to another site. For example, one might allo-
cate a cluster on a commercial cloud, send the inputs, execute
the entire workflow remotely, and then retrieve the outputs.

• Workflow decomposition. Given sufficient information about
jobs and data it may make more sense to partition the graph
and run sub-graphs in distinct systems. As we show below,
some execution systems are more effective at partitioned data
and others are better at shared data.
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Figure 2: Architecture of Makeflow

• Co-location of computation and data.When operating on
distributed data it is often beneficial to move computation to
where the data is located or vice versa. With information
about the data needs of each application an implementation
of Makeflow can seek to put them together.

• Resource management.Cloud computing environments in
particular require the user to make resource management de-
cisions: allocating more machines always costs more money
but may not necessarily improve performance. Accurate in-
formation about the computation and data needs of a work-
load makes it feasible to select appropriate resources for an
execution.

In order to exploit these management and performance properties
we have very deliberately chosennot to include any of the higher-
order constructs found in other versions of Make, such as implicit
and pattern rules. For example, if we include pattern rules then it is
no longer possible to measure the width or depth of the graph with-
out actually executing it. Makeflows must also be acyclic. Cycles
introduce ambiguity into the correct execution and are onlygrudg-
ingly permissible in traditional Make due to pattern rules,which
Makeflow excludes. Furthermore, as in traditional Make there is no
inherent facility for time-sensitive execution. Makeflow is a static
declarative specification and nothing more.

We have not found any of these exclusions to be a serious lim-
itation in practice: where more dynamic behavior is needed it is
accomplished by writing a script which generates the desired work-
flow, which can then be processed as an independent step. (Seeour
earlier paper on Weaver [6] for examples.) Essential non-infinite
cycles can usually be accommodated with renaming and incremen-
tal names, and time-sensitive execution can be accomplished via
cron or simple shell scripts. By analogy, HTML has achieved
universal success by aiming simply to be a declarative statement of
the structure of a web page; programmability has been obtained by
a variety of languages that generate HTML.

3. IMPLEMENTATION
We have created an initial implementation of Makeflow that exe-

cutes complex workflows effectively on several different execution
platforms. Our implementation is open source software under ac-
tive development, with a growing user community.2 The work here
2http://www.nd.edu/˜ccl/software



describes version 3.4.2 of the software, and exploits many (but not
all) of the opportunities made possible by the graph representation.

Figure 2 shows the architecture of the current implementation.
The user provides a workflow in the form of a Makefile, then exe-
cutes themakeflow program. The Makeflow core logic manages
the graph of processes and data, submits jobs to the abstractsys-
tem interface, and records events in a transaction log. The abstract
system interface provides an API for submitting a single jobat a
time, indicating input and output dependencies, and the ability to
wait for the completion (or failure) of any previously submitted job.
Drivers for multiple execution systems are hidden behind the ab-
stract interface, and include Local execution, Condor, Sun/Oracle
Grid Engine, Hadoop, and Work Queue, which we describe below.
Events in the life of the workflow are recorded in a transaction log,
which is used for both failure recovery and system monitoring.

3.1 System Drivers
Two details of the system drivers are worth noting. First, each

driver is a combination of a computation environment with a tightly-
coupled storage system.Local is actuallyLocal processes and a
local filesystem, while Condor is actuallyCondor execution with
file transfer, and so forth. Each represents a significantly different
method of accessing data at runtime. We will elaborate on these
properties in each section below, but use the short name for clarity.

Second, we have found that many execution environments have
poor support for monitoring the status and completion of many jobs
asynchronously. All provide some interactive command or web
page for observing system or job status, but this is unwieldyto
access from within Makeflow because the information may be pre-
sented poorly, or the call may be very slow to invoke. Thus in each
case we describe the method by which we monitor the status of ex-
ecuting jobs, and in many cases it involves a creative workaround
to bypass the limitations of the system.

Local Driver. In Local execution mode, all jobs with satisfied
data dependencies are forked as new processes that execute on the
local machine. Makeflow then monitors the status of each child
process and marks the job description as completed or failedonce
the child exits. The local engine uses the local filesystem asits
storage component. Where multiple cores are available, multiple
processes can run simultaneously. Local execution is oftenused for
testing workflow descriptions to ensure they are constructed prop-
erly before scaling up.

Users can recommend local execution for specific jobs even when
executing on a distributed system by prefixing the rule with the
LOCAL keyword. This informs Makeflow that a particular com-
mand is optimally run locally, due to filesize, permissions,or con-
figuration constraints, while still allowing the command tobe man-
aged as part of the workflow.

Condor Driver. Condor [30] is a distributed batch computing
system that can be used across hardware ranging from desktopma-
chines to high performance clusters. Condor provides a compre-
hensive matchmaking system to match jobs to their hardware re-
quirements as well as to ensure fair usage of shared resources with-
out inconveniencing their owners.

Figure 3 shows the interaction between Makeflow and Condor.
For each job to be executed, Makeflow creates a job submissionfile
and invokescondor_submit, which queues the job with the lo-
cal condor_schedd daemon. The job submission file indicates
the input and output files required for the job.condor_schedd
communicates with the matchmaker to find a compatible execu-
tion machine. At the execution site, the input files are retrieved
from the submission site, the job is executed, and output files are
moved back. When multiple jobs execute simultaneously, thetrans-
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fers may happen concurrently.
To provide lightweight notification of job status Condor pro-

duces auser log filethat indicates when a job starts, completes,
migrates, and so forth. Makeflow monitors job status by periodi-
cally looking for new data appended to the file.

SGE Driver. Sun/Oracle Grid Engine (SGE) [14] is a batch sys-
tem for managing large clusters. SGE schedules jobs across the
nodes in a cluster, typically requiring the use of a shared filesys-
tem such as NFS or AFS to provide uniform data access across the
cluster. Unlike Condor, the queue of jobs in SGE is stored in acen-
tralized location, which exercises absolute control over each node
in the cluster.

Figure 4 shows the interaction between Makeflow and SGE. To
submit a job, Makeflow invokes theqsub command, indicating a
wrapper script and an executable. No information about required
data is communicated. The job is run in the shared filesystem where
thewrapper script can be accessed and executed by the node. The
job’s executable and its data are also accessed through the shared
filesystem. Thewrapper script writes to a log file the job’s start
time, completion time, and exit status. Makeflow monitors the log
files of all running jobs to observe completion events.

Hadoop Driver. Hadoop [17] is an open source implementa-
tion of the Map-Reduce [11] distributed computing concept.HDFS
is the file system component, corresponding to Google GFS [15].
Normally, to interact with Hadoop, one submits a Java program
with a Map component and a Reduce component. This program
is distributed to all nodes simultaneously and used to construct the
graph of communicating processes.

It can be challenging to convert an existing application to aMap-
Reduce form. A native Map-Reduce translation must accept in-
put data via theRecordReader class, which may return records
from any arbitrary point in the input file. The programmer writ-
ing the translation must decide how to divide program logic among
the Map and the Reduce components and how to partition data
horizontally, neither of which may have obvious solutions.Fi-
nally, many translated applications will require multipleinvoca-
tions of Map-Reduce to complete the computation, adding over-
head on each pass.

Legacy applications can be run using the Hadoop streaming wrap-
per. However, Hadoop streaming passes its input data to the wrapped
command via standard input and assumes that the applicationcan
handle arbitrary splits in the input file. For applications that rely
on accessing whole files the most common workarounds either ig-
nore any data locality or run the risk of repeating jobs, potentially
corrupting any output files. Furthermore, this still requires a po-
tentially brand-new user to construct a wrapper script and learn the
appropriate Hadoop and HDFS commands.

With Makeflow our objective is to make it possible to run ex-
isting, unmodified applications within the Hadoop environment,
achieving acceptable parallelism and performance with minimal
effort by the user. If all the user’s code and data are alreadyin
Hadoop, Makeflow provides a way to execute applications thatare
not obviously of a Map-Reduce form.

Figure 5 shows how this is achieved. Makeflow passes its jobs
to Hadoop as single-node Map-only jobs. Each job consists ofthe
streaming wrapper program, the desired executable and the name of
its input dependencies. Hadoop will then execute the job, ideally
on a node close to the input data. The job is completely unaware
of the Map-Reduce framework and will attempt to access files in
the normal way through the filesystem. To enable this, we rely
on the Parrot [28] interposition agent to transparently convert the
application’s system calls into the analogous HDFS librarycalls.
(FUSE [1] can also be used for the same purpose but may require

administrator permissions to install.) Makeflow spawns individual
streaming commands for each job and tracks the exit codes to de-
termine success or failure.

Work Queue Driver. Most of the available job execution en-
gines are managed via a queue system, where jobs are submitted to
a central manager which then dispatches jobs based on the avail-
able resources and system policies. As we show below this can
result in long dispatch times with jobs sitting in a queue formin-
utes or longer. For long-running or data-intensive jobs this dispatch
time may be subsumed by the computation time of the job itself; for
a job which consists of huge numbers of short-running independent
jobs the problem can be mitigated by batching many together;but
for a workflow containing many small jobs, where most are depen-
dent on the output of one or more previous jobs, this type of system
may impose 10-100 or more seconds of wait time for each second
of computation.

To address this problem we have created Work Queue, a master-
worker framework designed to work natively with Makeflow. Work
Queue provides fast invocation times, local storage management,
and a means to rapidly deploy an execution environment for the
user that is not already invested in a batch system.

Figure 6 shows the relationship between Makeflow and Work
Queue. The system consists of a lightweight worker process and a
master library which is linked into Makeflow. Workers may be sub-
mitted as jobs to one or more distributed systems (such as Condor
or SGE), or run by hand on machines accessible to the user. As the
workers are run, each initiates a TCP connection to the Makeflow
process. The tasks for execution are stored in an internal queue
within Makeflow, and executed as resources become available. To
execute a job, the master simply transmits the required input files,
tells the worker to execute a command line, and then retrieves the
outputs. Both inputs and outputs can be cached at the worker with
the knowledge of the master, so that commonly used data does not
need to be re-transmitted.

The Work Queue system achieves fault tolerance in the following
manner: The connection between each worker and the master is
via TCP. If the worker or the network fails the master drops its
internal record of the worker, assumes any running job failed, and
reschedules it for another worker. If the master or the network fails
the worker stops the running job, cleans up any cached data, and
then attempts to connect again, up to a configurable timeout.The
system safely accepts workers joining and leaving at runtime, albeit
with some performance penalty.

By having the Makeflow process manage the individual tasks the
negotiation or matchmaking time required by many underlying ex-
ecution systems can be amortized across all of the tasks executed
by a worker rather than incurring that cost on each individual task.
Additionally, Figure 7 shows how Work Queue can be used to com-
bine resources from multiple sources into a single "privatecloud".
The Worker process can be submitted as a batch job to systems
such as Condor and SGE or executed on resources allocated from a
commercial cloud. Regardless of how the worker is started, it con-
tacts the master process and begins to execute jobs and cachedata.
From the perspective of Makeflow the set of workers forms a cloud
of both computation and storage resources.

3.2 Transaction Log
As Makeflow processes a workflow it produces a transaction log.

This is a complete description of the life of the workflow, including
all job submissions, completions, and failures. The log fileserves
two purposes: it facilitates recovery from failures and it provides
data for troubleshooting and performance analysis. The logis kept
by Makeflow at the submission site, and is independent of the vari-



ous logs produced by the batch systems.
Fault tolerance is critical in a distributed computing environ-

ment. Makeflow must operate with multiple distributed computing
systems over the wide area, each with their own peculiar failure
modes. It is not uncommon for the network or a batch system to
fail during a job execution. A job within a workflow might run
for hours or days, during which time Makeflow may become dis-
connected from the batch system or killed outright. A careless ap-
proach to job submission may result in multiple jobs being submit-
ted unnecessarily, or orphaned jobs left running in the system with
no corresponding record in Makeflow.

To address these problems, every event in the lifetime of a job is
recorded in the transaction log. Rather than rely on the presence of
files (as traditional Make would), Makeflow examines the transac-
tion log to recover the state of running jobs. This allows Makeflow
to crash and restart while its jobs continue to run. If Makeflow
receives a signal to abort it works to remove jobs from the batch
system, logging as it goes. Interacting with the batch system can
take time, so if Makeflow crashes and restarts during an abortit
will pick up the current state and then continue to abort cleanly.

Ideally, batch systems would facilitate this by providing an in-
terface fortwo-phase commit. This would allow Makeflow to first
request a job number from the batch system, record it to the trans-
action log, and then commit the job within the system. To our
knowledge, no batch system provides this through a public inter-
face. (Condor does this internally, but does not expose an API.)
As such, our implementation has a short time window in which a
failure could result in duplicate job submission.

The use of the log has the side effect that Makeflow can be
killed and moved to a completely different machine, and as long as
the corresponding workflow, transaction log, and dependencies are
available, the workflow can be restarted without duplicating work.
It also allows the user to switch execution engines mid-workflow. If
the initial execution engine bogs down under external strain or part
of the system fails permanently the user can stop the workflowand
restart it using a different engine while preserving all of the work
done up to that point.

The provenance information provided by the transaction logalso
makes debugging, performance analysis, and job status monitoring
much easier. By maintaining the logs of which jobs fail, how many
times they are retried, and what times the failures occur, itmakes
tracking down the problem easier. The details of the log file allow
users to keep track of which jobs are unexpected bottlenecksor how
close to completion the workflow is. The real-time timestamps al-
low the user to correlate job events with the logs maintainedby
many of the Makeflow subsystems in order to identify problems
with the subsystem as well as to correctly identify which failures
are due to the application itself and which are caused by the execu-
tion engine.

4. WORKBENCH
Makeflow allows one to run workflows across several different

execution engines and physical architectures, including multicore
systems, shared-nothing clusters, shared-filesystem clusters, and
distributed transient caches. As a result, one would expectthat dif-
ferent kinds of workflows would be better suited to differentkinds
of architectures.

To evaluate the essential performance characteristics of asys-
tem, we created Workbench, a set of simple workflow benchmarks
implemented using Makeflow. Figure 8 shows the basic patterns,
which are parameterized to run at various scales. Of course,none of
these patterns is representative of a complete workflow; each exer-
cises a different aspect of the system, including dispatch overhead,

job throughput, I/O throughput, and interprocess communication.
By understanding these basic parameters we can better judgethe
expected performance of a real workflow, which consists of many
of these patterns put together.

We note that Workbench very deliberately exercises thepatho-
logical casesin workflow performance. We expect that any execu-
tion system would be effective at running a large number of inde-
pendent processes that each run for hours with minimal inputand
output. The differences between systems are apparent only in the
cases that stress I/O and/or large numbers of short jobs.

The five Workbench patterns are:
Chained(J,T) consists of a chain ofJ jobs running forT time,

each producing one empty output file that is consumed by the next.
WhenT = 0 the chained benchmark measures the average latency
to submit a job, which puts a lower bound on the execution of any
job. As we show below, many systems have a surprisingly high job
latency.

Concurrent(J,T) consists of a set ofJ independent running for
T time and producing no input or output. This benchmark mea-
sures the throughput of job dispatch and completion. IfT > 0
then the throughput is likely to vary with the number of available
processors.

FanIn(J,T,F,S) consists of a set ofJ jobs running forT time,
each readingF files of sizeS as input. This benchmark measures
the ability of the system to deliver input data. At largeF but small
S it stresses the number of file transactions, while at smallF and
largeS it stresses the total data throughput.

FanOut(J,T,S) consists of a set ofJ jobs running forT time,
with a common file of sizeS as an input and independent files of
sizeS as outputs. This type of workflow is common in simulations,
where the input file represents the starting data and each jobis one
run of the simulator with varying input parameters. The benchmark
measures how well a system can exploit commonality of input data,
typically whenS is large andJ is less than the number of cores.

Map(J,T,S) consists ofJ independent jobs running forT time,
each of which reads one input file of sizeS and writes one out-
put file of sizeS. Maps occur in many transformative workflows,
where a series of operations are performed on each of many in-
put files, such as video transcoding or data exploration workflows.
The Map benchmark also allows us to measure the aggregate I/O
capacity of the system on independent tasks.

5. EVALUATION
We evaluate the Workbench benchmarks on two different physi-

cal architectures and four software systems.
The first architecture is a Storage Cluster (SC) that reflectsthe

hardware philosophy of commercial clouds: large numbers ofshared-
nothing machines with large local disks, cost-effective commod-
ity processors, and inexpensive mid-speed network interlinks. The

Storage High-Performance
Cluster (SC) Cluster (HPC)

Size 26 Machines hundreds
CPU 2.4 GHz 16-core 2.6 GHz 6-core

Intel Xeon AMD Opteron
RAM 2GB per core 2GB per core

Local Storage 20TB SATA 160GB SATA
Network 1 Gb/s Ethernet 10 Gb/s Ethernet

Bandwidth

Table 1: Cluster Statistics
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Figure 8: The Five Workflow Benchmark Patterns

second architecture is a High Performance Cluster (HPC) that re-
flects a more traditional cluster architecture: large numbers of ma-
chines that share a common high-performance filesystem and have
minimal scratch disk on each machine, along with a high-speed
network connection for communication. The capabilities ofthe
two systems can be seen in Table 1. We evaluated the Condor and
Hadoop systems installed on the Storage Cluster and SGE on the
High-Performance Cluster. Work Queue was able to be run on both.

The results of these benchmarks are a function of both the phys-
ical architecture of the clusters available to us and the design of the
software system in use. As such, we caution the reader not to com-
pare the absolute results across clusters. Rather, the results reveal to
what extent each software system can exploit the unique properties
of each cluster.

To establish a baseline for I/O operations, we measured the maxi-
mum throughput achievable by a single client on each cluster, shown
in Table 2.

System Storage Read (MB/s) Write (MB/s)
SC Local 137.24 549.24
SC HDFS 19.78 55.94

HPC Local 110.73 290.50
HPC NFS 93.14 133.29

Table 2: Basic I/O Throughput

Job Latency and Throughput. To measure the latency of job
submission we ranChained(128, 0) and to measure the through-
put of job submission we ranConcurrent(128, 0) on all config-
urations. The results are shown in Table 3.

System Engine Latency Throughput
Sec/Job Jobs/Sec

SC Local 0.006 227.928
SC Condor 28.065 1.940
SC Hadoop 23.340 0.417
SC WorkQueue 0.060 11.424

HPC WorkQueue 0.016 115.711
HPC SGE 7.659 6.261
HPC Local 0.016 229.688

Table 3: Chained and Concurrent Results

The results of these tests demonstrate that the real bound onjob
throughput is the submission time of the system. Systems like Work
Queue that are controlled and scheduled directly by Makeflowhave
relatively short dispatch times and can push out 100+ jobs/second.
In contrast, systems like Condor and Hadoop that use an external
scheduler have dispatch times orders of magnitude larger. Con-
strained as they are by the speed of the system’s native dispatcher
these drivers can only start at best a few jobs each second.

File Transfer. To measure the whole file throughput of each

system we runFanIn(1, 0, 1− 256, 1MB) and varied the number
of files in powers of two. The results are shown in Table 4.

In this test we see significant differences in the ability of each
system to complete small file transactions. The distributedexe-
cution systems are all at least an order of magnitude worse than
local storage, as they must transfer any files over a network.Work
Queue’s simple file transfer protocol manages to transfer files slightly
faster than Condor or Hadoop to the Storage Cluster, but is hand-
ily beaten by the high-speed central fileserver utilized by SGE on
the High Performance Cluster. Condor and Hadoop end up with
similar performance numbers, reflecting the slower dispatch times
required by negotiating job placement or packaging and setting up
the Hadoop streaming jobs, balanced by the increased parallelism
in file transfer.

Aggregate I/O. To measure aggregate I/O performance on large
workflows, we ranFanOut(128, 0, 1MB/16MB/64MB) and
Map(128, 0, 1MB/16MB/64MB) on both clusters. The SC results
are shown in Figure 9 and the HPC results are shown in Figure 10.

For the Storage Cluster architecture the results indicate that when
dealing with small files (a few MB or less) systems with mini-
mal overhead and short dispatch times like Work Queue will likely
dominate, achieving remarkably steady throughput regardless of
the number of workers used. As the size of the files increases this
gap closes. Work Queue’s caching behavior provides a natural ad-
vantage for computing Fan-Out patterns, allowing it to maintain its
performance lead up through 64MB files.

For Map patterns, where each file must be transferred fresh across
the network, both Condor and Hadoop begin to catch up. At file-
sizes around 16MB Condor consistently achieves better performance
than Hadoop, reflecting Condor’s substantially better job through-
put for independent jobs. At 64MB Condor catches up to Work
Queue, as the time taken to transfer the data begins to substantially
outweigh the submission times of each system.

The results on the HPC also demonstrate the dominance of short
submission times when working with low file sizes. Even com-
pared to SGE, which is supported by a large, fast, parallel filesys-
tem, Work Queue still performs the best at small filesizes.

SGE’s advantage in parallel acquisition of files begins to emerge
earlier than Condor or Hadoop. At large numbers of workers for
even 16MB files SGE begins to perform better than WorkQueue,

System Engine Files / s
SC Local 911.54
SC Condor 7.37
SC WorkQueue 8.54
SC Hadoop 6.18

HPC SGE 23.53
HPC Local 475.75
HPC WorkQueue 13.00

Table 4: FanIn 256 1MB Files
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Figure 9:Storage Cluster: Fan-Out and MapThese graphs display the average and standard deviation of data throughput for data intensive
workflows, Map and FanOut. The workers execute thecat function on the input to create a copy output file. The data throughput is calculated
based on the size of the input data beingread . The time used to calculate this value also includes the timetaken to return output, that is,
write data. To keep runtimes reasonable, the benchmarks omit numbers for 1-2 workers on Condor and Hadoop.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  4  8  16  32  64

D
at

a 
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Workers

WorkQueue
SGE
Local

(a) FanOut 1MB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  4  8  16  32  64

D
at

a 
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Workers

WorkQueue
SGE
Local

(b) Map 1MB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1  2  4  8  16  32  64

D
at

a 
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Workers

WorkQueue
SGE
Local

(c) FanOut 16MB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1  2  4  8  16  32  64

D
at

a 
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Workers

WorkQueue
SGE
Local

(d) Map 16MB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  4  8  16  32  64

D
at

a 
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Workers

WorkQueue
SGE
Local

(e) FanOut 64MB

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  4  8  16  32  64

D
at

a 
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Workers

WorkQueue
SGE
Local

(f) Map 64MB

Figure 10:High Performance Cluster: Fan-Out and Map These graphs display the average and standard deviation of data throughput
for data intensive workflows, Map and FanOut. The workers execute the cat function on the input to create a copy output file. The data
throughput is calculated based on the size of the input data being read. The time used to calculate this value also includes the timetaken to
return output, that is,write data.
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Figure 11: Large File Transfer

reaching twice the data throughput withMap(128, 64, 0, 16MB).
At the largest filesizes SGE quickly dominates both other sys-

tems. Lacking the bottleneck of sending all of the requisitedata
through a single master process, SGE is able to satisfy each worker’s
data dependencies faster and thus achieve much better performance
than Work Queue.

Large File Transfer. Given Hadoop’s bias towards working
with large data sizes we were curious to see how well it scaled.
We ran additional testsFanOut(128, 64, 0, 128MB/1GB) and
Map(128, 64, 0, 128MB/1GB) on Hadoop, Condor and Work Queue.
The results can be found in Figure 11.

As previously demonstrated, both Work Queue and Condor per-
form substantially better for small file sizes. For the 128MBtest
the three systems perform approximately the same, each obtaining
a throughput of about 40-50MB/sec. Once the filesize grows to
1GB, Condor’s performance seems to have plateaued, likely due to
network saturation across the slower campus links. Work Queue,
due to its need to transfer files serially, obtains very little paral-
lelism and thus ends up reducing performance.

Hadoop’s performance, on the other hand, dwarfs that of Condor
and Work Queue by at least a factor of four. This is in large part
due to the ability to harness the disk output of an entire cluster
combined with the cluster’s relatively high-speed internal network.

Work Scaling In order to examine Makeflow’s ability to scale
to large worker pools we ran some additional concurrency tests
at relatively high worker count. We ranConcurrent(2048, 0)
andConcurrent(2048, 60) on worker pools of various sizes (be-
tween 16 and 1024 simultaneous workers). The results are shown
in Figure 12. The job throughput numbers scale directly withthe
number of workers, in proportion to the amount of computation
time for each individual job.

6. APPLICATIONS
Makeflow is available as an open source project and has a grow-

ing community of users building scalable applications in fields such
as bioinformatics, image processing, data mining, and molecular
dynamics. In this section we will give some examples of non-trivial
makeflows and our experience in executing them at large scale.

While Makeflow’s simplicity makes it useful as a prototyping
tool or a mechanism for domain scientists to write their own dis-
tributed applications, it is also useful for running large workflows
in an efficient manner. Regularly, Makeflows will run harnessing
hundreds or thousands of workers to process hundreds of gigabytes
of image, video, and/or genomic data in support of biometrics re-
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search, bioinformatics research, and more. Some of the moreex-
treme examples of these workflows can be seen in Figure 13.

Biocompute. An early adopter of Makeflow was Biocompute [7],
a bioinformatics data analysis facility at the University of Notre
Dame. Users interact with the system via a web portal to select
various applications, choose parameters and input files, and then
run various data analysis jobs.

The first implementation of Biocompute ran only BLAST [3]
jobs, required custom-designed scripts for each stage of the back-
end processing, and only ran on the Notre Dame Condor pool. It
was complex to implement, difficult to modify, and very failure
prone because of the large number of component parts that inter-
locked in complex ways. The second implementation of Biocom-
pute was developed using Makeflow for expressing these work-
loads. Instead of writing, testing, and debugging custom scripts to
handle data management and fault tolerance for each basic module,
these tasks could be delegated to Makeflow itself. Furthermore it
became easy to implement more complicated workflows harnessing
bioinformatics tools such as SHRiMP, SSAHA, or SNPexp. The
same infrastructure for submitting, running, monitoring and report-
ing the status of each BLAST job could be reused and maintained
independently of each workflow, and new types of workflows can
be introduced by merely setting up an interface page and writing
a module to generate the necessary workflow. Figure 13 shows a
selection of these applications.

BLAST (Fig 13a). The primary use of Biocompute is to allow
users to run their BLAST jobs against large reference databases in
a reasonable amount of time. Most attempts to parallelize BLAST
take one of two approaches. The first approach, taken most fa-
mously by mpiBLAST [10], is to segment the database and run the
entire set of query sequences against each segment in parallel. The
second approach, used by AzureBLAST [20] among others, is to
distribute multiple copies of the reference database(s) and split up
the set of query sequences, running each query sequence against
the entire reference database in parallel.

Biocompute takes the second approach to distributed BLAST.
Query sequences are provided by users via a web portal and par-
titioned for processing. The tasks are then coded into a makeflow
and run by the Biocompute server. Due to the frequency of requests
the large reference databases have been prestaged to known nodes,
and the execution of the Makeflow is limited to only those nodes
with databases present. While this somewhat limits the achievable
parallelism, we’ve found the time savings for data transferto out-
weigh those limitations.



(a) BLAST Diagram (b) EST Diagram (c) SNPExp Diagram

Figure 13: Biocompute Workflows

Biocompute runs an average of 785 BLAST subtasks per day
against reference datasets totaling up to 128 GB of unique genet-
ics data per task. It has been operating without major interruption
for three years, marshaling approximately 23 CPU days of useful
computation per day of real time.

For practical reasons the BLAST workflows are constrained by
the number of nodes to which we have prestaged the large BLAST
databases. Replication is based on frequency of use, and hasre-
sulted in replicated reference database size upwards of 2.8TB in
total. This limits the number of workers potentially available to
any BLAST makeflows in theory but prevents the campus network
and storage systems from being overwhelmed.

The limit imposed by our prestaging requirement also means that
the largest BLAST workflows can run for days or even weeks, sub-
jecting them to system disturbances like network or filesystem fail-
ure. Figure 14a provides a good example with hiccups on days 4, 8,
12, and 16 causing the number of workers running to drop to zero.
Makeflow recovers from these disruptions, returns quickly to full
operating capacity and completes the job without losing much, if
any, work.

EST Pipeline(Fig 13b). One of Makeflow’s major advantages is
that it is easy for researchers who are experts in a field otherthan
distributed systems to pick up and use. One example of this isthe
work done by Thrasher, et al. [31] in developing a pipeline for the
analysis of Expressed Sequence Tags, or ESTs.

The EST Pipeline was originally developed as a series of scripts
with multiple dependencies on uncommon and custom-built libraries.
The pipeline was designed to be run by hand on a single machine
with all of the relevant dependencies preinstalled. Makeflow, with
its ease-of-use and integral dependency tracking, was ableto ex-
ploit a fair amount of natural parallelism within the EST pipeline
and provide a scalable solution portable between the Condor, SGE,
and Work-Queue based systems available at Notre Dame.

The EST Pipeline workflow is dynamically generated by the Weaver
workflow compiler [6] based on user-provided input data. The
workflow is typical of many bioinformatics applications. Input data
is initially split for parallel processing, followed with achain of in-
termediate steps massaging data into readable forms and processing
it with the desired bioinformatics tools. After processingis com-
plete the results are then usually combined into a single report for
the scientist to examine.

Figure 14b provides a good example of an EST Pipeline work-
flow taxing the boundaries of the systems we have available. The
EST pipeline shows a reasonable queuing period before jumping
to well over 2000 concurrently running jobs, a number that slowly

degrades as the remaining work in the queue is exhausted. By har-
nessing an extreme amount of parallelism the EST Pipeline man-
ages to complete within an hour and avoids any system failures or
interruptions.

SNP Exploration(Fig 13c). Another example of a bioinfor-
matics analysis pipeline made easily distributable by Makeflow is
the SNP Exploration [26] (SNPExp) pipeline. SNPExp is used to
help researchers identify interesting regions of assembled genomes
through analysis of Single Nucleotide Polymorphisms, or SNP’s.

The SNPExp pipeline is similar in nature to the EST pipeline.
The data to be analyzed is preparsed and split into subsets. These
are then distributed for individual analysis and the results are com-
bined into a single report for the researcher. The complexity of this
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(b) EST Example: This EST Pipeline run demonstrates a single make-
flow simultaneously making use of nearly 3000 cores, enabling it to
rapidly complete the massively parallel portion of the EST workflow.

Figure 14: Example jobs from Biocompute



workflow stems primarily from the preparation steps necessary to
make the data readable by the analysis package.

The SNPExp is a good example of how Makeflow can allow re-
searchers to rapidly prototype complicated workflows for solving
intermediate-sized problems. The SNPExp pipeline is of a moder-
ate size, small enough that it could theoretically be run on asingle
core in a manageable amount of time, but large enough that each
test run could take an hour or longer. By using Makeflow to exploit
the nascent parallelism this turnaround time was reduced tomin-
utes, allowing the researcher to quickly test and refine the bioinfor-
matics algorithms while leaving most of the complications imposed
by distributed systems to be handled automatically by Makeflow.

7. RELATED WORK
Stu Feldman presented the original Make [13] as a means for

maintaining dependencies in compilation. In the years since there
have been many variations on Make that exploitparallel comput-
ing systems which assume a fault-free environment and a global
filesystem namespace, which is required for the traditionalMake
semantics. For example, Amoeba pmake [5] made minimal modifi-
cations to make to allow jobs to be distributed across an Amoeba [21]
cluster, relying on the central fileserver for a common namespace.
ISIS pmake [24] took the unusual approach of forking commands
for all rules simultaneously, relying on a object space similar to
Linda [2] to block rules whose dependencies were not yet satis-
fied. PGMAKE [4] employed PVM to fork processes on a large
cluster, and NFS to provide access to data files. The SGE batch
system provides qmake [14], which dispatches each rule as anSGE
job, again relying on a shared filesystem. GXP make [27] uses the
standard GNU make [13], but interposes on theSHELL variable
to dispatch commands to various remote filesystems, relyingon a
shared filesystem for data access. Makeflow builds upon this body
of work by showing how a slight twist to the semantics allow Make
to function correctly on fault-prone, shared-nothing distributed sys-
tems constructed from clusters, clouds, and grids.

Explicit statement of dependencies is not the only way of manag-
ing workflows. DAGMan [9], the workflow engine provided with
Condor [30], states the control dependencies between batchjobs,
and has no direct information about data needs. This can be useful
if the jobs have side effects that are reflected in some external de-
vice such as a database or a physical actuator. Another technique
is transparent result caching [33], in which the actual dependencies
of a program are observed by interposition on file operations. This
is useful for accelerating the performance of a repeated andhighly
uniform job, but offers no assistance in resource management on
the first execution of a workflow. In a cloud environment where
data movement has real costs, we believe that explicit statement of
dependencies is of greater utility.

In recent years, cloud computing systems have emphasized the
Map-Reduce programming model, popularized by Google [11] and
the Hadoop [17] open source implementation of the same ideas.
Map-Reduce is, by design, less flexible than a generalized graph
programming model, but this makes it much more tractable to solve
problems of data partitioning, data locality, and fault tolerance.
The concept of Map-Reduce is portable to other architectures such
as multicore [25] and graphics processors [18]. Systems such as
Dryad [19] and Sphere [16] provide a more generalized graph pro-
cessing model than Map-Reduce, but also focus on the storageclus-
ter architecture.

It is common to view Map-Reduce programs from the perspec-
tive of query processing. A number of small domain specific lan-
guages have been created to simplify multiple invocations of Map-
Reduce for this purpose. For example, Pig [23] consists of a series

of simple query-like operators that are all implemented as calls to
Map-Reduce. Cascading [8] is a similar idea, but is able to pipeline
multiple operations together for higher efficiency. Hive [32] layers
a table structure on top of files within Hadoop, and then applies
Map-Reduce programs to implement a query language.

8. CONCLUSIONS
Makeflow. Many common problems in science and industry can

be easily expressed as a graph of small sequential programs ex-
hibiting a high degree of natural parallelism. These can be run on
a variety of dedicated systems, but each requires the user tohave
some expertise with a custom language and runtime system. This
makes it difficult for users to learn new systems, limiting the re-
sources available to them.

We address this problem with Makeflow: a scalable, fault toler-
ant workflow manager based on and using syntax nearly identical
to that of UnixMake, a language familiar to many users.

Makeflow scales in size, allowing users to run workflows con-
sisting of anywhere from a handful of jobs to millions. It canrun
thousands of jobs concurrently, automatically handling data depen-
dencies and failure conditions. Makeflow can run anything from
simulations that require a few kilobytes of data per job to genetic
analyses that require gigabytes or more.

Makeflow scales in time. Depending on the execution driver
chosen, Makeflow can efficiently run jobs that last anywhere from
seconds to days. Makeflow can run for days at a time, efficiently
handling remote node crashes, network disruptions, local machine
crashes, resource allocation changes, and more, without losing sub-
stantial amounts of useful computation.

Makeflow scales across systems. A workflow can be initially
developed on a single workstation, tested on a local cluster(SGE,
Hadoop), scaled up using a global computational grid (Condor),
and deployed for production using any combination of the above,
plus whatever flexible commercial cloud resources are desired (Work
Queue). The same workflow description can be moved between
these resources without change.

Makeflow scales across user expertise. Makeflow has been suc-
cessfully used as everything from an instructional tool in under-
graduate courses to a platform on which production-level systems
are developed. The language ofMakewithout the pattern rules and
other complex constructs is extremely simple and fairly intuitive,
and a reasonably efficient workflow can be built and run on any
system using only the default settings. At the same time, expert
users can carefully tune their workflows to the execution systems
available, establishing requirements or constraints on the remote re-
sources used and employing the fairly extensive debug and logging
system to identify bottlenecks and eliminate them.

Workbench. Makeflow’s inherent portability makes it easy to
run the same workflow on each of the supported systems. This
prompted our development and introduction of Workbench, a work-
flow benchmark suite for measuring the performance characteris-
tics of common workflow patterns on a variety of systems. We also
expect that Workbench can be useful for profiling and improving
bottlenecks in both new and existing distributed systems. When
running Workbench we observed that workflows with small files
are much more affected by dispatch latency than data throughput.
We also found that asynchronous file transfer provides the great-
est benefit to high-data reasonably-parallel workflows, butthat for
low-data jobs the infrastructure necessary to run the job can slow
dispatch to the point of reducing performance.

Future Work. There are a variety of directions we can take
this work. Makeflow’s knowledge about the data dependenciesof a
workflow offers many exciting opportunities to optimize execution.



Data-local computation, resource management, and graph decom-
position are three areas we’ve already begun investigating.
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