
IMPROVING THE REPRODUCIBILITY OF SCIENTIFIC APPLICATIONS

WITH EXECUTION ENVIRONMENT SPECIFICATIONS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Haiyan Meng

Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

April 2017

c© Copyright by

Haiyan Meng

2017

All Rights Reserved

IMPROVING THE REPRODUCIBILITY OF SCIENTIFIC APPLICATIONS

WITH EXECUTION ENVIRONMENT SPECIFICATIONS

Abstract

by

Haiyan Meng

Reproducibility, a main principle of the scientific method, has historically de-

pended on text and proofs in a publication. However, as computation pervades

science and changes the way how research is conducted, relying only on the exper-

imental results in a publication cannot guarantee reproducibility. The execution

environment, in which the results were generated, is another important ingredient

and must also be preserved to reproduce the results. Unfortunately, execution envi-

ronments for scientific work are often fragile and too complex to be well understood

by researchers, let alone to be preserved.

This dissertation proposes two broad approaches for improving the reproducibility

of scientific applications and explore their feasibility and applicability for both single-

machine scientific applications and complex scientific workflows. The first approach

wraps the minimal execution environment of an application into an all-in-one package.

The second approach specifies the execution environment from hardware, kernel and

OS all the way up to software, data and environment variables in an organized way,

preserves dependencies in the unit of basic OS image, software and data, and combines

all the dependencies at runtime using mounting mechanisms.

For each approach, a prototype was implemented and the following three aspects

are explored: what to preserve, how to preserve and how to reproduce. The time

Haiyan Meng

and space overheads to preserve and reproduce applications, and the correctness

of preserved artifacts are evaluated through applications from high energy physics,

bioinformatics, epidemiology and scene rendering. The evaluation results show that

both approaches allow researchers to reproduce an application and verify its results.

However, the second approach avoids storing shared dependencies repeatedly and

makes it easier to extend the original work.

This work makes its contribution by demonstrating the importance of execu-

tion environments for the reproducibility of scientific applications and differentiating

execution environment specifications, which should be lightweight, persistent and

deployable, from various tools used to create execution environments, which may

experience frequent changes due to technological evolution. It proposes two preser-

vation approaches and prototypes for the purposes of both result verification and

research extension, and provides recommendations on how to build reproducible sci-

entific applications from the start.

CONTENTS

FIGURES . v

TABLES . vi

ACKNOWLEDGMENTS . vii

CHAPTER 1: INTRODUCTION . 1
1.1 Problem Scope and Domain . 5
1.2 Motivation . 7
1.3 Contribution . 8
1.4 Publications . 9
1.5 Overview of Dissertation . 10
1.6 A Note on Terms . 12

CHAPTER 2: RELATED WORK . 13
2.1 Preservation Approaches of Scientific Applications 13
2.2 Virtualization and Reproducible Research 14

2.2.1 Hardware Virtualization . 15
2.2.2 Operating System-Level Virtualization 16
2.2.3 Application Virtualization . 16

2.3 Execution Environment Configuration Approaches 17
2.4 Scientific Workflows and Scientific Workflow Systems 18
2.5 Reproducibility in Clouds, Grids and HPC Sytems 19
2.6 Management and Distribution of Data and Software 20
2.7 Data Provenance . 21

CHAPTER 3: REPRODUCING SINGLE-MACHINE SCIENTIFIC APPLI-
CATIONS WITH MINIMAL EXECUTION ENVIRONMENT PACKAGES 23
3.1 Introduction . 23
3.2 A Case Study in Reproducing A High Energy Physics Application . . 25

3.2.1 Code Sources of the Application Under Study 25
3.2.2 Data Sources of the Application Under Study 26

3.3 Challenges in Reproducing Complex Scientific Applications 27
3.4 Refinements to Make Scientific Applications Reproducible 30

ii

3.5 Creating Minimal Execution Environment Packages: Parrot Packaging
Tool . 33

3.6 Package Preservation, Distribution and Deployment 37
3.7 Evaluation . 39
3.8 Conclusion . 41

CHAPTER 4: REPRODUCING SINGLE-MACHINE SCIENTIFIC APPLI-
CATIONS WITH EXECUTION ENVIRONMENT SPECIFICATIONS . . 44
4.1 Introduction . 44
4.2 Why Is It So Difficult to Reproduce Experiment Results? 46
4.3 Tracking, Creating and Preserving Execution Environments: Umbrella 48

4.3.1 Tracking Execution Environment: Umbrella Specification . . . 48
4.3.2 Creating Execution Environment: Umbrella Execution Engine 52

4.3.2.1 Sandbox Technique - Utilize the Current OS Directly 53
4.3.2.2 Sandbox Technique - OS-Level Virtualization 54
4.3.2.3 Sandbox Technique - Hardware Virtualization 55

4.3.3 Preserving Execution Environment - Umbrella Archiver 57
4.4 Two Example Workflows of Conducting Reproducible Research . . . 58
4.5 Evaluation . 61

4.5.1 Applications Evaluated . 61
4.5.2 Umbrella Specification File Sizes 64
4.5.3 Overheads of Creating Execution Environments 64
4.5.4 Effectiveness of Umbrella Local Cache 67
4.5.5 Last Step to Enhance Reproducibility 68

4.6 Conclusion . 69

CHAPTER 5: REPRODUCING SCIENTIFIC WORKFLOWS WITH UM-
BRELLA . 71
5.1 Introduction . 71
5.2 Challenges in Reproducing Scientific Workflows 75
5.3 A Framework Facilitating the Reproducibility of Scientific Workflows 79
5.4 A Prototype Implementation of the Framework 80

5.4.1 Why not Use Docker as the Execution Environment Creator? 82
5.4.2 Discussion . 84

5.5 Evaluation . 84
5.5.1 Applications Evaluated . 85
5.5.2 OS and Data Dependencies of Evaluated Applications 88
5.5.3 Space and Time Overheads Introduced by Umbrella 89
5.5.4 Heterogeneity of Execution Nodes 89

5.6 External Reproducibility of Scientific Workflows 90
5.7 Conclusion . 94

iii

CHAPTER 6: CONCLUSION . 96
6.1 Recommendations on How to Build Reproducible Scientific Applications 96
6.2 Recommendations on How to Build Tools for Facilitating Reproducible

Research . 98
6.3 How to Reproduce Old and New Applications in the Future 100
6.4 Summary . 101
6.5 Future Work . 103
6.6 Final Words . 104

BIBLIOGRAPHY . 106

iv

FIGURES

3.1 Code/Data Inputs to TauRoast and Code/Data Sizes 28

3.2 Refinements to Make Scientific Applications Reproducible 32

3.3 Workflow of Creating Minimal Execution Environment Packages with
Parrot Packaging Tool . 34

3.4 Workflow of Creating, Distributing and Deploying Packages 38

4.1 Workflow of Umbrella Execution Engine 53

4.2 Umbrella Local Cache - Allowing Dependency Sharing 55

4.3 Workflow of Executing An Umbrella Job via Amazon EC2 57

4.4 Conducting Reproducible Research Using Umbrella - Local + OSF . 59

4.5 Conducting Reproducible Research Using Umbrella - EC2 + S3 . . . 60

5.1 An Example Workflow in DAG . 72

5.2 An Example Makefile: Image Rotation 72

5.3 Layers of Scientific Workflow Systems 74

5.4 Running BLAST with Makeflow and Umbrella 81

5.5 Bioinformatics Scientific Workflow - BLAST 85

5.6 Bioinformatics Scientific Workflow - BWA 86

v

TABLES

3.1 DATA AND CODE USED BY TAUROAST 28

3.2 SUMMARIES OF PACKAGES WITH DIFFERENT COPYING DE-
GREES FOR TAUROAST . 36

3.3 TIME OVERHEADS OF THE ORIGINAL EXECUTION AND PAR-
ROT PACKAGING TOOL . 39

3.4 PERFORMANCE OF EXECUTING THE REDUCED PACKAGE
ACROSS DIFFERENT MACHINES 41

4.1 RESOURCE URLS SUPPORTED BY UMBRELLA SPECIFICATIONS 51

4.2 SANDBOX TECHNIQUES FOR CREATING EXECUTION ENVI-
RONMENTS . 54

4.3 DEPENDENCIES OF EVALUATED APPLICATIONS 63

4.4 UMBRELLA SPECIFICATION FILE SIZES 64

4.5 TIME AND SPACE OVERHEADS OF CREATING EXECUTION
ENVIRONMENTS . 65

4.6 EFFECTIVENESS OF UMBRELLA LOCAL CACHE 68

4.7 DOIS FOR THE EVALUATED APPLICATIONS TO ENHANCE
REPRODUCIBILITY . 69

5.1 HETEROGENEITY OF THE ND HTCONDOR POOL (FALL 2016) 77

5.2 HETEROGENEITY OF THE ND HTCONDOR POOL (SPRING 2015) 77

5.3 SOFTWARE INCOMPATIBILITY ACROSS DIFFERENTRHEL DIS-
TRIBUTIONS . 78

5.4 OS AND SOFTWARE DEPENDENCIES OF EVALUATED WORK-
FLOWS . 88

5.5 SPACE AND TIME OVERHEADS INTRODUCED BY UMBRELLA
- OS AND SOFTWARE DEPENDENCIES 89

5.6 HETEROGENEITY OF EXECUTION NODES CONTRIBUTING
TO EACH WORKFLOW . 90

vi

ACKNOWLEDGMENTS

This work would not have been possible without the guidance and encouragement

of my advisor, Dr. Douglas Thain. His positiveness, ingenuity, impressive teaching

methods and wonderful class design made him a great role model for me. I would

also like to thank my dissertation committee members, Dr. Jaroslaw Nabrzyski, Dr.

Michael Hildreth and Dr. Sandra Gesing, for their help and suggestions for my work.

Thanks my fellow grad students from the Cooperative Computing Lab for all the

interesting discussions. Thanks our collaborators from the Department of Physics

for providing interesting use cases for my research and always giving lots of helpful

feedback. Thanks M.D. McNally from the Departement of Computer Science and

Engineering and the staff from the Center for Research Computing for providing

critical technical assistance throughout this research effort.

Special thanks to my fellow lab member and my now-fiancé, Dr. Patrick Donnelly,

for teaching me how to find not just the solution, but the correct one, how to be

patient, and how to be a true Fighting Irish fan.

I am grateful for the financial support provided by National Science Foundation

grants PHY-1247316 (DASPOS), OCI-1148330 (SI2) and PHY-1312842. Without

this support, I would not have been able to focus on my research.

Thanks to Joyce Yeats, Dian Wordinger and Ginny Watterson for their prompt

and kind help for all administrative affairs.

Last but not least, thanks to my family for supporting my pursuing of a Ph.D.

in the USA. Thanks to my mom, Xinping Liu, for always having the deepest trust

and support on my decisions. Thanks to my dad, Jianbin Meng, for teaching me how

vii

to do things with high standards. Thanks to my sister, Ge Meng, for always being

my sweetheart and angel. Thanks to my brother, Peng Meng, for taking care of our

parents while I am far away from home.

viii

CHAPTER 1

INTRODUCTION

Reproducibility is one main principle of the scientific method [22, 87]. It advances

science by first making it possible to verify a scientific result, and then increasing the

chance of reusing the result or extending the work. Ensuring the reproducibility of

a scientific result, however, often entails detailed documentation and specification of

the involved scientific work.

Historically, text and proofs in a publication have achieved this end. However, as

computation pervades science and changes the way how research is conducted, relying

only on text and proofs in a publication is no longer sufficient [100]. Experimental

results may be plotted into beautiful figures and presented in an academic conference

or published in a journal, however, descriptions of the actual procedures by which

the results were achieved are often superficial and imprecise. Authors may mention

the platform configuration used for their experiments in the Evaluation section, such

as CPU, memory, network and disk, but seldom include the details of the software

stack, such as software version, dataset source and analysis scripts.

Without a complete description of the execution environment used by the original

authors, it may be difficult or even impossible to reproduce scientific work. For

example, a study in 2011 found that only 6% medical studies in pharmacology were

completely reproducible [91], and another study in 2012 of 53 medical research papers

in cancer research found that 47 of them were irreproducible [16]. A study in 2015

of the repeatability in computer systems research examined 402 papers from ACM

conferences and journals whose results were backed by code, and found that only

1

85 of the papers provided links to their code in the paper itself. The study also

showed that only the code in 32.3% of the papers can be rebuilt within 30 minutes,

the code in another 16% of the papers can be rebuilt with extra effort of debugging,

and it was difficult to rebuild the code in the remaining 51.7% of the papers [92].

Therefore, apart from the experimental results published in journals or conference

proceedings, the execution environment, in which the results were generated, must

also be preserved to reproduce the results.

Unfortunately, execution environments for scientific applications are fragile due

to the rapid changes of explicit and implicit dependencies. The kernel and OS (Op-

erating System) may upgrade, the software may have a new version, the data format

may change [61], the network dependencies may be unavailable due to linkrot [109],

or some core staff may leave. In addition, the hardware architecture an application

depends on today may become obsolete five or ten years later.

Execution environments for scientific applications are getting more complex in

both the variety and size of dependencies [76, 97]. Consider a HEP (High Energy

Physics) application [75] running on a single machine: four different networked filesys-

tems which are mounted locally are used to deliver software and data dependencies

- HDFS [23], CVMFS [19], PanFS [113] and AFS [98]. In addition, some software

dependencies are delivered through CVS (Concurrent Versions System) [29], the anal-

ysis code is delivered through Git [69], some libraries are retrieved from a third-party

website, and a header file is retrieved from a personal website. The complete size of

its input dataset is a staggering 11.6TB and the size of the software framework used

is 88.1GB, often undeployable on a single system.

Execution environments for scientific workflows [103], such as Pegasus [37], Make-

flow [11], Taverna [83] and Swift [115], introduce new complexity in that multiple

software stacks are often involved and the communication between multiple execu-

tion nodes need to be considered. Ideally, scientific workflows should improve the

2

reproducibility of scientific applications by making it easier to share and reuse work-

flows between scientists. However, scientists often find it difficult to reuse others’

workflows, which is known as workflow decay [53]. For example, myExperiment [48]

is designed to be a sharing social website which allows scientists to share their work-

flows. However, a study of Taverna workflows on myExperiment shows that 80% of

the workflows on the site could not be reproduced, mainly due to the volatility of the

resources required for workflow executions [119].

Documenting execution environments is often not given high priority by researchers

due to the time pressure from publication deadlines and moving on to the next chal-

lenges in their research. In the case where they are willing to preserve the execution

environments, the complicated dependencies of scientific applications often stop them.

What’s more, even system administrators are often frustrated by the dependency hell

problem [51].

Various attempts have been made to enhance traditional scholarly publication

and improve the reproducibility of scientific results, such as Research Objects [15],

dynamic documents [46, 82], reproducible papers [45], virtual machines [65] and vir-

tual appliances [57]. However, these solutions may only bundle together the necessary

resources and are not directly executable; or not cover the complete execution envi-

ronment (e.g., the hardware, kernel and OS dependencies are sometimes missing); or

fail when the software stack is very large [76]; or not be space-efficient because com-

mon dependencies shared by multiple scientific applications such as shared libraries

are preserved redundantly.

The existing efforts to improving the reproducibility of scientific workflows are

mainly guidelines on how to design reproducible scientific workflows [15, 47, 53, 53].

These guidelines focus on the specifications of scientific workflows and ignore the other

components of scientific workflow systems [116], which usually include multiple layers

- the workflow specification layer, the specification parser layer, the task scheduler

3

layer and the computing resource layer. In addition, the users of scientific workflow

systems often do not have control over the underlying execution environments used

to run their tasks, and sysadmins must respond to the cumbersome job of configuring

the execution environments on all the execution nodes to meet the requirements of

different workflows. Otherwise, the tasks would fail on the nodes with incompatible

execution environments, leaving these execution nodes not fully exploited.

This dissertation proposes two broad approaches for facilitating the reproducibil-

ity of scientific applications and explore their feasibility and applicability for single-

machine scientific applications and complex scientific workflows. The first approach

wraps the minimal execution environment of an application into an all-in-one pack-

age that can be used to reproduce the application. The second approach specifies

the execution environment from hardware, kernel and OS all the way up to software,

data and environment variables in an organized way. This enables preserving depen-

dencies in basic units of OS image, software and data. All the dependencies of an

application are combined into a unified sandbox at runtime using mounting mecha-

nisms. A prototype was implemented for each approach - Parrot Packaging Tool for

the first approach and Umbrella for the second.

For each approach, the following three aspects are explored: what to preserve, how

to preserve, and how to reproduce. The time and space overheads to preserve and re-

produce applications, and the correctness of preserved artifacts are evaluated through

applications from high energy physics, bioinformatics, epidemiology and scene render-

ing. The evaluation results show that both approaches allow researchers to reproduce

an application and verify its results with acceptable effort. However, the second ap-

proach avoids storing shared dependencies repeatedly and makes it easier to extend

the original work.

This work makes its contribution by demonstrating the importance of execu-

tion environments for the reproducibility of scientific applications, and differentiat-

4

ing execution environment specifications, which should be lightweight, persistent and

deployable, from various tools used to create execution environments, which may

experience frequent changes due to technological evolution. It proposes two preser-

vation approaches and provides two prototypes to assist researchers in reproducing

their applications for the purposes of both result verification and research extension.

Finally, this work provides recommendations on how to build reproducible scientific

applications from the start.

1.1 Problem Scope and Domain

The definition of reproducibility is still under debate, and the key contention lies

in whether the reproducing procedure uses the original artifacts or not [43]. Instead

of arguing its definition, this work focuses on the feasibility evaluation of different

preservation methods and the cost comparison of preserving and reproducing scientific

applications using different preservation methods.

The preservation objectives of reproducible research can be classified into two

categories: result verification and research extension. Result verification can be

further divided into identical environment verification, new environment verification

and new software implementation verification. Research extension can be divided into

new data extension and new software extension [106]. Result verification helps build

up the trust for existing research results, while research extension advances science

by allowing researchers to explore new ideas. This work aims to assist researchers in

both the result verification and research extension aspects of reproducible research.

Verification of scientific results has two different targets: output-oriented and

performance-oriented [96]. Performance verification can be very challenging or

even impossible due to the impact of fast hardware upgrade cycle [52] and runtime

factors, such as network quality, disk speed, CPU load and memory size. Sometimes

even output verification is difficult because either the application is stochastic (e.g.,

5

Monte-Carlo simulation in the CMS experiment [35]) or the usage of complex high

performance computing systems introduces non-determinism [31, 72]. This work

focuses on the case where the outputs of different runs of a scientific application are

identical literally.

The target of preservation may be a problem, a solution or an implementa-

tion. A scientific application is an implementation of a specific solution to a given

problem. For example, A problem may be sorting 100,000 numbers, quicksort is one

solution for the problem, and one implementation of quicksort may be a C program

which is supposed to run on a x86 64 machine. A preservation plan should cover the

problem, the solution and the implementation. Preserving the implementation allows

others to verify the results easily, utilize the implementation to sort other data sets,

or even optimize the implementation. Preserving the solution makes it possible for

new implementations, which can be used to compare with the preserved implemen-

tation for the purpose of verification. Preserving the problem itself makes it possible

for new solutions, which can be used to verify the correctness of existing solutions,

and may have better performance.

Computing and Computing Resources. In general, a program (i.e., com-

puting) is not tightly coupled with any single server (i.e., computing resources). For

example, the C quicksort program mentioned above can run on any server which

satisfies the dependency requirements. Aware of the difference between computing

and computing resources helps determine the preservation scheme.

Software Framework and its Deployments. It is also important to dif-

ferentiate a software framework and its different deployments. For example, HT-

Condor [108], as a software framework, can be deployed in different universities or

organizations. A scientific result may be obtained through an experiment running

on the HTCondor pool at the University of Notre Dame. However, the preservation

specification should not be tightly coupled with the HTCondor deployment, instead

6

should allow the scientific result to be reproduced on other HTCondor deployments

or other software frameworks such as Apache Hadoop [105].

Software/Data and Software/Data Delivery Tools. Another difference to

be aware of is between software/data and software/data delivery tools. For example,

CMSSW (CMS SoftWare) is the software framework for analyzing CMS data [61], and

currently can be delivered to end-users through a virtual file system called CVMFS

(Cern Virtual Machine File System) [19]. CMSSW is crucial for the execution of

CMS applications, however, CVMFS, the common way today, is not the only way

to delivery CMSSW. On a server with enough storage space, it is possible to leave

CVMFS alone and directly put CMSSW onto local disks. Therefore, the preservation

of CMSSW and CVMFS should be considered separately. Another good example is

the petabyte-level CMS data and the XRootD file access system, which can be used

to assist concurrent access to the CMS data from multiple clients [41].

1.2 Motivation

The work is highly motivated by the Data And Software Preservation for Open

Science (DASPOS) project [71]. DASPOS aims to explore the key technical problems

involved in preserving and reproducing high energy physics experiments, which al-

ready accumulated petabyte-level data sets and keep generating more data, and use

complex and evolving software frameworks to analyze these data sets.

This work began with a thorough case study of a high energy physics experiment,

called TauRoast, conducted by the high energy physics researchers from the Depart-

ment of Physics at the University of Notre Dame. The case study revealed the variety

and size of the software and data dependencies of TauRoast, and the complexity of

execution environment configurations for high energy physics applications [75].

Several refinements were done to improve the reproducibility of the TauRoast

experiment. Different preservation approaches were explored to improve the repro-

7

ducibility of existing scientific applications. The lessons learned throughout the ex-

ploration may guide the design of reproducible scientific applications from the start.

1.3 Contribution

This work aims to facilitate the reproducibility of scientific applications including

both complex single-machine scientific applications and scientific workflows. It makes

several contributions in this regard:

First, it explores the challenges in preserving scientific applications, and evaluates

the reproducibility of different components in complex execution environments.

Second, it proposes two broad approaches for conducting reproducible research.

The first approach preserves the minimal execution environment into an all-in-one

package in a messy way. The second approach preserves the dependencies in the

unit of OS image, software and data, specifies an execution environment from hard-

ware, kernel and OS all the way up to software, data and environment variables

in an organized way, and brings all the dependencies into a unified sandbox during

runtime through mounting mechanisms. The pros and cons of each approach are

explored, which helps researchers choose proper preservation plans according to their

preservation aims.

Third, it separates the preserved artifacts, the preservation tools which create

the preserved artifacts, and the reconstruction tools which recreate the execution

environment with the preserved artifacts and reproduce the original work. This

improves the portability of the preserved artifacts and allows new technologies to

reuse the preserved artifacts.

Fourth, it summarizes the characteristics of reproducible scientific applications,

and gives recommendations on how to design reproducible scientific applications from

the start and how to build tools for conducting reproducible research.

8

1.4 Publications

• A Case Study in Preserving a High Energy Physics Application with Parrot in
the Journal of Physics: Conference Series (JPCS) [75]. This paper describes
the complexity of preserving a complex high energy physics application, Tau-
Roast, and proposes a prototype, Parrot Packaging Tool, which can be used
to capture the minimal execution environment of a scientific application into
an all-in-one package. The preserved package can be re-executed using a vari-
ety of technologies including Parrot [107], Docker [80], chroot [64] and virtual
machines [14].

• An Invariant Framework for Conducting Reproducible Computational Science
in the Journal of Computational Science (JOCS) [76]. This paper proposes a
preservation framework for computational reproducibility, which covers: how
to use system call trapping, a light-weight virtualization technique, to create
a reduced package which only includes all the necessary dependencies; how to
distribute preserved artifacts through standard software delivery mechanisms
like Docker; and how to recreate applications with the help of the preserved
artifacts through flexible deployment mechanisms such as Parrot, PTU [88],
Docker and chroot.

• Umbrella: A Portable Environment Creator for Reproducible Computing on
Clusters, Clouds, and Grids at the 2015 Workshop on Virtualization Technolo-
gies in Distributed Computing (VTDC) [77]. This paper presents Umbrella, a
prototype for specifying and materializing execution environments in a portable
and reproducible way. Umbrella accepts a declarative execution environment
specification for an application, and then determines the minimum technology
needed to deploy it. The application may be run natively if the local execu-
tion environment is compatible, or run inside a container, a virtual machine, or
remotely in the cloud.

• Techniques for Preserving Scientific Software Executions: Preserve the Mess or
Encourage Cleanliness? at the 2015 International Conference on Digital Preser-
vation (iPres) [106]. This paper explores from a high level what techniques and
technologies must be put in place to allow for the accurate preservation and
reproduction of scientific software, discusses the fundamental problems of man-
aging implicit dependencies, and outlines two broad approaches to preservation
scientific software: preserving the mess and encouraging cleanliness.

• Conducting Reproducible Research with Umbrella: Tracking, Creating, and Pre-
serving Execution Environments at the 2016 IEEE International Conference on
eScience [79]. This paper proposes a framework facilitating the conduct of
reproducible research by tracking, creating and preserving the comprehensive
execution environments with Umbrella. The framework includes a lightweight,

9

persistent and deployable execution environment specification, an execution en-
gine which creates the specified execution environments, and an archiver which
archives an execution environment into persistent storage services like Amazon
S3 and OSF (Open Science Framework). The execution engine utilizes sand-
box techniques like virtual machines, Linux containers and user-space tracers,
to create an execution environment, and allows common dependencies like base
OS images to be shared by sandboxes for different applications.

• Facilitating the Reproducibility of Scientific Workflows with Execution Envi-
ronment Specifications at the 2017 International Conference on Computational
Science (ICCS) [78]. This paper explores the challenges in reproducing scien-
tific workflows, and proposes a framework for facilitating the reproducibility
of scientific workflows by giving scientists complete control over the execution
environments for their workflows and integrating execution environment speci-
fications into scientific workflow systems. The framework allows the execution
environment dependencies to be archived separately in finer granularity instead
of gigantic all-in-one images. A prototype is implemented by integrating Um-
brella [79], an execution environment creator, into Makeflow [11], a scientific
workflow system.

1.5 Overview of Dissertation

This chapter gives an introduction to this work, clarifies the problem scope and

domain this work aims to solve, explains the motivation and contribution of this

work, and lists the relevant publications.

CHAPTER 2: RELATED WORK reviews several topics directly related

to this work and explain the research gap this work aims to fill: the three possi-

ble approaches to preserving scientific applications; different types of virtualization

techniques and how they can facilitate the conduct of reproducible research; single-

machine scientific applications and scientific workflows; the ways of configuring com-

plex execution environments for scientific applications; the reproducibility in clouds,

grids, and HPC systems; the management and distribution of scientific data and

software; and data provenance.

CHAPTER 3: REPRODUCING SINGLE-MACHINE SCIENTIFIC

APPLICATIONS WITH MINIMAL EXECUTION ENVIRONMENT

10

PACKAGES describes a case study in reproducing a high energy physics applica-

tion; summarizes the challenges in reproducing complex scientific applications learned

through the case study; explains the several refinements to make scientific applica-

tions reproducible; describes and evaluates a prototype, Parrot Packaging Tool, which

can be used to create minimal execution environment packages and reproduce com-

plex scientific applications.

CHAPTER 4: REPRODUCING SINGLE-MACHINE SCIENTIFIC

APPLICATIONS WITH EXECUTION ENVIRONMENT SPECIFICA-

TIONS explains the complexity of execution environments for scientific applications

which makes it difficult to reproduce experiment results; describes a framework which

aims to help researchers track, create and preserve their execution environments; pro-

vides two example workflows illustrating how the framework can facilitate the repro-

ducibility of scientific applications; and evaluates the correctness of the framework,

the time and space overheads of preserving and creating execution environments.

CHAPTER 5: REPRODUCING SCIENTIFIC WORKFLOWS WITH

UMBRELLA lists the challenges in reproducing scientific workflows; describes a

framework facilitating the reproducibility of scientific workflows by giving scientists

complete control over the execution environments for their workflows and integrating

execution environment specifications into scientific workflow systems; describes a pro-

totype of the framework by integrating Umbrella, an execution environment creator,

into Makeflow, a scientific workflow system which can utilize computing resources

from a HTCondor cluster; and presents the evaluation results of the framework on

its correctness, time and space overheads to preserving and creating execution envi-

ronments.

CHAPTER 6: CONCLUSION summarizes this work; explains how this work

fills up some, not all of the research gap in reproducible research, and improves the re-

producibility of scientific applications in terms of both result verification and research

11

extension; summarizes the characteristics of reproducible scientific applications; and

gives some recommendations on how to build reproducible scientific applications from

the start to researchers and on how to build tools for facilitating the reproducibility

of scientific applications to tool creators.

1.6 A Note on Terms

Single-Machine Scientific Applications in this work means applications whose

computing and storage needs can be satisfied by the resources provided on a single ma-

chine. Applications involving accesses to remote filesystems, which can be mounted

locally and accessed via local file paths like /afs/nd.edu/user27/harry, are still

counted as single-machine applications.

Machine in this work means commonly used workstation or server, and does not

mean supercomputer.

Reproducibility in this work means the ability of both repeating an application

exactly and extending the original application.

Preserved Artifacts in this work means the materials relative to an application

being preserved, which makes it possible to reproduce the application. Some ex-

amples are OS images, software, data sets, and documentations about its execution

environment, background, motivation and goal.

Here is a list of terms which may be used alternatively according to the context:

• scientific applications, applications, and experiments;

• machine and server;

• re-use, re-run, re-execute, repeat, and reproduce;

• analysis code and analysis script;

• researchers and scientists;

• scientific results, research results and experiment results.

12

CHAPTER 2

RELATED WORK

This chapter reviews several topics directly related to this work and explains the

research gap this work aims to fill. Section 2.1 outlines the three possible approaches

to preserving scientific applications. Section 2.2 discusses different types of virtual-

ization techniques and how they can facilitate the conduct of reproducible research.

The methods of configuring complex execution environments for scientific applica-

tions are reviewed in Section 2.3. Section 2.4 reviews scientific workflows, scientific

workflow systems, workflow decay and different degrees of control over the underly-

ing execution environments. The reproducibility in clouds, grids and HPC systems

is reviewed in Section 2.5. Section 2.6 gives an overview of the management and

distribution of scientific data and software. Section 2.7 discusses the topics of data

provenance.

2.1 Preservation Approaches of Scientific Applications

Scientists implement their solutions to complex scientific problems as scientific

applications with the help of computational science [58, 93]. The successful execution

of a scientific application depends on the correctness of the solution, the computer

software implementing the solution, and the underlying computer hardware such as

CPUs, memory, disk and networking devices.

To facilitate the reproducibility of computational science, there are three main

strategies to preserve scientific applications: hardware preservation, migration, and

emulation [74, 118].

13

Hardware preservation maintains the original execution environment for an ap-

plication including both the hardware and software. The reproduction is easy by

re-running the same application on the same execution environment. However, this

approach is not very efficient due to the cost and space overheads of preserving both

the software and hardware, and may not be feasible sometimes, especially for dis-

tributed applications which involve multiple computing nodes. The reproduction may

be impossible from a long-term perspective because the hardware may be damaged

by factors like humidity or the lifetime of disks may end.

Migration adapts old software to future platforms by modifying or even rewriting

the software. The old versions of software and its dependencies do not need to

preserved. However, this approach is only feasible when the software is still under

development and well maintained.

Emulation keeps the software unchanged and recreates the original execution

environment on the future platforms through virtualization techniques [14]. The

approach is cost-efficient because the reconstructed execution environment can be

shared and re-used by different applications. It also moves cost of porting many

scientific applications to maintaining a single emulation framework.

Each of these approaches has its pros and cons, and may be especially useful or

even demanded for certain circumstances or research fields. This work mainly focuses

on the emulation approach.

2.2 Virtualization and Reproducible Research

Virtualization techniques can be used to virtualize computer hardware platforms,

operating systems, applications, memory, storage, networks and so on. Research, in-

cluding this work, has been exploring on how to utilize different types of virtualization

techniques to recreate the original execution environments of scientific applications

and conduct reproducible research.

14

2.2.1 Hardware Virtualization

In hardware virtualization, hypervisors (i.e., virtual machine monitors) such as

VirtualBox [112] and VMware ESX [111] can be utilized to create a VM (Virtual

Machine) on a host machine. A virtual machine emulates a computer system with

an operating system. A hypervisor manages the execution of virtual machines on the

host machine. Multiple instances of different operating systems may run on the same

host machine. For example, a physical x86 machine may run Microsoft Windows,

Linux and Mac OS X concurrently.

The capability of running another OS, which may be different from the OS on

the host machine, makes hardware virtualization useful for researchers to share their

work conveniently. The original author can wrap the whole execution environment

for his or her experiment into a VMI (Virtual Machine Image), then distribute and

share the VMI [24, 62]. Other researchers can reproduce the original experiment with

the VMI on their servers if the required hypervisor is available. Cloud computing

platforms, such as the Amazon Elastic Computing Cloud [62] and Google Compute

Engine [63], make it possible to reproduce an experiment on cloud resources, without

the necessity of installing hypervisors on local machines [57].

This approach does not work for complex scientific applications with large software

stacks sizing terabytes (TBs), such as some high energy physics applications [75]. A

virtual machine image including all the required dependencies can be used to repeat

an experiment accurately, however, the structure of the VMI is often complicated and

not well-documented, making it very difficult for others to understand the configu-

rations of the experiment and to extend the original work. Hardware virtualization

also involves execution overheads because each instruction within a VM needs to be

translated into an instruction on the host machine via the hypervisor.

15

2.2.2 Operating System-Level Virtualization

OS-level virtualization allows multiple OS instances to run simultaneously on

top of a single OS kernel [117]. Compared with hardware virtualization, this has

lower execution overhead because no hardware-level instruction translation is needed.

With OS-level virtualization, only OS instances supported by the OS kernel on the

host machine can run concurrently, such as different Linux distributions can run on

top of the Ubuntu Linux distribution. There is no way to run Microsoft Windows

and Linux simultaneously with OS-level virtualization. In spite of its low-overhead

and flexibility, the security of OS-level virtualization has been a concern [94]. The

implementation of OS-level virtualization may only deploy file system isolation (i.e.,

mount namespace isolation), such as chroot [64]; or isolate file system, network,

process, user namespace and so on, such as Docker [81].

OS-level virtualization, such as Docker, has been used to facilitate the repro-

ducibility of computational science [20]. Using Docker, researchers can share their

work in two ways. The first one is to create a Docker image including a whole execu-

tion environment and then share the image. The second one is to create a Dockerfile,

which is a recipe specifying all the steps of configuring an execution environment and

can be used to build a Docker image, and share the Dockerfile. However, building

a Dockerfile at different times may result in different images due to the updates to

recipe components such as base Docker image and remote network dependencies.

2.2.3 Application Virtualization

To decrease the space overhead of preserved artifacts, application virtualization

techniques, such as CDE [51], PTU [89] and ReproZip [32], trap the system calls of

an application and only preserve the actually used files. However, like VMI, shared

library dependencies are repeatedly preserved multiple times. The context and struc-

ture of preserved artifacts are not clear, which makes it difficult to reuse. In addition,

16

all these approaches mainly focus on the preservation of local dependencies, and do

not solve the problem of how to preserve network dependencies. They preserve an

application as it is and do not give any guidance or recommendations on how to de-

sign scientific applications in a reproducible way from the start. This work provides

solutions for tracking local and network dependencies, and gives recommendations on

how to build reproducible scientific applications from scratch.

2.3 Execution Environment Configuration Approaches

The requirement of large number of computing resources for accelerating the ex-

ecution of scientific applications demands an efficient way to configure execution

environments on possible heterogeneous execution nodes, especially for grid comput-

ing. One approach to deploy execution environments on a large number of execuiton

nodes is disk cloning [60], which copies the contents of a computer hard disk to

another disk directly or with the help of a disk image file.

Software configuration management systems [38] like Puppet [70], Chef [104] and

CFEngine [95], allow system administrators to specify the desired configuration for

each managed device without considering the heterogeneity and complexity of the

devices. This increases the scalability of system configuration by avoiding repetitive

tasks and reduces errors introduced by manual configuration through automation.

However, software configuration systems do not consider the key problems of repro-

ducible research, like data provenance, context description and access right [102].

Execution environment management frameworks, such as Grid’5000 [21], Future-

Grid [110] and VMPlants [65], aim to ease the execution environment configuration

for grid computing. FutureGrid even allows an experiment to be reproducible through

recording the user and system actions. However, the environment construction in

these systems are accomplished either by a virtual appliance or by the combination

of a base virtual machine image and a series of configuration steps. Delivering a whole

17

software stack through virtual machine images is expensive and makes it difficult to

reuse shared dependencies.

2.4 Scientific Workflows and Scientific Workflow Systems

According to the size and complexity, scientific applications can be split into two

categories: single-machine scientific applications and scientific workflows. A single-

machine scientific application can meet its computing and storage requirements with

the resources on a single machine. When an application is too big to be solved on

a single machine, scientific workflows [103] can be used to disseminate complex data

transformations and analysis procedures into an ordered list of smaller and possibly

independent tasks, which allows computing resources from clusters [26], grids [17]

and clouds [13] to be utilized to accelerate the pace of scientific progress.

To make it easy for scientists to compose and execute scientific workflows, a

variety of scientific workflow systems have been developed [116], such as Taverna [83],

Swift [115], Pegasus [37] and Makeflow [11]. The end-users of these workflow systems

only need to specify an ordered list of tasks. The workflow systems respond to

communicate with execution engines, schedule tasks to the underlying computing

resources, manage data sets and deliver fault-tolerance.

Ideally, scientific workflows should improve the reproducibility of scientific appli-

cations by making it easier to share workflows between scientists. However, scientists

often find it difficult to reuse others’ workflows, which is known as workflow decay [53].

For example, myExperiment [48] is designed to be a sharing social website which al-

lows scientists to share their workflows, however, a study of Taverna workflows on

myExperiment shows that 80% of the workflows on the site could not be reproduced,

mainly due to the volatility of the resources required for workflow executions [119].

Guidelines on how to design reproducible scientific workflows were proposed in

[47, 53], and Research Objects [15] were used to provide detailed metadata information

18

about workflows [53]. However, these guidelines focus on the specification layer of

scientific workflow systems and ignore the other components of scientific workflow

systems, such as the specification parser layer, the task scheduler layer, and the

computing resource layer.

Depending on the scientific workflow systems used, scientists have different levels

of control over the underlying execution environments. Pegasus [37] and Swift [115]

allow scientists to compose abstract workflows without worrying about the details

of underlying execution environments, which means sysadmins must respond to the

cumbersome job of configuring computing resources to meet all the requirements of

different workflows. Makeflow [11] allows executables to be specified in workflow

specifications and delivered to execution nodes at runtime. This is simple but not al-

ways correct, because executables may be sent to execution nodes with incompatible

execution environments. To fix this, Makeflow allows scientists to specify a gigantic

all-in-one image like a Docker image [80] containing the required execution environ-

ment and delivers the image to execution nodes at runtime [120]. This gives scientists

more control over execution environments, but introduces gigantic images to preserve

and store.

This work gives scientists complete control over the execution environments for

their workflows by integrating execution environment specifications into scientific

workflow systems. It also allows the execution environment dependencies to be archived

separately in finer granularity instead of gigantic all-in-one images. Archiving depen-

dencies in finer granularity allows the dependencies to be updated in different paces.

2.5 Reproducibility in Clouds, Grids and HPC Sytems

Computing and storage resources from clouds, grids and HPC (High-Performance

Computing) systems accelerate the pace of scientific progress, however, may make

scientific results less reproducible [84].

19

With cloud computing, researchers run their experiments on the resources pro-

vided by cloud providers, and only have limited control over the cloud platform’s

technology [67]. For example, the Amazon EC2 updates supported instance types

periodically, which may cause some instance types to be unavailable permanently.

Storing research data in clouds causes concerns about security, privacy, and costs of

both accessing and storing data [85]. In addition, an AMI (Amazon Machine Image)

is not globally unique but only unique within a region; copying an AMI to another

region results in an AMI with its own unique identifier [4].

The resources in grids are usually heterogeneous in terms of hardware architecture,

kernel version, OS type, CPU number, memory size and disk size [77]. A scientific

application tuned perfectly on a Debian machine may fail to execute on an Ubuntu

machine due to the incompatibility of execution environments.

High-end HPC systems have been widely used in modern computational simula-

tion [66]. However, its internal complexity, operation order uncertainty and floating-

point arithmetic introduce non-determinism and conflict with the goal of making

scientific research reproducible [31, 40].

2.6 Management and Distribution of Data and Software

As the size of scientific data increases, data management has become more and

more important [50]. The data grid [30] was proposed to manage scientific data and

its metadata. The XRootD file access system [41] was used to assist the concurrent

access to PB-scale data sets from multiple clients.

Compared with the TB-scale or even PB-scale size of scientific data, software

used to analyze scientific data is much smaller - MB-scale or GB-scale. However,

there are often multiple versions or releases of software. For example, CMSSW,

the software collection used for CMS experiments, has dozens of releases spanning

from CMSSW4 1 X to CMSSW9 0 X [5]. Version control systems like Git [69] and

20

CVS [29], were designed to track the change history of documents and codes. CVMFS

was designed to deliver scientific software such as CMSSW to globally distributed

computing resources [19].

When the reproducibility of scientific applications is considered, it is important to

differentiate scientific data and software from the software frameworks used to deliver

and access scientific data and software. The latter may suffer frequent changes as

new data access and transfer protocols become available.

DOI (Digital Object Identifier) provides a persistent identifier to uniquely identify

an object, and can be used to identify scientific data and publications [86]. However,

the DOI system recommends, but does not force, the objects referred by a DOI name

to be persistent or immutable. For example, the DOI name 10.1000/182 always

refers to the latest version of the DOI handbook, which is the primary source of

information about the DOI system. A DOI often points to an overview page including

the information about the object and links to auxiliary resources. To guarantee data

integrity, checksum algorithms such as MD5 and SHA-1 should be used.

2.7 Data Provenance

Data provenance facilitates reproducibility by making it possible to judge the

quality of the data, track back sources of errors and give credit to original data

creators. The support for data provenance in different systems varies widely.

Data provenance in a database was explored and a query-rewriting framework

which guarantees both where-provenance and why-provenance was proposed in [25].

A data provenance architecture to deal with the data provenance in web and grid

services was proposed in [101], which records data provenance by recording all web

service invocations carried out by a client, stores data provenance information in a

relational database and supports for provenance browsing and validation through a

query interface.

21

CDE [51] records and preserves the local dependencies, but does nothing to pre-

serve the third-party network dependencies. Reproducing an experiment with the

preserved artifacts would fail if any network dependency is unavailable. PTU [88]

traps the network-relevant system calls and records all the recognizable network data

into its own database, which supports replaying the network access offine. How-

ever, the model fails if the network data is encrypted through SSL [54] or TLS [39].

Kameleon [97] utilizes a caching web proxy to cache all the data coming from the

network and guarantees reproducing an experiment always refers to the network re-

sources from the caching web proxy. However, special considerations are necessary to

deal with proprietary data and huge data dependencies. In addition, similar to PTU,

the web proxy can not cache encrypted data. Although there exists researches on

how to intercept encrypted data in a SSL/TLS channel [27, 36, 59], these researches

face challenges such as the legal problem involved and the huge computing resources

required.

22

CHAPTER 3

REPRODUCING SINGLE-MACHINE SCIENTIFIC APPLICATIONS WITH

MINIMAL EXECUTION ENVIRONMENT PACKAGES

3.1 Introduction

Reproducibility is an important principle of computational science [22]. Its ability

to advance science underscores its importance – reproducing by verifying and validat-

ing a scientific result leads to improved understanding, thus increasing possibilities

of reusing or extending the result. Ensuring the reproducibility of a scientific re-

sult, however, often entails detailed documentation and specification of the involved

scientific method. Historically, text and proofs in a publication have achieved this

end. As computation pervades science and transforms the scientific method, simple

text and static images are no longer sufficient. In particular, apart from textual and

numeric descriptions describing the result, a reproducible result must also include

several computational artifacts, such as software, data, environment variables, plat-

form dependencies and the state of computation that are involved in the adopted

scientific method [73].

In a very abstract sense, reproducing a computation is trivial. Assuming a com-

putation is deterministic, one can simply preserve all the inputs to a computation,

then re-run the same code in an equivalent environment, and the same result will be

produced. For a single-machine scientific application involving a modest amount of

computation and data, this could be accomplished by capturing the complete envi-

ronment, data, and software within a single VMI (Virtual Machine Image) [18, 49],

23

and then depositing the image into a curated environment. The publication could

then simply refer to the identifier of the image (e.g., DOIs or Amazon Machine Im-

ages), which the interested reader can obtain and re-use. A preserved VMI should

work on any future platform which supports the hypervisor the VMI depends on.

This approach has been used to some success with systems [28].

However, this simple approach may not always be sufficient. For large applications

that run in complex environments, there may be implicit dependencies on items that

are not apparent to the user. For example, the user may understand that a particular

data analysis package is needed for an application, but would have no reason to know

that the package has further dependencies on other libraries. The granularity of the

dependencies may not be well understood. For example, the user may understand

that a computation depends upon a data collection that is 1TB in overall size, but

not have detailed knowledge that it only requires three files totalling 300MB out of

that whole collection. There may be dependencies upon networked resources that

are inherently external to the system, such as a database, a code repository [34],

or a scalable filesystem [19]. For such resources, it must be decided whether the

dependency will simply be noted, or if it must be incorporated whole or in part.

This chapter presents a case study of reproducing one complex high energy physics

application, TauRoast, which was shared first in the form of an email that describes

in prose how to install the software and run the analysis. The background informa-

tion of TauRoast and its code and data sources, are provided in Section 3.2. The

challenges involved in reproducing complex scientific applications are illustrated in

Section 3.3. Section 3.4 explains the three-stage refinements to convert the original

email into an executable and preservable object. A prototype, called Parrot Pack-

aging Tool, is presented in Section 3.5, which aims to assist in the measurement and

preservation of implicit dependencies for complex applications, and reduce the size

of the dependencies that are necessary for a preserved object to function. Section 3.6

24

explores the methods to archive, distribute and deploy the preserved pacakges. Fi-

nally, section 3.7 demonstrates the preserved object, created using Parrot Packaging

Tool, functions correctly in three different physical and cloud environments.

3.2 A Case Study in Reproducing A High Energy Physics Application

TauRoast, the high energy physics application used in the case study, searches

for cases where the Higgs boson produced in association with top quarks decays to

two tau leptons. Since the tau leptons and top quarks are very short-lived, they are

not observed directly, but by the particle decay products that they generate. So,

the analysis must search for detector events that show a signature of decay products

compatible with both hadronic tau and top decays. Properties of such events are

used to distinguish the events of interest (Higgs decays) from all other events and are

also used in further statistical analysis.

3.2.1 Code Sources of the Application Under Study

Like many scientific codes, the central algorithm of TauRoast is expressed in a rel-

atively small amount of custom code developed by the primary author. But, the code

cannot run at all without making use of an enormous collection of software depen-

dencies. These software dependencies vary widely in their standardization degrees:

some of these dependencies are standard to operating systems worldwide; some are

standardized across the entire high energy physics community; some are particular

to small collaborative groups; and a few are very specific to a single researcher.

The largest of these repositories is the CMS software framework known as CMSSW

(CMS SoftWare) [33], a carefully-curated selection of software packages which is

distributed in several forms. Historically, components of CMSSW were obtained by

checking components of the source out of CVS (Concurrent Versions System), or

by installing a complete binary package on a shared filesystem within a HPC (High

25

Performance Computing) center. In recent years, distribution has moved to an on-

demand delivery system known as CVMFS (Cern Virtual Machine File System) [19],

which provides a filesystem interface that transparently accesses a remote repository.

The content of CMSSW is managed by a centralized team whose main goal is to

ensure that the current version of the software operates correctly on the operating

systems and architectures currently in use. However, preservation is not a specific

objective of the system, and so there is no particular guarantee that old versions of

CMSSW will continue to operate indefinitely.

3.2.2 Data Sources of the Application Under Study

The CMS collaboration provides end users with a pre-processed and reduced

data format, AOD (Analysis Object Data) [55], containing information for events,

i.e., proton-proton collisions with a signature of interest, in the form of reconstructed

particles. This format is based on the RAW output of the CMS detector readout

electronics and reconstructed worldwide, which is then processed through various

algorithms which derive signatures of individual particles. Both real and simulated

data are available for examination.

As AOD data are too large to be iteratively processed repetitively in an analysis

workflow, they are normally reduced further to formats particular to the investigator.

In this case study, the AOD data are reduced to BEAN (Boson Exploration Analysis

Ntuple) format events, which contain only trivial data containers packed in vectors.

This step is performed at the University of Notre Dame by the NDCMS group and

is quite CPU-intensive, resulting in 11.6 TB to be analyzed by TauAnalysis, a small

custom code built on top of CMSSW. The BEAN format, production code, and

data are shared within the analysis group looking at Higgs production in association

with top quarks, which is formed by groups from a few American and European

universities, consisting of up to a few dozen contributors.

26

In the second step, the data is reduced to the ROOT files [12], which contain only

events matching basic quality criteria and fields relevant to TauRoast. Again, the

NDCMS group resources are used to perform this reduction and selection, running

highly customized software, built on CMSSW and the BEAN framework, with code

written and maintained by a small group.

Once the data has been reduced to ROOT files, TauRoast can be run as a single

process, and contains a stringent event selection to look only at high quality candidate

events for the underlying physical process. Quantities from the relevant events can

be both plotted and used in multivariate analysis to determine the level of expected

signal in real data. This package is written using the CMSSW build framework, but

only utilizes ROOT and a few external Python libraries not found in CMSSW.

There are totally 9 different data and code dependencies, as shown in Table 3.1.

The Total column shows the total size of each dependency, the Named column shows

the size of the part of each dependency mentioned in the analysis script, and the

Used column shows the actual used size of each dependency.

Figure 3.1 shows that both the code and data that form TauRoast are drawn from

large repositories through multiple steps of reduction. A preservation strategy must

weigh whether to store the large repositories completely, the fragments used by an

artifact, or something in between.

3.3 Challenges in Reproducing Complex Scientific Applications

The original author of TauRoast shared his work through an email which de-

scribed, in prose, how to obtain the ROOT data through TauAnalysis, how to obtain

the source code of TauRoast, how to build the program, and run it correctly on one

specific machine at the University of Notre Dame, with no guarantee that it would

work successfully on a new machine. Although this starting point may seem extreme,

27

TABLE 3.1

DATA AND CODE USED BY TAUROAST

Name Location Total Named Used

CMSSW code CVS 88.1GB 448.3MB 6.3MB

Tau source Git 73.7MB 73.7MB 6.7MB

PyYAML binaries HTTP 52MB 52MB 0KB

.h file HTTP 41KB 41KB 0KB

ROOT data HDFS 11.6TB N/A 20GB

Configuration CVMFS 7.4GB N/A 103MB

Linux commands localFS 110GB N/A 68.4MB

HOME dir AFS 12GB N/A 32MB

Misc data PanFS 155TB N/A 1.6MB

Total 166.8TB N/A 21GB

Figure 3.1. Code/Data Inputs to TauRoast and Code/Data Sizes

28

it is natural for collaborators to share configurations in this form, and to rely on the

presence of a working environment already installed.

To prepare the application for permanent archival, we first elaborated the email

instructions into an executable script that declares the necessary environment vari-

ables, downloads and checks out source codes from several different locations, builds

the codes appropriately, calls initialization scripts and then runs the analysis. A

few rounds of correction with the original author were necessary to obtain all the

dependencies and run the artifact correctly. This process revealed a number of char-

acteristics of complex single-machine scientific applications:

• Many Explicit External Dependencies. TauRoast depends on a large number of
external dependencies, each with a different access method and data source, as
shown in Table 3.1. While it was knew in advance that it depended upon the
large CMSSW framework, it was not apparent until elaborating the script that
it depended upon two different Github repositories [9, 10] for the Tau source, a
CVS server at CERN for some configuration information, a public website for
the PyYAML library [3], and the public home page of a Notre Dame student
for one missing header file. While, at some level, the authors and users of
these software know of these dependencies, they are often missing in informal
communications or forgotten once they are installed.

• Many Implicit Local Dependencies. A much harder problem is that the applica-
tion assumed the presence of many different components in the local filesystem
hierarchy. It would be tempting to capture all of these by simply storing a vir-
tual machine image containing the local filesystem. However, the application
depends on no less than five networked filesystems available on the machine the
original author works on: the data to be analyzed was stored on an HDFS [23]
cluster, some configuration data was stored on a CVMFS [19] filesystem, and a
variety of software tools were on NFS [56], PanFS [113], and AFS [98] systems.
All these networked filesystems were installed and provisioned by local system
administrators, the original author may not be aware of all of them.

• Configuration Complexity. As a means of controlling the complexity of depen-
dent software packages, the high energy physics community has developed a
number of tools that perform run-time configuration and consistency checks of
the available software, such as scram [114], a software configuration and man-
agement tool. Before running any code, scram is used to setup the runtime
execution environment, check the availability of every shared library depen-
dency and build the code. If the correct versions are not available, scram halts
and emits an error. While this procedure has great value for consistency, it

29

also introduces a significant cost because it involves a large number of nested
scripts traversing a filesystem, repeatedly looking up metadata. Take the Tau-
Roast application as an example, the time to perform this configuration check
with a cold cache is about 14 minutes, which is almost as long as the actual
analysis run of 20 minutes.

• High Selectivity. It is surprising that the user’s program may mention lots of
unused data and software. Often, the program may name a whole data or
software repository, but only a handful of items from the repository are really
used. For example, as shown in Table 3.1, the CMS data stored on the HDFS
filesystem has the total size of 11.6TB, but only 20GB are actually consumed
by the program. The reason for this great reduction is at first each BEAN
event contains a large amount of information, and TauAnalysis throws away a
lot of irrelevant event information, keeping only the relevant bits. The CMSSW
repository is 88.1GB in total but only 448.3MB of source is checked out, and the
actually used software only measures 6.3MB. In a few cases, a source of software
is named but never actually accessed. There are two possible reasons for these
unused dependencies. First, end users are accustomed to missing dependencies
and thus get in the habit of adding commonly used software, whether it is
needed or not. Second, some dependencies may be added and only used at
the early stage of an analysis. As the analysis continues, these dependencies
become not necessary any more. However, the user may forget to remove them
from the analysis script or does not think it is a problem to keep them in the
analysis script.

• Rapid Changes in Dependencies. Over the process of several months from
collecting the initial email into a script until the TauRoast application got
preserved, the computing environment where the application ran continuously
changed. The CMSSW software framework released a new version, the target
execution node was upgraded to a new operating system, and the CMS com-
munity switched from CVS to Git for the management and distribution of the
source code. While users seem to be accustomed to these constant changes,
any preservation technique must be cautious about relying upon an external
service, even one that may appear to be highly stable.

3.4 Refinements to Make Scientific Applications Reproducible

It is clear that the email, as provided, is not in a suitable form for preservation.

While it might be technically possible to automatically capture the entire machine

and all of the connected filesystems into a virtual machine image, it would require

166.8TB of storage (Table 3.1), which would be prohibitively expensive for capturing

30

this one application alone. Further, if multiple similar applications are preserved, we

would miss the opportunity to identify common dependencies and store them once

for multiple artifacts. Therefore, a more structured approach is needed.

Figure 3.2 shows the three-stage refinements to convert the original email into an

executable and preservable object. In each step of evolution, the dependencies of the

artifact are made more explicit and available for automated processing.

The first-stage refinement: as noted in the previous section, the original au-

thor provided the prose instructions on how to repeat the application by email. To

make it easier to reproduce the application, the first-stage refinement translates the

instructions from the email into an executable script. More generally, this refine-

ment happens after the author finishes configuring the execution environment and

running the analysis, and aims to collect all the commands needed for reproducing

an application into an executable format.

The second-stage refinement: the analysis script has embedded in it a number

of external identifiers such as URLs pointing to external repositories and paths to

networked filesystems. As a general programming practice, embedding such constants

in the middle of a program is unwise. To tackle this, the second-stage refinement

extracts all of those identifiers and place them outside the script in a dependency

map or just map for short. The dependency map lists all the external dependencies

of the application, indicating the type, how they are accessed, and where they are

currently located. Using dependency map makes it possible to compose abstract

script which simply refers to abstract file locations such as Git and CVMFS. Ideally,

the author should not refer to any external resource by its path inside an analysis

script unless it is indicated in a dependency map.

The third-stage refinement: in case when new data sources are used to deliver

certain dependencies, the abstract script keeps the same, and the user only needs to

update the dependency map accordingly. For example, in Figure 3.2, after the second-

31

Figure 3.2. Refinements to Make Scientific Applications Reproducible

stage refinement, GIT refers to a GitHub repository, which is a network dependency;

after the third-stage refinement, GIT refers to a local Git repository.

Extracting the dependencies into a dependency map introduces great freedom

for the curator to move, transform and manipulate the dependencies of the artifact

without damaging the artifact itself. Given an abstract script and a dependency map,

it is straightforward for an automated tool to examine the dependencies in the map,

download the missing ones, and then modify the map to point to the local copies of

the dependencies. If we group the executable script, dependency map, and actual

dependencies into a self-contained package, we achieve an artifact that can be moved

from place to place, as shown in Figure 3.2.

This basic approach to dependency management is a step in the right direction

for dependencies that are explicit and external to the user’s native execution envi-

ronment. However, it leaves two other problems unsolved. First, the basic approach

requires that someone be aware of the dependencies, whether it be the end user, the

system administrator, or the archive curator. It seems reasonable to expect the user

to be aware of the dependencies mentioned in a top-level script. But, oftentimes the

dependencies are embedded invisibly deep within the software stack, or are connected

to the machine by the system administrator. No single party is likely to have com-

32

plete information about all of the dependencies. Second, the basic approach assumes

that the entire dependency is actually consumed by the artifact. As suggested above,

this sort of application often only consumes a small fraction of what it does declare

as a dependency.

To address both of these problems, users and curators alike need tools that can

automatically observe and capture dependencies.

3.5 Creating Minimal Execution Environment Packages: Parrot Packaging Tool

A prototype called Parrot Packaging Tool was implemented to assist in the mea-

surement and preservation of implicit dependencies for complex scientific applica-

tions, which utilizes Parrot [107] to explicitly record all of the files accessed by an

application. The file access information allows us to observe how much of each ex-

ternal dependencies is used, and what local resources are implicitly used. Using this

information, a reduced package which contains only the files actually used by the

application can be created and shared with others who are interested in reproducing

the application.

Parrot is a virtual filesystem access tool which has been used to attach exist-

ing programs to a variety of remote I/O systems such as HTTP [44], FTP [90] and

CVMFS [19]. It works by trapping an application’s system calls through the Linux

ptrace debugging interface [8], and then replacing them with the desired I/O oper-

ations. Parrot is already used in the HEP community to attach applications to the

CVMFS distributed filesystem.

Parrot can also be used to track network dependencies. By observing system

calls, it can at a minimum record the IP address and port of each external network

connection. In addition, it observes the content flowing through each connection and

can further infer the protocol and target object of several commonly used protocols.

For example, when an application makes an HTTP request, Parrot can record the

33

Figure 3.3. Workflow of Creating Minimal Execution Environment
Packages with Parrot Packaging Tool

full URL of the object requested. However, if the connection is encrypted, this

information is not available.

Figure 3.3 illustrates the workflow of creating a minimal execution environment

package for an application using Parrot Packaging Tool. The starting point of this

workflow is one successful execution of an application on the original machine. First,

the original researcher executes the application under Parrot to generate a namelist,

which includes the path of every accessed file and the system call used for the access.

From the namelist, a package containing, and only containing, all the necessary

data and software dependencies of the application can be constructed. The package

effectively becomes a private root filesystem sufficient to run the entire application.

It can be re-executed in a variety of ways: Parrot can be used to virtually mount and

run the package, chroot can be used to use the package as a root directory, or the

package can be converted into a filesystem image for use with a container or virtual

machine management system.

For one execution of TauRoast conducted in Spring 2014, the generated namelist

includes 132,047 accessed filenames, along with the system calls used to access the

files, such as open, stat and read. With duplicate filenames removed, the namelist

is reduced to 67,168 entries. Many of those entries do not exist, because they reflect

attempts to search for programs and libraries in multiple places. Only 22,068 entries

reflect existing files or directories.

34

It is worth noting that the configurations of environment variables like PATH and

LD LIBRARY PATH have a strong impact on the namelist generated in terms of both

the file access order and the accessed file number. Running the same application at

different times or on a different machine may generate a different namelist. Therefore,

the environment variable settings used for an application must also be preserved

somehow to make the preserved artifacts reproducible.

Parrot Packaging Tool iterates over each item of the namelist, determines the pro-

cess mode and replication degree according to the file location and file type (common

files, directories, symbolic links) and the system call type, generates one package con-

taining the dependencies, and summarizes the contents of the package. Files under

/proc, /dev, /sys and /net are specific to an execution node and always ignored to

be copied. Instead, during the process of rerunning an application with a preserved

package, these directories will be mounted into the sandbox from the execution node.

According to the copying depth of the entries in a namelist, there are several

approaches to constructing the package. In a shallow copy, the individual files in

the namelist are copied. A directory item in the namelist causes the directory to

be created and populated with empty files as placeholders to facilitate a directory

listing. In a medium copy, the individual files are copied as before. A directory item

in the namelist causes the directory to be created and populated the contents of the

files in that directory, one level deep. A deep copy would duplicate all directories

recursively, but this may have resulted in TB-sized packages, which are difficult to

store and distribute currently. Therefore we will not consider this approach further.

Generally speaking, the deeper the copy, the larger the package, but the more likely it

can be re-purposed. Table 3.2 shows the summaries of the shallow copy package and

the medium copy package for the TauRoast application. The shallow copy package

includes 14273 empty files, most of which are placeholders. Using the medium copy

approach converts 14010 of these empty files to be copied with their contents.

35

TABLE 3.2

SUMMARIES OF PACKAGES WITH DIFFERENT COPYING

DEGREES FOR TAUROAST

File Type Shallow Copy Medium Copy

Number of Whole Files 1632 15642

Number of Empty Files 14273 263

Number of Directories 1549 1549

Number of Symbolic Links 4614 4614

Total Package Size 21GB 28GB

Listing 3.1 illustrates how to use Parrot Packaging Tool to track the files accessed

during the execution of an application (Line 1), create a reduced package for the ap-

plication based on the file access information (Line 2), and reproduce the application

with the help of the reduced package (Line 3). In this example, the paths of all the

accessed files are recorded in a namelist called namelist1 and the execution envi-

ronment variables used are collected into a file called envlist1. Each item in the

namelist is in the format of <file path>|<copy degree>, and the copy degree can

be metadatacopy (i.e., created as a placeholder) or fullcopy (i.e., real content copy).

During the process of creating the package using parrot package create, envlist1

is also put into the package. After finishing the parrot package create command,

a reduced package including all the really accessed files will be created at the path

/tmp/tauroast package, and a short summary of the execution will be returned to

the user, as shown in Listing 3.2. When the package is used to rerun the application,

parrot package run first loads and sets the environment variables according to the

information in envlist1.

36

1 parrot_run --name -list namelist1 --env -list envlist1 ./ tauroast_analysis.sh

2 parrot_package_create --name -list namelist1 --env -list envlist1 --package -path /tmp/

tauroast_package

3 parrot_package_run --package -path /tmp/ tauroast_package ./ tauroast_analysis.sh

Listing 3.1: Usage Example of Parrot Packaging Tool

1 The packaging process has began ...

2 The start time is: Wed Mar 1 18:41:53 2014

3 Package Path: /tmp /tauroast_package

4 Package Size: 21G /tmp /tauroast_package

5 The packaging process has finished .

6 The end time is: Wed Mar 1 19:11:53 2014

Listing 3.2: Execution Summary of Creating a Package with parrot package create

3.6 Package Preservation, Distribution and Deployment

Parrot Packaging Tool generates minimal execution environment packages which

consist of plain filesystem trees representing the namespace and data of the preserved

applications, and can be easily transformed into whatever archive file format (e.g. ZIP

or TGZ) is most suitable. This makes it possible to track the integrity of the preserved

artifacts with the help of hash functions such as MD5 and SHA-1, and is desirable

for long-term preservation that may outlive various deployment technologies.

Once generated, application packages must be collected and curated, which in-

volves the collaboration between researchers and archivists. To assist the reference

of the preserved artifacts, it is recommended to allocate a DOI (Digital Object Iden-

tifier) for every archived package. To ease the sharing of a scientific application, the

background, the problem, the goal, the solution and expected output should be doc-

umented and attached to the preserved package. How to archive private data and set

access permission on archived data should also be considered.

The archived packages can be made available through public or private repositories

such as Docker Hub, as shown in Figure 3.4. Currently, a wide variety of services

and efforts exist in order to share binary objects in this way, and so we assume such

multiple services will be available in the future.

37

Figure 3.4. Workflow of Creating, Distributing and Deploying Packages

Of more immediate interest is the ability to deploy a preserved package at a desired

execution site. Again, long-term preservation requires artifacts that are independent

of any particular technology, so the package must be sufficiently self-describing in or-

der to work with multiple technologies. The packages produced by Parrot Packaging

Tool can today be re-executed through any of the following mechanisms:

(1) Re-running the application using the parrot package run executable in-

cluded in Parrot Packaging Tool (as shown in the 3rd line of Listing 3.1), which

can dynamically construct the desired namespace and limit file accesses within the

preserved package. This mechanism does not require root authority and can be used

by any user.

(2) Re-running the application through chroot, which also works by isolating the

mount namespace and limiting file accesses within the package. However, this mech-

anism requires the user to be root.

(3) Generating a virtual machine image from the package, which can be loaded

into a local virtual machine monitor such as VirtualBox or VMware, or transferred

to a cloud service provider like the Amazon EC2 and Google Computer Engine.

(4) Converting the package into a Docker image format with the docker import

command, then reproducing the original application within a lightweight Linux con-

tainer with the docker run command.

38

TABLE 3.3

TIME OVERHEADS OF THE ORIGINAL EXECUTION AND PARROT

PACKAGING TOOL

Task Category Original Script Reduced Package

Obtain Namelist N/A 28min 28s

Generate Package N/A 26min 19s

Software Acquisition 8min 11s N/A

Environment Building 5min 49s 4s

Run Analysis Code 20min 31s 13min 04s

3.7 Evaluation

This section evaluates the cost of generating a reduced package for the TauRoast

application, compares the time overheads of executing the original script and re-

executing the application with the help of the reduced package, and illustrates the

correctness of the package by running the package in three different environments

and comparing the result to that of running the original script.

The original script was executed on a 64-core machine running RHEL (Red Hat

Enterprise Linux) 5.10 with 125 GB RAM and all the necessary remote filesystems

mounted, including AFS, CVMFS, HDFS and PanFS. There are three main steps in

the original script: acquiring software dependencies from different network resources,

building the environment and running the analysis code. The time overhead of each

step during the execution of the original script was measured and shown in the second

column of Table 3.3. Executing the whole original script took about 35 minutes.

The Software Acquisition step acquires software from multiple locations including

GitHub repositories, CVMFS and personal websites. For the purpose of reproducing

39

the application, there are two options on how to deliver these network dependencies.

The first option is to keep the software acquisition code in the script and download

all these dependencies every time the application is re-executed. The second option

is to localize these dependencies first, remove the software acquisition code from the

script, and then preserve them into the package like other local dependencies with

the help of Parrot Packaging Tool. Compared with the second option, the first one

is simpler. However, the execution of the application will fail if any of these network

dependencies becomes inaccessible temporarily or permanently. For this reason, the

second option was used in our evaluation and recommended.

With the second option, Parrot Packaging Tool can be used to capture the

namelist (i.e., accessed file list) associated with building the environment and running

the analysis code, and create a reduced package based on the namelist. Then the

reduced package can be used to reproduce the application. The time overheads of

obtaining the namelist, generating the package and re-executing the application are

shown the third column of Table 3.3. The time overheads of obtaining the namelist

and generating the package are a one-time cost. It is worth noting that the Envi-

ronment Building step finished very fast this time. The reason for this is that the

reduced package is created based on a successful execution of the application, which

has already built the environment. The analysis code also got executed faster, about

7 minutes shorter than the original execution. This is because the original execution

accesses data from remote filesystems like HDFS and CVMFS, however, creating

the reduced package copies the dependencies from all these remote filesystems into a

package, which may locate on a higher-speed disk. For example, the reduced package

referred in Table 3.3 was located on an ext4 filesystem.

To verify its correctness and portability, the application was re-executed with

the reduced package on the original machine, then on an independent KVM virtual

machine facility provided by the Center for Research Computing at the University

40

TABLE 3.4

PERFORMANCE OF EXECUTING THE REDUCED PACKAGE

ACROSS DIFFERENT MACHINES

Machine Type OS Version Cores Mem Execution Time

Original Machine RHEL 5.10 64 125GB 13min 04s

KVM (Notre Dame) CentOS 5.10 4 2GB 21min 38s

Xen (EC2) RHEL 5.9 16 60.5GB 13min 30s

of Notre Dame, and again on a Xen-based virtual machine from the Amazon EC2

platform. Table 3.4 shows the configurations of the three machines used for re-running

the package and the execution time of each run. While performance varied, the same

output was obtained each time, without reference to anything outside the reduced

package.

3.8 Conclusion

This chapter presents the challenges involved in reproducing complex scientific

applications through a case study of reproducing one complex high energy physics

application called TauRoast, explains a series of refinements to make complex sci-

entific applications preservable, and presents a prototype called Parrot Packaging

Tool to assist in preserving and reproducing complex applications. Through tracing

the system calls made by an application, Parrot Packaging Tool can track all the

accessed files during the execution of the application, generate a reduced package

which includes all the accessed files. Then the package can be used to reproduce the

application. To evaluate the prototype, Parrot Packaging Tool was utilized to create

a reduced package for the TauRoast application, which reduced the 166.8TB data and

41

software dependencies of the application into a 21GB package. The reduced package

was then tested in three different physical and cloud environments to reproduce the

application, and functioned correctly in all these three tests.

Like Parrot Packaging Tool, there are other tools such as CDE [51], PTU [89]

and ReproZip [32], which work via system call trapping and only preserving the re-

ally used files. However, these tools all preserve an application as it is and do not

give any guidance or recommendations on how to design scientific applications in a

reproducible way. This work separates data dependencies from analysis scripts by

introducing dependency maps and abstract scripts. By extracting data dependencies

into a dependency map, we introduce great freedom for the curator to move, trans-

form, and manipulate the dependencies of the artifact without damaging the artifact

itself. Given an abstract script and a dependency map, it is straightforward for an

automated tool to examine the dependencies in the map, download the missing ones,

and then modify the map to point to the local copies of the dependencies.

Parrot Packaging Tool and similar tools allow the new user to exactly repeat the

original experiment, but have the following drawbacks:

First, the preserved packages are often very complicated and it is difficult for

a new user to understand the structure and behavior of the packages well enough

to extend the original work. Exactly repeating an experiment is useful because it

allows the original author and other researchers to verify the experiment results,

however, is not the total aim of science and research. Researchers seldom are just

interested in repeating an experiment exactly, instead they are often more interested

in understanding the configuration details and the components of an experiment,

tuning the experiment settings by testing it on new data sets or new analysis codes.

Second, dependencies shared by multiple applications, such as operating system

images, shared libraries and shared data sets, are preserved in multiple packages

repeatedly. The archival hosting the preserved packages will end up with lots of

42

duplicate data, which wastes the storage space. This also decreases the storage space

utilization on an execution node where multiple scientific applications need to be

reproduced with the preserved packages.

Third, these tools would fail on scientific applications with huge data dependen-

cies. Take the TauRoast experiment as an example, if the author specifies 1TB data

to analyze in the analysis script, the reduced package will be getting crazily huge.

These drawbacks exist because all these tools allow the users to configure their

execution environments, run their applications, and then preserve the mess after the

users finish their work. To make it easier to reuse the preserved artifacts and extend

the original work, a more organized approach is needed.

43

CHAPTER 4

REPRODUCING SINGLE-MACHINE SCIENTIFIC APPLICATIONS WITH

EXECUTION ENVIRONMENT SPECIFICATIONS

4.1 Introduction

The execution environments utilized in computational science are complex, includ-

ing hardware, kernel, OS (Operating System), software, data, environment variable

settings and network topology. There are frequent updates and modifications in both

software and hardware. Researchers may not even be aware of all the details of the

software stack used for their experiments [97] and documenting the complex web of

dependencies that are common in modern software environments would be a daunt-

ing task. Unless the full execution environment can be preserved in a timely manner,

even the original authors will eventually have no way to reproduce their experiments.

Virtual machines [65] and virtual appliances [57] were used to wrap up the whole

software stack of an experiment into a VMI (Virtual Machine Image), which can

then be used to reproduce the experiment. However, this method may fail when the

software stack is too large [76]. A minimal execution environment package including

only the files accessed by an experiment reduces the size of preserved artifacts to

some degree, but does not solve the problem fundamentally. Both methods are not

space-efficient, because common dependencies (e.g., shared libraries) are archived into

different VMIs or packages repeatedly. In addition, the context and structure of pre-

served artifacts created by both methods are complicated and not well-documented,

which makes it difficult to understand the configuration of the original experiment

and extend the original work by testing new software or data sets.

44

Research Objects [15] was proposed to aggregate the data, methods and people in-

volved in an experiment to facilitate the reproducibility of scientific results. However,

Research Objects only bundle together the necessary resources and are not directly

executable. Dynamic documents [46, 82] and reproducible papers [45] were designed

to integrate the text, code, data and other auxiliary materials to make it easier to

reproduce the computations. However, they mainly focus on the software and data

dependencies, and does not include the hardware, kernel and OS dependencies.

This chapter presents a framework to help researchers track, create and preserve

the execution environments for their experiments. The framework includes three

parts - the Umbrella specification, the Umbrella execution engine and the Umbrella

archiver. The Umbrella specification allows the user to specify all the details of a

comprehensive execution environment - including hardware, kernel, OS, software,

data, environment variables, command and output - through a lightweight, persis-

tent and deployable JSON-format file. The Umbrella execution engine creates the

execution environment specified in an Umbrella specification file using sandbox tech-

niques like virtual machines (e.g., VMware [111]), Linux containers (e.g., Docker [80])

and user-space tracers (e.g., Parrot [107]). The Umbrella execution engine can uti-

lize computing resources from both the local machine and cloud computing services

like Amazon EC2 [4]. The Umbrella execution engine also allows common depen-

dencies like base OS images to be shared by different sandboxes concurrently on an

execution node. The Umbrella archiver allows the users to archive their execution

environments into persistent storage services like Amazon S3 [85] and OSF (Open

Science Framework) [7].

With this framework, the original author can make an experiment reproducible

by archiving its OS, software and data dependencies using the Umbrella archiver

(written in Python 2.6), and sharing the Umbrella specification which specifies all the

dependencies and how these dependencies should be combined together into a unified

45

sandbox during runtime. Any other researcher having the Umbrella specification, the

proper access permission to the involved dependencies and the Umbrella execution

engine (written in Python 2.6) can easily reproduce the experiment.

Three applications from epidemiology, scene rendering and high energy physics

are used to evaluate the framework. For each application, the following aspects

are evaluated: the size of the Umbrella specification, the time and space overheads

of creating execution environments using Umbrella, and the storage effectiveness of

Umbrella for allowing dependencies to be shared by multiple execution environments

concurrently. To further improve the reproducibility of scientific applications, Cura-

teND [2], an archival system provided by the Hesburgh Libraries at the University of

Notre Dame, was used to archive the dependencies of each evaluated application, cre-

ate a DOI (Digital Object Identifier) [86] for the application, and provide an overview

page including references to the Umbrella specification, experiment output and other

auxiliary materials.

4.2 Why Is It So Difficult to Reproduce Experiment Results?

To understand how the complexity of execution environments makes it difficult

for researchers to share their experiments, let us examine the typical workflow of

scientific research.

The computing resources used by most research institutions are maintained by

professional system administrators, who are responsible to install and upgrade OS

and system-level software periodically and manage user accounts. As a researcher,

when Alice joined her new research group, she was given access to some computing

resource, let us say, a server with the hostname of lab01.phy.research.org. As

a non-root user, Alice installed several pieces of scientific software provided by the

software community in her research domain into her home directory, configured some

environment variables for her convenience, wrote her own analysis script, named

46

analysis.py, using /usr/bin/python, which happened to be Python 2.7. Then she

downloaded the datasets from the Internet and kept them locally under the directory

/home/alice/data, ran the experiment and got the experiment results, which were

converted into beautiful figures. Finally, these figures were put into her academic

paper and submitted to an academic conference.

Once the paper was accepted, Alice was happy and moved on to the next chal-

lenge in her research. Everything looked great until three months later another

researcher, Bob, emailed her and wanted more instructions on how to reproduce the

experiment published in her paper. Telling Bob that she ran the experiment on the

server lab01.phy.research.org would not help anything, because it would be un-

realistic to give access to the server to every researcher who wants to reproduce her

experiment.

Alice searched her file system for the Python script, analysis.py, and was re-

lieved to find it. She shared analysis.py with Bob and expected him to tell her

that the experiment can be reproduced successfully. However, the news from Bob

was both disappointing and surprising. The problems Bob encountered during his

attempt of running analysis.py are:

• analysis.py depends on the setting of the environment variable SIMCOUNT;

• analysis.py expects an input file located at /home/alice/data/file1;

• analysis.py attempts to utilize an executable named sim sort;

• the output of running analysis.py overflows Bob’s memory and disk;

• /usr/bin/python on Bob’s machine is Python 3.0, which is not backwards
compatible with Python 2.7.

Unfortunately, Alice forgot to preserve the SIMCOUNT setting used for her pa-

per and deleted the directory /home/alice/data by accident. The source code of

sim sort is under version control via Git and can be found, however, Alice forgot the

47

commit id used for her paper. As for the memory and disk overflow, Alice realized

she should have told Bob the experiment requires 6GB memory and 20GB disk space.

Although bad enough, these are only the problems relevant to the dependencies

directly configured by Alice. In the background, the system administrators need to

update, sometimes even upgrade, the kernel, OS and system-level software periodi-

cally. Every several years, the hardware equipment may become obsolete enough to

be replaced. What’s more, Alice’s experiment may count on some network resources

from third-party websites. Any change about these local and remote dependencies

may result in the failure of reproducing Alice’s experiment, no matter by herself or

others.

4.3 Tracking, Creating and Preserving Execution Environments: Umbrella

Given the importance of preserving the comprehensive execution environment

of an experiment for its reproducibility and the complexity of figuring out all the

details about the environment, this section proposes a framework to help researchers

improve the reproducibility of their research. The framework achieves this through

three mechanisms:

• allows the user to specify all the necessary details about a comprehensive exe-
cution environment - from hardware, kernel and OS all the way up to software,
data and environment variables (section 4.3.1);

• creates the specified execution environment using sandbox techniques like VMs,
Linux containers and user-space tracers (section 4.3.2);

• helps the user archive OS, software and data dependencies in the first place
(section 4.3.3).

4.3.1 Tracking Execution Environment: Umbrella Specification

Umbrella allows a user to specify a comprehensive execution environment through

a JSON-format file independently of any deployment technology. The whole execu-

48

tion environment is specified through multiple sections, each section corresponds to a

special aspect of the environment and may further include several subsections. Within

each (sub)section, various attributes can be specified through key:value pairs. List-

ing 4.1 illustrates the Umbrella specification for a Povray ray tracing application.

The hardware section specifies the requirements about the CPU architecture, the

core number, the memory and disk consumption. The kernel section specifies the

required kernel name and version. The os section specifies the name and version of

the required OS image, which includes the basic root filesystem except for the kernel.

The software section and the data section specify respectively the required software

and data dependencies, which may include multiple subsections, each corresponding

to a single dependency. The environ section allows the user to specify the environ-

ment variable settings. The cmd section specifies the command line used to run the

experiment. The output section specifies the location of the experiment results.

The os section and each subsection under the software and data sections provide

detailed information of each dependency, including the resource location (the source

attribute), the fixity of the resource (the checksum, size and uncompressed size

attributes), how to use the resource (the format and action attributes) and the

mountpoint at runtime (the mountpoint attribute). The format attribute specifies

whether the resource is a plain file (plain) or a gzipped tar file (tgz). The action

attribute specifies how the resource should be used during runtime - used directly

(none) or uncompressed first (unpack).

The source attribute provides a list of resource URLs for each dependency. The

resources may come from local filesystem, public web servers, Amazon S3, OSF,

Git Repositories, or CVMFS (CernVM File System) [19] (as shown in Table 4.1).

Resources from local filesystem can be utilized directly. Resources from public web

servers are downloaded via the HTTP or HTTPS protocol. Resources from Amazon

S3, OSF and Git Repositories, may have public or private access permissions, and

49

1 {

2 "description ": "A ray -tracing application which creates video frames .",

3 "hardware ": {

4 "arch ": "x86_64 ",

5 "cores ": "1",

6 "memory ": "1GB",

7 "disk ": "3GB"

8 },

9 "kernel ": {

10 "name ": "linux ",

11 "version ": " >=2.6.18"

12 },

13 "os": {

14 "name ": "redhat ",

15 "version ": "6.5" ,

16 "mountpoint ": "/",

17 "source ": [" http :// ccl.cse .nd.edu /.../ redhat -6.5- x86_64 .tar.gz"],

18 "format ": "tgz ",

19 "action ": "unpack ",

20 "checksum ": "669 ab5ef94af84d273f8f92a86b7907a ",

21 "size ": "633848940" ,

22 "uncompressed_size ": "1743656960" ,

23 "ec2 ": {

24 "ami ": "ami -2 cf8901c ",

25 "region ": "us -west -2",

26 "user": "ec2 -user"

27 }

28 },

29 "software ": {

30 "povray -3.6.1 - redhat6 -x86_64 ": {

31 " mountpoint ": "/ software /povray -3.6.1 - redhat6 -x86_64 ",

32 "source ": [" http :// ccl.cse.nd.edu /.../ povray -3.6.1 - redhat6 -x86_64 .tar.gz"],

33 "format ": "tgz",

34 "action ": "unpack ",

35 " checksum ": "b02ba86dd3081a703b4b01dc463e0499 ",

36 "size": "1471452" ,

37 " uncompressed_size ": "3010560"

38 }

39 },

40 "data": {

41 "4 _cubes .pov ": {

42 " mountpoint ": "/ tmp /4 _cubes .pov",

43 "source ": [" http :// ccl.cse.nd.edu /.../4 _cubes .pov "],

44 "format ": "plain",

45 "action ": "none",

46 " checksum ": "c65266cd2b672854b821ed93028a877a ",

47 "size": "1757"

48 },

49 ...

50 },

51 "environ ": {

52 "PWD ": "/ tmp"

53 },

54 "cmd ": "povray +I/tmp /4 _cubes .pov +O/tmp/frame000 .png +K.0 -H50 -W50",

55 "output ": {

56 "files ": ["/ tmp/frame000 .png "],

57 "dirs ": ["/ tmp /output "]

58 }

59 }

Listing 4.1: An Umbrella Specification Example - povray.umbrella

50

TABLE 4.1

RESOURCE URLS SUPPORTED BY UMBRELLA SPECIFICATIONS

Resource Example URL

Local Filesystem /home/hmeng/data/input

HTTP http://www.data.com/index.html

HTTPS https://lab.cse.nd.edu/index.html

Amazon S3 s3+https://s3.aws.com/.../cubes.pov

Open Science Framework osf+https://files.osf.io/v1/...7559c3a

Git Repository git+https://github.com/.../cctools.git

CernVM File System cvmfs://cvmfs/cms.cern.ch

are identified through their special prefixes - s3+, osf+ and git+. When private

resources from these three sources are specified in an Umbrella specification, the user

needs to provide correct authentication information. Resources from CVMFS can be

accessed via either the FUSE module or a user-space mount toolkit, Parrot [107].

Not all the sections are required in an Umbrella specification. If an experiment

does not require any input data file, the data section can be ignored. The authors of

an Umbrella specification may add new sections, new subsections or new attributes

according to their own needs. For example, an ec2 attribute is added into the os

section of Listing 4.1 to specify an VMI from the Amazon EC2. It is worth noting

that an AMI (Amazon Machine Image) is not unique globally, but only unique within

a region [4]. Therefore, both the AMI and region information are needed to uniquely

specify a virtual machine image from the Amazon EC2.

As for the software preservation format, Umbrella expects each software depen-

dency is of binary format, not of source-code format. This decision is based on

51

the following three observations: first, sometimes it is difficult to obtain the source

code, especially of commercial software; second, building software from source code is

time-consuming; third, a successful building procedure requires special compilation

toolchain and building configuration. In the case where the software building pro-

cedure needs to be reproduced, an Umbrella specification can be composed to track

the compilation environment.

To make it easy to compose an Umbrella specification, we implemented a web por-

tal (http://umbrella.basicuserinterface.com/) which allows the user to specify

an execution environment by filling a form online and automatically computes the

metadata information of a dependency once its source attribute is provided. The

portal also provides a specification validator to help diagnose the syntax errors within

a specification. Currently, the Umbrella execution engine is responsible to check the

semantic errors within an Umbrella specification before creating the specified exe-

cution environment. In addition, an Umbrella specifications is often the collabora-

tive outcome between researchers and system administrators. System administrators

focus on the configurations of hardware, kernel, base OS image and system-level

software. Researchers focus on software, data and all the other experiment-specific

configurations.

4.3.2 Creating Execution Environment: Umbrella Execution Engine

Figure 4.1 illustrates the workflow of the Umbrella execution engine. Once an

Umbrella specification is ready, either composed from scratch or downloaded from

the Internet, the user can start an Umbrella job (step 1) and wait for the experi-

ment results to be returned by Umbrella. Umbrella is responsible for parsing the

specification (step 2), downloading all the missing dependencies from the locations

specified in the source attributes (step 3), creating the execution environment by

mounting all the dependencies into a unified sandbox to run the experiment (step 4)

52

Figure 4.1. Workflow of Umbrella Execution Engine

and returning the experiment results to the location specified by the user (step 5).

After this, the user can check and analyze the experiment results (step 6).

According to the matching degree between the requirements specified in the

hardware, kernel and os sections of an Umbrella specification and the hardware,

kernel and OS configurations of an execution node, different sandbox techniques can

be used to create the specified execution environment. The higher the matching de-

gree is, the lighter-weight the employed sandbox technique can be. Table 4.2 shows

the available sandbox techniques for each matching degree.

4.3.2.1 Sandbox Technique - Utilize the Current OS Directly

When an execution node meets the hardware, kernel and OS requirements, it can

be utilized directly to create the execution environment and every dependency will be

put directly into the path specified by its mountpoint attribute. This method is fast

because there is no virtualization being involved. However, the local filesystem may

be polluted in two ways. In the case where the mountpoint of a dependency has not

existed yet, Umbrella should create the mountpoint before putting the dependency

53

TABLE 4.2

SANDBOX TECHNIQUES FOR CREATING EXECUTION

ENVIRONMENTS

Hardware Kernel OS Sandbox Techniques

Yes Yes Yes Utilize the current OS directly

Yes Yes No OS-level Virtualization - Docker, Parrot

Yes/No No No Hardware Virtualization - VMware, EC2

there. If the mountpoint already exists, Umbrella should first check whether the

existing version is correct. When the existing version is not the required one, the

user needs to be consulted about which version to keep. Due to the lack of isolation

mechanisms, this method does not block any damage which may be introduced by

the experiment. Therefore, it is only feasible when the behavior of the experiment is

safe or the execution node is easy to recover, such as a virtual machine.

4.3.2.2 Sandbox Technique - OS-Level Virtualization

If the hardware and kernel configurations of an execution node satisfy the re-

quirements but the OS does not, OS-level virtualization techniques can be utilized

to create the execution environment. OS-level virtualization allows multiple OS in-

stances to run simultaneously on top of a single OS kernel. Compared with hardware

virtualization, this has lower execution overhead because no hardware-level instruc-

tion translation is needed. An implementation of OS-level virtualization may only

deploy file system isolation (such as chroot and Parrot) or isolate file system, process,

user, hostname and network, and set limits about memory and CPU usage (such as

Docker). By isolating the root filesystem of each OS instance, OS-level virtualization

avoids the risk of ruining the file system of the execution node.

54

Figure 4.2. Umbrella Local Cache - Allowing Dependency Sharing

This isolation also makes it possible to share the common dependencies between

sandboxes for different applications, as illustrated in Figure 4.2. The two applications

- a Povray ray tracing application and a CMS application - share the same OS

image (redhat 6.5), but each has its own software and data dependencies. Umbrella

downloads all the distinct dependencies into its own local cache and mounts the

dependencies into each sandbox during runtime. In this scenario, the Umbrella local

cache only keeps a single copy of the OS image, which will be shared by the two

sandboxes. Within each sandbox, the data mounted from the Umbrella local cache

can not be modified. All the modifications during runtime should be written to the

mountpoint mounted from a location outside of the Umbrella local cache.

4.3.2.3 Sandbox Technique - Hardware Virtualization

When the hardware or kernel configurations of the execution node do not satisfy

the requirements, hardware virtualization can be used to emulate the target com-

puting environment in a VM, and create the execution environment within the VM.

Compared with OS-level virtualization, Hardware virtualization involves more exe-

cution overhead because each instruction within the VM needs to be translated into

55

an instruction on the host via a virtual machine monitor (i.e., hypervisor). However,

since the virtual machine already satisfies the hardware, kernel and OS requirements,

the sandbox can be constructed directly inside it, as discussed in section 4.3.2.1.

This sandbox technique can be implemented in two ways depending on where a

virtual machine is hosted. If the current execution node has a hypervisor such as

VirtualBox [112] or VMware [111] installed, it can be used directly to launch the

required VM and finish the Umbrella job within it. If the current execution node

has not installed any hypervisor or the user prefers not to do the test locally, cloud

computing platforms such as Amazon Elastic Computing Cloud (EC2) and Google

Compute Engine (GCE) can be utilized. The composers of Umbrella specifications

should specify the required cloud platform and virtual machine image, as illustrated

by the ec2 subsection under the os section in Listing 4.1. Umbrella responds to

communicate with the cloud platform to start a VM, send the Umbrella job to the

VM and launch the Umbrella job on the VM locally. Then the VM creates the

execution environment and finishes the job. Finally, the experiment results will be

sent back to the local machine and put into the user-specified location. Figure 4.3

illustrates how Umbrella can utilize Amazon EC2 to finish a job.

Our experience with the Amazon EC2 suggests that, in spite of all the benefits it

provides for allowing researchers to share their work, the Amazon EC2 service alone

cannot achieve reproducibility for the following reasons. First, an AMI is not globally

unique, instead only unique within a region. Copying an AMI from one region to

a different region would result in an AMI with a different identifier. To specify an

AMI for the purpose of reproducibility, both the AMI and the region where it is

located are needed. Second, the username and password settings of virtual machine

images provided by the Amazon EC2 service vary according to the OS distributions,

which is inconvenient for sharing images between researchers. Third, the instance

types supported by the Amazon EC2 service change depending on the hardware

56

Figure 4.3. Workflow of Executing An Umbrella Job via Amazon EC2

costs. Some instance types may become obsolete as time goes by, which makes it

challenging to conduct performance-oriented reproducible research.

4.3.3 Preserving Execution Environment - Umbrella Archiver

Once the final experiment configuration is figured out, it is time to archive the

involved dependencies, especially those dependencies from unreliable sources, such

as local disks and some third-party websites. The Umbrella archiver was designed

to help researchers archive the dependencies specified in an Umbrella specification

into persistent storage services. It accepts the user credentials for the target storage

services from its command line options and communicates with the target storage

services via their Python bindings. By default, all the OS, software and data depen-

dencies specified in an Umbrella specification are archived into the storage system.

The researchers may mark off the already-archived dependencies with a JSON field,

upload:false. Once the archiving process is done, Umbrella will update the re-

57

source URLs of all the relevant dependencies to the reliable ones and generate a new

Umbrella specification.

Currently, Umbrella supports two persistent storage services: Amazon S3 and

OSF. Archiving an execution environment to Amazon S3 creates a new S3 bucket,

uploads each unreliable dependency into the bucket and finally uploads the updated

Umbrella specification into the bucket. Then researchers can publish and share the

S3 link of the new Umbrella specification. Archiving an execution environment to

OSF creates a new OSF project, archives each unreliable dependency as an OSF

file under the OSF project and finally uploads the updated Umbrella specification

into the OSF project. Then researchers can publish and share the OSF URL of the

new Umbrella specification. The Umbrella archiver also allows researchers to set the

access permission on uploaded OSF and S3 resources.

4.4 Two Example Workflows of Conducting Reproducible Research

This section describes two typical scenarios where the framework proposed in

section 4.3 can be used to facilitate the reproducibility of scientific research and

provides the detailed workflow of how to use the framework to achieve this. In both

scenarios, Alice is the original author of the experiment and Bob is another researcher

who wants to reproduce Alice’s work.

In the first scenario, Alice conducts her experiment on her local machine and

all the dependencies are from the local machine. Alice first composes an Umbrella

specification, povray local.umbrella in Figure 4.4, to describe the execution envi-

ronment of her experiment. Then Umbrella is used to create the specified execution

environment and execute the experiment. Whenever Alice wants to tune the experi-

ment settings, she always first updates the execution environment specification. By

tracking the execution environment as the research process goes and even before ev-

ery real execution starts, Alice is always sure about the environment configurations

58

Figure 4.4. Conducting Reproducible Research Using Umbrella - Local +
OSF

of a successful execution. After Alice finishes her experiment, she uses Umbrella

to create a new OSF project and upload all the local dependencies into the OSF

project. Umbrella also creates a new specification with all the dependencies from

OSF, povray osf.umbrella, which is also uploaded into the OSF project. Then

Alice attaches the OSF URL of povray osf.umbrella to her paper. After this, any

change or accident happened to the local machine used by Alice will not jeopardize

the reproducibility of the experiment. If Bob reads Alice’s paper and wants to repro-

duce the experiment, he can download povray osf.umbrella using the OSF URL

in the paper and reproduce Alice’s work. Figure 4.4 illustrates the whole workflow.

In the second scenario, Alice wants to conduct her experiment using Amazon EC2.

To avoid downloading the dependencies of the experiment from the outside Internet

59

Figure 4.5. Conducting Reproducible Research Using Umbrella - EC2 + S3

to EC2 instances repeatedly, Alice stores the software and data dependencies inside

Amazon S3. Alice composes an Umbrella specification, povray ec2 s3.umbrella in

Figure 4.5, to describe the execution environment of her experiment. Then Alice uses

Umbrella to communicate with AWS (Amazon Web Services) and execute the exper-

iment using an EC2 instance (section 4.3.2.3). During runtime, all the dependencies

are downloaded from Amazon S3 into the EC2 instance and then used to create the

execution environment. When Alice is ready to publish her experiment result, she

just needs to put povray ec2 s3.umbrella into Amazon S3 and publishes its S3 link

in her paper. By doing so, Bob can obtain a copy of povray ec2 s3.umbrella easily

and reproduce Alice’s work.

In both scenarios, Bob can first read the Umbrella specification file shared by Alice

to understand the hardware and software requirements of the experiment, and then

decide where to reproduce it and which sandbox mode to use to reproduce it. This

helps Bob avoid the time overhead of asking Alice about the environment variable

settings and input files, running out of memory and disk space by accident, and the

failure caused by incompatible versions of Python.

60

4.5 Evaluation

A prototype of the framework was implemented using Python2.6 as a Python

script, umbrella, which supports the features described above - tracking, creating and

preserving execution environments of scientific applications. As for creating execution

environments, four sandbox modes using different sandbox techniques are currently

supported: the destructive mode, which utilizes the current OS directly; the parrot

mode and docker mode, which are two examples of OS-level virtualization; the ec2

mode, which is an example of hardware virtualization utilizing Amazon EC2. The

ec2 and destructive modes are usually used together: the local Umbrella uses the

ec2 mode to start an VM and the remote Umbrella running on the VM uses the

destructive mode to run the experiment.

To evaluate the framework, umbrella was utilized to reproduce three scientific ap-

plications from epidemiology, scene rendering and high energy physics (section 4.5.1).

The Umbrella specification file sizes (section 4.5.2), the space and time overheads of

creating execution environments using different sandbox techniques (section 4.5.3),

and the effectiveness of the Umbrella local cache for allowing dependencies to be

shared by multiple execution environments (section 4.5.4) are evaluated.

The evaluation results show that, with the help of Umbrella, an experiment can

be reproduced successfully by the original author and others with different sandbox

techniques, even though the overhead and performance may vary slightly.

4.5.1 Applications Evaluated

Three applications were used to evaluate the framework: an OpenMalaria appli-

cation from epidemiology, a Povray ray tracing application and a CMS (Compact

Muon Solenoid) application from high energy physics.

OpenMalaria aims to develop a model to simulate the potential effects of the intro-

duction of pre-erythrocytic malaria vaccines [99]. It uses individual-based stochastic

61

simulations of malaria epidemiology to predict the impacts of interventions on infec-

tion, morbidity, mortality, health services use and costs. The OpenMalaria applica-

tion used here does a VecNet baseline simulation with increased population size for

more precise results. The application takes an xml-format input file which describes

the place being simulated - human population distribution, entomology of vectors,

effectiveness of health system in the area and optionally interventions applied to con-

trol malaria. The outputs of the application include a file with the size of 39KB

capturing every timestep of a simulation (ctsout.txt) and a file with the size of

51KB aggregating data into configurable-size lumps (output.txt).

Povray is a ray tracing program which renders 3D graphics from text-based scene

descriptions that describe all the details of a scene, including the camera, lights,

plane and objects. All povray objects are described by mathematical functions and

represented internally using their mathematical definitions. The povray application

used here has two data dependencies: a scene description file (.pov) and a include

file containing the mathematical functions of Rubik’s Cube (.inc). The output of

the application is a png file with the size of 16MB.

The CMS experiment investigates the most basic building blocks of matter by

observing collisions of protons at near light-speed. Large numbers of collisions must

be simulated and analyzed statistically to develop accurate models of the underlying

physical processes. We applied the Umbrella framework to a step in this simulation

process, in which collisions between protons are simulated. The results of each colli-

sion are generated, based on the model under test, and recorded. The input consists

of a Python configuration file describing the process to be investigated and the output

is a 96MB enhanced ROOT file containing the recorded particle descriptions. Due

to metadata recorded at runtime which includes timestamps, all outputs will differ

in a non-deterministic way. Because the psuedorandom seed is fixed, however, the

generated output of a given configuration will always be identical.

62

TABLE 4.3

DEPENDENCIES OF EVALUATED APPLICATIONS

Application OS Deps Software Deps Data Deps

OpenMalaria CentOS 6.6 (69MB/218MB) openMalaria (2.9MB/13MB) .xml (28KB)

.rpm packages (209MB) .csv (<1KB)

epel.repo (<1KB) .xsd (196KB)

Povray RedHat 6.5 (605MB/1.8GB) povray (1.5MB/2.9MB) .pov (1.8KB)

.inc (28KB)

CMS RedHat 6.5 (605MB/1.8GB) cmssw (1.3GB) .sh (<1KB)

parrot (23MB/71MB)

Table 4.3 illustrates the dependencies of each application and the size of every

dependency. Two archive formats are used for the preservation of these dependen-

cies: plain files (e.g., epel.repo) and gzipped tar files (e.g., CentOS 6.6). Both the

compressed and uncompressed sizes of a gzipped tar file dependency are listed in

Table 4.3. The size information of a plain-format dependency is in the format of

(size). The size information of a gzipped tar file dependency is in the format of

(compressed size/uncompressed size). All the dependencies are archived in Cu-

rateND, a campus archival system for curating Notre Dame’s Research and scholar-

ship for study throughout time provided by the Hesburgh Libraries at the University

of Notre Dame [2].

Although only the evaluation results for three applications are shown in this

section, the framework does not bind itself with any specific field and is broadly

applicable to scientific applications from other fields.

63

TABLE 4.4

UMBRELLA SPECIFICATION FILE SIZES

Application OpenMalaria Povray CMS

Umbrella Spec Size 3.3KB 2.4KB 1.9KB

4.5.2 Umbrella Specification File Sizes

The execution environment for each application is tracked via an Umbrella spec-

ification file, which specifies the hardware, kernel, OS, software dependencies, data

dependencies, environment variables, analysis command and application output. Ta-

ble 4.4 illustrates the Umbrella specification file sizes for these three applications. An

Umbrella specification only includes resource identifiers and other metadata informa-

tion, rather than the real content of any dependency. Therefore, in contrast with the

dependency sizes shown in Table 4.3, an Umbrella specification file itself is only a

few kilobytes.

To allow these applications to be reproduced with different sandbox techniques,

the os section of each specification specifies an AMI (Amazon Machine Image) for

the ec2 sandbox mode and an OS image in the format of gzip tar file for the parrot

and docker sandbox modes.

4.5.3 Overheads of Creating Execution Environments

Umbrella can create the execution environment specified in an Umbrella specifi-

cation file with different sandbox techniques. Table 4.5 illustrates the time and space

overheads of reproducing these three applications using three sandbox techniques -

parrot, docker and ec2. Even if the time and space overheads of reproducing each

application vary according to the sandbox techniques and computing resources used,

64

TABLE 4.5

TIME AND SPACE OVERHEADS OF CREATING EXECUTION

ENVIRONMENTS

Application OpenMalaria Povray CMS Permission Location

parrot N/A 65min (2.40GB) 79min (2.39GB) non-root locally

docker 57min (1.53GB) 68min (4.11GB) 82min (4.19GB) root locally

ec2 - m3.medium 113min (225MB) 130min (4.4MB) 211min (94MB) non-root remotely

ec2 - m3.large 58min (225MB) 65min (4.4MB) 108min (94MB) non-root remotely

they all generate the correct output. The parrot and docker sandbox modes are

tested on the same machine (hardware: x86 64, kernel: Linux 2.6.32, OS: redhat 6.7).

The time overheads of different sandbox modes vary for two main reasons. First,

sandbox techniques based on hardware virtualization (ec2) involve higher overheads

than sandbox techniques based on OS-level virtualization (parrot and docker). Fur-

thermore, the overheads of different OS-level virtualization techniques vary according

to the isolation degree and the implementation details. Second, Umbrella allows the

hardware and kernel requirements to be specified as a range, not limited as a single

value. For example, the user can specify the CPU core number to be at least 2 and

the memory space to be at least 3GB. This design decision was made because we

believe, from a long-term perspective, the aim of reproducibility is first to get the

correct result, then to care about the performance.

These three applications are all single-threading and CPU-intensive, therefore

the time overheads are mainly determined by the CPU performance of the execution

nodes. The parrot and docker sandbox modes are tested on the same machine, the

difference between the time overheads of each application under these two modes are

mainly due to their implementation details. As a user-space tracer, parrot works by

65

trapping each system call and redirecting the file access if necessary. Docker mainly

bases on several Linux kernel features including namespaces and control groups. The

EC2 m3.medium instance type has one virtual CPU (vCPU) and the m3.large in-

stance type has two vCPUs. The evaluation result suggests that the performance of

each EC2 vCPU is about half of two vCPUs, which performs pretty similarly to a

nonvirtualized CPU.

The space overhead of the parrot sandbox mode covers the total size of plain-

format dependencies and gzipped tar file dependencies (both compressed version and

uncompressed version). This should be identical to the summary of the dependency

sizes listed in Table 4.3. The space overhead of the docker sandbox mode covers

all the dependencies listed in Table 4.3 and an extra hard copy of the OS image

dependency, which needs to be copied from the Umbrella local cache into the storage

backend of Docker. The ec2 sandbox mode only needs to download software and data

dependencies into the Umbrella local cache on the EC2 instance, whose OS image

already satisfies the requirement.

Comparing with the Povray ray-tracing application and the CMS application,

creating the execution environment of OpenMalaria has a special step of installing

several rpm packages via the package manager, yum, which requires the root authority.

The parrot sandbox mode is based on a user-space mount toolkit, Parrot, therefore

can not be used to create the execution environment of OpenMalaria. On the con-

trary, both docker and ec2 sandbox modes can gain the root authority and can be

used here to install rpm packages with yum.

The parrot sandbox mode can be used by both root and non-root users, because

Parrot is a user-space tracer. Using the docker sandbox mode requires the user to

be root or be added into the docker group to communicate with the docker daemon.

The docker daemon always runs as the root user and adding a non-root user into

the docker group also requires root authority. The ec2 sandbox modes does not

66

necessarily require the root authority, but requires the EC2 python module, boto3,

to communicate with the EC2 resources.

In summary, the decision of choosing the right sandbox technique to reproduce

an application depends on the following three factors: whether the user has root

authority on an execution node, where the user wants to reproduce an application

(locally or remotely), and whether the application itself involves privileged operations.

4.5.4 Effectiveness of Umbrella Local Cache

Umbrella tries to cache a dependency into its local cache when it is first required,

so that the following experiments can reuse the local copy inside the local cache

without downloading it repeatedly from the Internet. This saves both the time and

economic cost of reproducing an experiment. Table 4.6 shows the changes of the

Umbrella local cache size as different experiments or different software/data depen-

dencies are tested. The CMS experiment and the Povray experiment are used here,

which share the same OS image dependency. All the tests here were done with the

parrot sandbox mode on the same machine (hardware: x86 64, kernel: Linux 2.6.32,

OS: redhat 6.7).

Originally, the Umbrella local cache is empty. When the CMS experiment is

tested, all its dependencies, totally 2.39GB, are downloaded into the Umbrella local

cache. Next, when the Povray experiment is tested, only its software and data depen-

dencies are missing and added into the cache, totally 4.4MB. When the researcher

wants to rerun any of these two experiments, all the required dependencies have ex-

isted in the local cache and no new dependencies are needed. If the user wants to test

a new software or data dependency, only the new dependencies will be downloaded

from the Internet and added into the cache. Rerunning these experiments does not

greatly reduce the execution time, because all the dependencies are archived in Cu-

67

TABLE 4.6

EFFECTIVENESS OF UMBRELLA LOCAL CACHE

Application (Deps Size) Cache Size Delta (Newly Added Deps) Time

CMS (2.39GB) 2.39GB 2.39GB (all deps) 79min

Povray (2.40GB) 2.40GB 4.4MB (software & data) 64min

CMS - rerun 2.40GB 0 78min

Povray - rerun 2.40GB 0 64min

Povray - new software deps 2.40GB 4.4MB (software) 64min

Povray - new data deps 2.40GB 28KB (data) 64min

rateND, which is on the same campus network with the execution node, and the

downloading speed from CurateND to the execution node is about 30MB/s.

4.5.5 Last Step to Enhance Reproducibility

The framework described above facilitates the reproducibility of scientific re-

search. To go further, we created a DOI for each evaluated application, as shown in

Table 4.7, using the campus archival service provided by our university library, Cura-

teND. Each DOI points to an overview page hosted by CurateND, which includes the

Umbrella specification file, the links to the Umbrella installation documentation and

user manual, all the dependencies and the experiment results. The original authors

can decide when to publish and share their work by setting the proper access rights

to the resources referred in the overview pages. Using CurateND, anyone having the

proper access rights can download the Umbrella specification for an experiment, in-

stall the Umbrella binary, reproduce the experiment, verify the published experiment

results and even extend the original experiment.

68

TABLE 4.7

DOIS FOR THE EVALUATED APPLICATIONS TO ENHANCE

REPRODUCIBILITY

Application DOI URL

OpenMalaria http://dx.doi.org/doi:10.7274/R03F4MH3

Povray http://dx.doi.org/doi:10.7274/R0BZ63ZT

CMS http://dx.doi.org/doi:10.7274/R0765C7T

4.6 Conclusion

This chapter proposes a framework facilitating the conduct of reproducible re-

search by tracking, creating and preserving the comprehensive execution environ-

ments of scientific applications with Umbrella. Using this framework, researchers can

make their experiments reproducible by specifying their execution environments in

a lightweight, persistent and deployable execution environment specification, which

can then be easily shared, expanded or repurposed. Researchers can also utilize the

framework to archive their execution environments into persistent storage services

like Amazon S3 and OSF to facilitate the sharing and publication of their experi-

ments. The framework also provides an execution engine which allows the original

researchers and any other researchers to (re)create the specified execution environ-

ments using sandbox techniques like VM, Docker and Parrot.

The framework suggests the archive unit of dependencies to be each OS image,

software and data. Different applications sharing the same dependencies can simply

refer them, which avoids preserving the same dependencies multiple times and saves

the storage space in an archive. This also facilitates the management of archived

data by allowing different dependencies to be updated in different frequencies and

managed separately. This finer archive granularity also makes it possible to specify

69

an execution environment in different sections like an os section, a software section

and a data section, which makes it easy for new users to understand the components

of an experiment and extend the experiment.

The main reason why experiment results published in a paper are difficult to be

reproduced is that the experiment procedure is not fully documented due to different

factors such as the time pressure to move on to the next research challenges after

the paper is published, lacking of funding and leaving of some key members from

the team. The commonality of these factors is that the documentation procedure is

delayed to the last minute. To fix this, the framework suggests that researchers doc-

ument their experiment as the research goes by specifying the execution environment

first and then running the experiment. Whenever there is any tunes or changes to

an execution environment, the specification should always be changed first.

The Umbrella framework also tries to differentiate execution environment spec-

ifications and the tools used to create the specified execution environments. An

execution environment specification should be persistent and deployable. However,

the tools used to create an execution environment may experience frequent changes

due to the advance of technology. During the process of this work, virtual machines

were first utilized to create execution environments, then the Amazon EC2, then

user-space system call tracers and Linux Containers. Even with the same technology,

there may exist multiple implementations.

70

CHAPTER 5

REPRODUCING SCIENTIFIC WORKFLOWS WITH UMBRELLA

5.1 Introduction

Different solutions have been proposed to reproduce single-machine scientific ap-

plications. Some popular solutions include virtual machines [57], Linux Contain-

ers (e.g., Docker [80]) and user-space ptrace-based tools (e.g., CDE [51] and Parrot

Packaging Tool [75]). In spite of their difference, these solutions all emphasize the

importance of preserving the complete software stacks (i.e., execution environments)

of scientific applications for conducting reproducible research [79].

However, lots of scientific applications are too big to be solved on a single ma-

chine, due to their huge computing and storage requirements. To solve this, scientific

workflows [103] were designed to disseminate complex data transformations and anal-

ysis procedures into an ordered list of smaller and possibly independent tasks, which

allows computing resources from clusters, grids and clouds to be utilized to accelerate

the pace of scientific progress. The tasks involved in a scientific workflow are often

organized into a DAG (Directed Acyclic Graph), where nodes represent tasks and

files, and edges represent data flow and dependency relationship. Figure 5.1 shows

a DAG including six tasks (T1 - T6) and six files (F1 - F6), which represents the

simple workflow example in Figure 5.2, written in the Makefile language [11]. It is

worth noting that this workflow is for demonstration purposes only. A real scientific

workflow is usually more complex in both task number and task dependencies. It is

worth noting that not all scientific workflows can be described as DAGs. This work

focuses on the scientific workflows which can be described as DAGs.

71

Figure 5.1. An Example Workflow in DAG

Figure 5.2. An Example Makefile: Image Rotation

Each task is specified by a rule containing two lines. The first line is in the format
of output files: input files, and the second line is the command.

72

To make it easy for scientists to compose and execute scientific workflows, a

variety of scientific workflow systems have been developed [116], such as Taverna [83],

Swift [115], Pegasus [37] and Makeflow [11]. The end-users of these workflow systems

only need to specify an ordered list of tasks. The workflow systems respond to

communicate with execution engines, schedule tasks to the underlying computing

resources, manage data sets and deliver fault-tolerance.

Ideally, scientific workflows should improve the reproducibility of scientific appli-

cations by making it easier to share and reuse workflows between scientists. However,

scientists often find it difficult to reuse others’ workflows, which is known as work-

flow decay [53]. For example, myExperiment [48] is designed to be a sharing social

website which allows scientists to share their workflows, however, a study of Taverna

workflows on myExperiment shows that 80% of the workflows on the site could not

be reproduced [119].

Guidelines on how to design reproducible scientific workflows were proposed in

[47, 53] and Research Objects [15] were used to provide detailed metadata information

about workflows [53]. However, these guidelines focus on the specification layer of

scientific workflow systems and ignore the other components of scientific workflow

systems. As shown in Figure 5.3, scientific workflow systems usually include multi-

ple layers - the workflow specification layer, the specification parser layer, the task

scheduler layer and the computing resource layer.

Depending on the scientific workflow systems used, scientists have different levels

of control over the underlying execution environments. Pegasus [37] and Swift [115]

allow scientists to compose abstract workflows without worrying about the details of

the underlying execution environments, which means sysadmins must respond to the

cumbersome job of configuring computing resources to meet all the requirements of

different workflows. Makeflow [11] allows executables to be specified in workflow spec-

ifications and delivered to execution nodes at runtime, such as /usr/bin/convert

73

Figure 5.3. Layers of Scientific Workflow Systems

and /usr/bin/curl in Figure 5.2. This is simple but not always correct, because ex-

ecutables may be sent to execution nodes with incompatible execution environments.

To fix this, Makeflow allows scientists to specify a Docker image [80] containing the

required execution environment and delivers the image to execution nodes at run-

time [120]. This gives scientists more control over the execution environments, but

ends up with gigantic images which are expensive to store.

This chapter explores the challenges in reproducing scientific workflows and pro-

poses a framework for facilitating the reproducibility of scientific workflows by giving

scientists complete control over the execution environments for their workflows and in-

tegrating execution environment specifications into scientific workflow systems. This

framework allows the dependencies of execution environments to be archived sepa-

rately in finer granularity instead of gigantic all-in-one images. A prototype of the

framework was implemented by integrating Umbrella [77], the execution environment

creator explained in Chapter 4, into Makeflow [11], a scientific workflow system which

can utilize computing resources from a HTCondor cluster [108].

Two bioinformatics scientific workflows, BLAST and BWA, are used to evalu-

ate the framework. The execution environment for each workflow is specified as an

74

Umbrella specification file and sent to the execution nodes in the Notre Dame HT-

Condor pool, where Umbrella is used to create the required execution environment

to run the tasks. For each workflow, the size of the Umbrella execution environment

specification, the time and space overheads of creating execution environments using

Umbrella, and the heterogeneity of execution nodes contributing to each workflow,

are evaluated.

It is worth noting that the framework proposed in this chapter does not solve

the problem of reproducing scientific workflows completely. Our framework mainly

focuses on how to improve the reproducibility of scientific workflows by improving the

reproducibility and portability of each task within a scientific workflow. However, our

framework does not cover how to reproduce the underlying execution engines, such

as the HTCondor computing framework. In addition, running scientific workflows

also has its own execution environment requirements, such as the executables used

to start workflows and its dependencies. However, due to the space limitation, this

is not covered in this chapter.

5.2 Challenges in Reproducing Scientific Workflows

A scientific application usually takes a specific format of input and generates a

specific format of output. Scientific workflows aim to speed up the progress of sci-

entific applications by breaking down the complex data transformations and analysis

procedures into an ordered list of smaller and possibly independent tasks, and exe-

cuting the independent tasks concurrently. Scientific workflow systems are designed

to make it easy for scientists to compose and execute scientific workflows by taking

the responsibility of managing the underlying computing resources, scheduling tasks

onto computing resources and hiding the complexity from scientists.

The reproducibility of scientific workflows depends on how scientific workflow

systems are designed and implemented. This section explores the characteristics of

75

scientific workflow systems observed throughout this work, which make it challenging

to reproduce scientific workflows.

• Complexity. Scientific workflow systems usually include multiple layers, as
shown in Figure 5.3. The complexity of different layers vary greatly. The work-
flow specification layer simply includes workflow languages and workflow specifi-
cations, which can be easily preserved. However, the task scheduler layer often
communicates with multiple execution engines to achieve maximal speedup.
The computing resource layer includes multiple software stacks (possibly thou-
sands or even more), together with the networking connecting them together,
and requires much more efforts to be preserved and reproduced.

• Dynamics. The stability of different layers of scientific workflow systems vary
a lot. The workflow specification layer and the specification parser layer are
usually very stable and tightly coupled. Adding new syntax into a workflow
language would require the specification parser change accordingly. Old ver-
sions of specification parsers may fail to parse workflow specifications using
new syntax features. The task scheduler layer may add support for new exe-
cution engines as new computing frameworks become popular. The computing
resource layer usually experiences more frequent changes, which is especially
true for opportunistic computing framework like HTCondor [108].

• Heterogeneity. The hardware and software configurations of machines in the
computing resource layer are often heterogeneous, both across different execu-
tion engines and within a single execution engine. As an example, Table 5.1
shows the statistics of machine configurations of the Notre Dame HTCondor
pool at Fall 2016, which is very different from the statistics captured at Spring
2015, as shown in Table 5.2. It is worth noting that currently the Notre Dame
HTCondor pool has 7 different versions of RHEL (Red Hat Enterprise Linux).
Machines in cluster computing may start with homogeneous configurations, but
eventually would end up with heterogeneous configurations due to hardware re-
placement and upgrade. As for the filesystem directory structure, not all the
Linux distributions comply the filesystem hierarchy standard maintained by the
Linux Foundation [6] completely.

• Incompatible Execution Environments on Execution Nodes. Execution
nodes in the computing resource layer often do not have the correct execution
environments required by tasks. One possible solution is to ask sysadmins to in-
stall all the missing dependencies on each execution node. However, this is not
scalable due to the dependency complexity and diversity of different scientific
workflows. Another solution is to allow scientists to specify executables and
deliver them to execution nodes together with tasks, as done in Makeflow [11].
However, this is not always correct, even if we consider two very simple and

76

TABLE 5.1

HETEROGENEITY OF THE ND HTCONDOR POOL (FALL 2016)

Attribute Description

Machine Number 1886

Hardware Architecture x86 64, i686

Kernel Version Linux, Darwin, Windows NT

OS RHEL, Mac, Windows

RHEL Versions 5.11, 6.5, 6.6, 6.7, 6.8, 7.0, 7.2

CPU Number 1, 2, 4, 8, 12, 16, 24, 32, 64

Memory Size Min: 1002MB, Max: 251GB

Disk Size Min: 9GB, Max: 4.7TB

TABLE 5.2

HETEROGENEITY OF THE ND HTCONDOR POOL (SPRING 2015)

Attribute Description

Machine Number 4157

Hardware Architecture x86 64, i386, i686

Kernel Version Linux, Darwin, Windows NT

OS RHEL, Debian, CentOS, Mac, Windows

RHEL Versions 5.5, 5.9, 5.10, 5.11, 6.4, 6.5, 6.6, 7.0

CPU Number 1, 2, 4, 8, 12, 16, 24, 32, 64

Memory Size Min: 984 MB, Max: 1TB

Disk Size Min: 5GB, Max: 1.7TB

77

TABLE 5.3

SOFTWARE INCOMPATIBILITY ACROSS DIFFERENT RHEL

DISTRIBUTIONS

Executable (Shared Object Deps Num) RHEL5.11 RHEL6.8 RHEL7.0

curl from RHEL5.11 (18) X libcurl.so.3 libcurl.so.3

curl from RHEL6.8 (32) libcurl.so.4 X X

curl from RHEL7.0 (34) libcurl.so.4 GLIBC 2.17 X

convert from RHEL5.11 (23) X libMagick.so.10 libMagick.so.10

convert from RHEL6.8 (28) libMagickCore.so.5 X liblcms.so.1

convert from RHEL7.0 (28) libMagickCore.so.5 libtiff.so.5 X

common executables, /usr/bin/curl and /usr/bin/convert. Dynamically
linked executables, such as curl and convert, often have dozens of shared
object dependencies, each of which has its own version and further dependen-
cies. The numbers and versions of shared object dependencies of an executable
on different OSes may vary a lot, as shown in the first column of Table 5.3.
Therefore, sending an executable itself to execution nodes with different OSes
often does not work due to the missing of dependencies. We ran curl and
convert from RHEL5-7 on RHEL5-7, and collected the results in Table 5.3.
When executables ran on execution nodes with different OSes, only curl from
RHEL6 executed successfully on RHEL7, all the other attempts failed. The
first incompatible dependencies for all the failed attempts are shown in Ta-
ble 5.3. However, the first incompatible dependencies are often not the only
incompatible dependencies. The incompatible execution environment problem
gets worse for real scientific workflows.

• Hidden Network Dependencies. Scientific workflows often have some data
dependencies from third-party websites, which are obtained by curl-based or
wget-based tasks, such as T1 shown in Figure 5.2. When the workflow is tiny,
these dependencies can be easily tracked. However, when the task number of
a scientific workflow reaches 100s or 1000s, these network dependencies will be
buried in the middle of the huge workflow specification and difficult to track.
This may cause workflow decay if some fragile network dependencies are lost
before being preserved properly.

78

1 input http :// cse.research .org/blast /input

2 job.sched http :// cse.research .org/blast /job.sched <checksum >

Listing 5.1: Use Dependency Map to Track Network Dependencies in a Workflow

5.3 A Framework Facilitating the Reproducibility of Scientific Workflows

Given the challenges of reproducing scientific workflows and the characteristics

of scientific workflow systems, this section proposes a framework to facilitate the

reproducibility of scientific workflows, which includes three parts:

• Tracking Network Dependencies. Instead of being hidden in the middle of
scientific workflow specifications, network dependencies should be collected and
tracked in a separate mechanism. For example, a file which maps data depen-
dencies to their retrieval locations can be used to track network dependencies,
as shown in Listing 5.1. This also makes it easy to redirect these dependencies
if needed. Except for the name and location of a dependency, the checksum
value can also be recorded in the dependency map to facilitate the integrity of
data, as shown in the second line of the Listing 5.1.

• Specifying Execution Environments for Tasks. A task in a workflow does
not simply equal to the command line from the workflow specification, it has
its own requirements of the underlying execution environment, which should
include at least the information about the hardware configuration (hardware
architecture, CPU, memory and disk), kernel type (such as Linux and Darwin),
kernel version, OS name, OS version, the root filesystem image, software de-
pendencies, data dependencies, command line and environment variables. The
hardware and kernel information can be used to select the correct execution
nodes from the underlying computing resources. The root filesystem image,
software, data and environment variables information can be used to create the
execution environment and execute the task in it.

Usually the tasks in a workflow share the same hardware, kernel and OS re-
quirements. If all the tasks in a workflow also share most of their software
dependencies, a single execution environment specification can be composed
and used to run all the tasks. When the dependencies of different tasks vary a
lot in number or size, different execution environment specifications for different
tasks can be used to avoid the space and time overhead of shipping all the de-
pendencies to every execution node and creating a huge execution environment
on every execution node. To avoid composing a separate execution environment
specification for every task, it is best to leave the intermediate data involved in
a workflow out of execution environment specifications and allow them to be
specified by the specification parser layer automatically at runtime.

79

• Sending Execution Environment Specifications to Execution Nodes.
To utilize the heterogeneous resources in the computing resource layer, instead
of only sending the command line of a task to an execution node, the complete
execution environment specification of the task, together with the execution
environment creator which can parse the specification and create the correct
execution environment from it, should also be sent to the execution node.

To prepare executing a task, the execution environment creator obtains the
root filesystem image, software and data dependencies specified in an execu-
tion environment specification, creates a sandbox with sandbox techniques like
virtual machines, Linux Containers and user-space tracers, and attaches the
intermediate data into it. By doing this, instead of meeting the execution en-
vironment requirements of different scientific workflows on all the execution
nodes, scientific workflow systems only need to guarantee the execution envi-
ronment creator itself can work on every execution node. This facilitates both
the portability and reproducibility of scientific workflows.

5.4 A Prototype Implementation of the Framework

A prototype of the framework was implemented by integrating Umbrella, an ex-

ecution environment creator, into Makeflow, a scientific workflow system which can

utilize computing resources from the local machine, SGE, Work Queue and HTCon-

dor. To utilize Makeflow, scientists can compose their workflows in a make-similar

workflow specification language, Makefile, as shown in Figure 5.2. In addition, a

mount file (i.e., dependency map) which maps each network dependency to its re-

trieval location is used to track network dependencies.

Figure 5.4 shows how the framework can facilitate the reproducibility of a bioin-

formatics scientific workflow called BLAST, whose workflow specification is specified

in a Makefile, blast.makeflow. Each task is expressed in a Makefile rule occupying

two lines: the first line is in the format of <outputs>:<inputs>, and the second line

<cmd>. Take the task in blast.makeflow as an example, the input file is input.1;

there are three output files: output.1, error.1 and total.1; the command is

run blast.sh 1. After a makeflow command starts, the specification parser first

reads the Makefile file and construct a DAG representing the dependency relation-

80

Figure 5.4. Running BLAST with Makeflow and Umbrella

ship between tasks, which can then be utilized to guide the task scheduler to schedule

tasks onto execution nodes.

Without our framework, scientists need to specify the executables needed for a

task, such as run blast.sh, in the inputs part of a rule (as shown in the second

line of Listing 5.2), which is cumbersome and incomplete, because these executables

may depend on other libraries and executables. Using our framework, an Umbrella

specification, blast.umbrella, is composed to specify the execution environment infor-

mation including hardware, kernel, OS, software and data dependencies needed by

the tasks. The workflow specification, blast.makeflow, can ignore the executables and

focus on the inputs, outputs, and command line of each task.

81

1 ...

2 output .1 error .1 total .1: input .1 run_blast .sh

3 run_blast .sh 1

4 ...

Listing 5.2: Specifying Executables in Makefile – BLAST

Without our framework, the master node sends the command line of a task directly

from workflow specifications to execution nodes, such as run blast.sh 1, without

any information about the expected execution environment. The tasks often fail

on execution nodes due to incompatible execution environments. With our frame-

work, the command line is wrapped into an Umbrella task, which brings together

the execution environment specification, and the inputs, outputs and command line

information from the workflow specification. The umbrella-wrapped command line,

the execution environment specification, together with the execution environment

creator, umbrella, are then sent to each execution node.

Umbrella is written in Python2.6. To run umbrella-wrapped tasks on execution

nodes, the selection standards for the underlying computing resources should include

the criteria for Python2.6. On execution nodes, an umbrella-wrapped task brings all

the dependencies together, creates a sandbox and runs the task inside it.

5.4.1 Why not Use Docker as the Execution Environment Creator?

We tried to use Docker as the execution environment creator and run each task

as a Docker container on execution nodes originally [120], and noticed the following

limitations:

First, running each task as a Docker container requires Docker be installed on

execution nodes and workers on execution nodes have permission to use Docker,

both of which need root permission.

Second, the size limit of a Docker container (by default is 10GB) exposes a limit on

the storage space used by a task. Though it is possible to tune the default container

82

size, the change will affect every Docker container and there is no way to set the size

of each container separately.

Third, the storage drivers Docker uses usually have size limitations (e.g., 100GB

used by devicemapper [42]). This limits the number of Docker containers which can

run concurrently on an execution node.

Fourth, in the case where two different tasks pull the same Docker image or

load Docker images from the same tarball, special concerns are required to solve the

potential race condition.

Fifth, it is not easy to track the metadata information of software and data

dependencies in a Dockerfile, such as size, format and checksum.

Sixth, a Dockerfile does not provide clear information to a new user about the

location of software and data, who may want to run the Docker container with new

software versions or date sets.

With Umbrella, each task can run as a Parrot job, which is a user-space ptrace-

based tool and requires no root permission [75]. Umbrella does not have size limits

on each task and the total storage space Umbrella can utilize is only limited by the

storage limit set by a worker. Unlike Docker trying to collect all the Docker images

into a centralized storage space, such as /var/lib/docker/devicemapper, running

each task as an Umbrella job only modifies the working directory of each worker.

Umbrella organizes an execution environment into different sections (such as the

software and data sections in Figure 5.4), each of which has its specific purpose.

This allows these dependencies to be archived separately and makes it very easy for

a new user to understand the configuration of an application and test new software

versions or new data sets.

83

5.4.2 Discussion

Integrating Umbrella into Makeflow involves changes to both sides. To support

this integration, three changes were introduced to Makeflow. The first change is to

allow the users of Makeflow to specify execution environment specifications for their

workflows. This can be done either in workflow-level by adding a new option to

Makeflow, or in task-level by adding new syntax into Makefile. The second change is

to trim down Makefile rules by moving the dependencies shared by all (or a group of)

tasks into execution environment specifications. However, the dependencies specific

to each task should still be kept in the Makefile. The third change is to modify the

task scheduler layer so that the original command line specified in a Makefile, the

dependencies specific to each task, and the execution environment specification for

each task can be wrapped together into an Umbrella job.

The change to Umbrella for this integration mainly is how to attach the depen-

dencies specific to each task into an Umbrella job. Before this integration, Umbrella

was mainly used to create the execution environments for single-machine scientific

applications, where all the dependencies of a job is set at the same time. However,

integrating Umbrella into Makeflow means there are two main sources for the depen-

dencies of a job - an Umbrella specification for shared dependencies (such as operat-

ing systems and software) and Makefile workflow specification for the dependencies

specific to each task. To achieve this, Umbrella was enhanced to allow attaching

dependencies at runtime by the task scheduler layer of Makeflow.

5.5 Evaluation

Two bioinformatics scientific workflows, BLAST (Figure 5.5) and BWA (Fig-

ure 5.6), were used to evaluate our framework. The execution environments of BLAST

and BWA were specified as Umbrella specification files, which were at runtime sent to

84

Figure 5.5. Bioinformatics Scientific Workflow - BLAST

The order matters during the concatenation of error.*, total.* and output.*,
and the correct concatenation order is from *.0 all the way up to *.18.

execution nodes together with the execution environment creator, umbrella, in the

Notre Dame HTCondor pool. On each execution node, the execution environment

creator creates the execution environment and run the task. The parrot sandbox

mode of umbrella was used in this evaluation. For each workflow, the size of the

Umbrella execution environment specification, the time and space overheads of creat-

ing execution environments using Umbrella, and the heterogeneity of execution nodes

contributing to each workflow, are evaluated.

5.5.1 Applications Evaluated

BLAST (Basic Local Alignment Search Tool) is an algorithm for comparing pri-

mary biological sequence information. It allows researchers to compare a query se-

quence with a sequence database or library, and identify the sequences in the database

or library which resemble the query sequence above a certain degree [1]. The BLAST

85

Figure 5.6. Bioinformatics Scientific Workflow - BWA

The bwa program implements several efficient algorithms including bwa index, bwa
aln, bwa sampe and so on. The bwa index algorithm is used to process input.1;
the bwa aln algorithm is used to process input.0.* and input.2.*; the bwa sampe

algorithm is used to process the *.sai files.

86

program used in our evaluation takes an input file (called input) of 910KB includ-

ing 197 query sequences, each of the query sequence is compared with a sequence

database with the size of 8.4GB. The comparison result is collected into an output

file with the size of 4.9MB, called output. Executing the whole comparison on a

single machine would take about 25 hours. To speed up the execution of the compar-

ison, a makefile is composed to specify the analysis steps (as shown in Figure 5.5),

where the input file is first split into 19 tiny pieces, input.0 - input.18, and then

sent to multiple execution nodes. Each task takes about 60 minutes to 90 minutes.

Finally, the output files returned back from the execution nodes are merged together

in a certain order into a single output file.

BWA (Burrows-Wheeler Aligner) is an efficient program for mapping low-divergent

sequences against a large reference genome such as the human genome [68]. It first

indexes the reference genome in fasta format using the bwa index algorithm, then

aligns the input sequence data to the reference genome using bwa aln algorithm.

Finally the bwa sampe algorithm is used to generate SAM file from the alignments

for paired-end reads. The BWA program used in our evaluation takes a fasta-format

reference genome file with the size of 265MB (called input.1) and two input se-

quence files both with the size of 3.1GB (input.0 and input.2) . The output SAM

file (called output) is 8.6GB. Executing the whole program on a single machine

would take days to finish. To speed up the execution of the alignment, a makefile

is composed to specify the analysis steps (as shown in Figure 5.6), where each input

sequence file is split into 274 tiny files and then sent to multiple execution nodes

together with the index of the reference genome. Each task takes several minutes.

Finally, the output files returned back from the execution nodes are merged together

in a certain order into a single output file.

87

TABLE 5.4

OS AND SOFTWARE DEPENDENCIES OF EVALUATED

WORKFLOWS

Application OS Dependency Software Dependencies

BLAST CentOS 6.8 (66MB/203MB) perl (23MB/83MB), blast (7MB/22MB)

BWA CentOS 6.8 (66MB/203MB) perl (23MB/83MB), bwa (216KB/604KB)

5.5.2 OS and Data Dependencies of Evaluated Applications

Except for the input and output dependencies embedded in workflow specifica-

tions, scientists can specify the underlying execution environments - including at

least OS and software dependencies - for their workflows. Table 5.4 shows the OS

and software dependencies of each evaluated workflow. The size information of each

dependency is in the format of tgz format compressed size/uncompressed size.

The relocatable software dependencies can be preserved and delivered as standalone

packages. The non-relocatable software dependencies can be installed into the OS

dependency via package managers and delivered as a fat OS dependency.

The framework allows execution environment dependencies to be archived in fine

granularity such as each basic root filesystem image, each software and each dataset,

which saves the space overhead of archiving dependencies. For example, both BLAST

and BWA depend on the same OS image and the same perl binary, as shown in

Table 5.4. With the framework, the OS image and the perl binary only need to be

archived once. As the number of scientific workflows depending on the same OS image

or software binary increases, archiving dependencies in fine granularity becomes more

advantageous and even necessary.

88

TABLE 5.5

SPACE AND TIME OVERHEADS INTRODUCED BY UMBRELLA - OS

AND SOFTWARE DEPENDENCIES

Application Umbrella Spec Size Space Overhead Time Overhead

BLAST 2.2KB 404MB <1min

BWA 1.3KB 376MB <1min

5.5.3 Space and Time Overheads Introduced by Umbrella

The Umbrella Spec Size column in Table 5.5 shows the size of the Umbrella exe-

cution environment specification file for each evaluated workflow, which is very tiny

and should not cause any communication problem between the master node and the

execution node. The Space Overhead column in Table 5.5 shows the space overhead of

the OS and software dependencies introduced by running each task as an Umbrella

job on an execution node, which includes both the compressed and uncompressed

versions of each dependency. The Time Overhead column shows the time overhead

introduced by obtaining these dependencies, uncompressing them if necessary, and

integrating them into a unified sandbox. It is worth noting that the space and time

overheads shown in Table 5.5 do not include the overhead of delivering the input files

and the intermediate data of a scientific workflow to execution nodes and running

the tasks on execution nodes, which are necessary even without our framework.

5.5.4 Heterogeneity of Execution Nodes

The computing resources used to run the tasks for both workflows are from the

Notre Dame HTCondor pool. Without our framework, the execution nodes with

incompatible hardware, kernel, OS and software dependencies all cannot be utilized.

89

TABLE 5.6

HETEROGENEITY OF EXECUTION NODES CONTRIBUTING TO

EACH WORKFLOW

Application Total Task Number Tasks run on RHEL6 Tasks run on RHEL7

BLAST 23 15 8

BWA 825 366 459

With our framework, Umbrella can be utilized to deliver the required OS and software

dependencies and create the required execution environments based on the Umbrella

execution environment specifications received from the master node. Therefore, tasks

can run successfully on any execution node satisfying the hardware and kernel re-

quirements. Table 5.6 shows the task number of each workflow, the number of tasks

running on RHEL6 and the number of tasks running on RHEL7. Due to the prefer-

ence settings on the computing resources in the HTCondor pool, all the tasks were

scheduled onto the execution nodes with either RHEL6 or RHEL7. However, this

does not mean these tasks can only run on RHEL6 or RHEL7.

5.6 External Reproducibility of Scientific Workflows

Integrating execution environment specifications into scientific workflow systems

improves the reproducibility of scientific workflows by giving scientists complete con-

trol over the execution environment of each task in their workflows. The integration

can happen in two methods. The first method is to specify an execution environment

specification, which applies to every task in a workflow, as a new option to scientific

workflow systems. Take the integration of Umbrella into Makeflow as an example, a

new option, --umbrella-spec, was added into makeflow, as shown in the second line

90

1 makeflow blast.makeflow // before the integration

2 makeflow --umbrella -spec blast .umbrella blast .makeflow // after the integration

Listing 5.3: Specifying Execution Environment Specifications as a Command Option

1 ...

2 .MAKEFLOW CATEGORY 1

3 .UMBRELLA SPEC convert .umbrella

4 capitol .180. jpg : capitol .jpg

5 convert -swirl 180 capitol .jpg capitol .180. jpg

6

7 capitol .270. jpg : capitol .jpg

8 convert -swirl 270 capitol .jpg capitol .270. jpg

9

10 capitol .360. jpg : capitol .jpg

11 convert -swirl 360 capitol .jpg capitol .360. jpg

12

13 .MAKEFLOW CATEGORY 2

14 .UMBRELLA SPEC curl.umbrella

15 capitol .jpg:

16 curl -o capitol .jpg http :// ccl.cse.nd.edu/images /capitol .jpg

17 ...

Listing 5.4: Specifying Execution Environment Specifications inside Workflow
Specifications

of Listing 5.3. The second method is to add the execution environment specifications

into workflow specifications. Listing 5.4 gives an example of adding Umbrella specifi-

cations into Makefile, where convert.umbrella specifies the execution environment

for the three convert tasks and curl.umbrella specifies the execution environment

for the curl task.

Both of these two integration methods focus on the internal reproducibility of

scientific workflows and does not target the external reproducibility of scientific work-

flows, i.e., how to reproduce the commands to execute scientific workflows, such as

makeflow. These commands have their requirements on the hardware, kernel, OS

and so on. To preserve and reproduce the execution environment used by a scientific

workflow command, we can either create a minimal execution environment package

or specify the execution environment in an organized method.

To test how well the preservation approaches used to preserve and reproduce

single-machine scientific applications can help reproduce scientific workflows. Parrot

91

1 parrot_run --name -list namelist1 -env -list envlist1 makeflow blast.makeflow

2 parrot_package_create --name -list namelist1 --env -list envlist1 --package -path /tmp/

package_blast

3 parrot_package_run --package -path /tmp/ package_blast makeflow blast.makeflow

Listing 5.5: Applying Parrot Packaging Tool on Makeflow

1 umbrella --spec makeflow .umbrella run ’makeflow blast .makeflow ’

Listing 5.6: Applying Umbrella on Makeflow

Packaging Tool discussed in Chapter 3 was utilized to create a minimal execution

environment package for executing Makeflow scientific workflow on a master node,

as shown in Listing 5.5. Umbrella discussed in Chapter 4 was utilized to specify the

execution environment required to execute Makeflow scientific workflows, as shown

in the first line of Listing 5.6.

The exploration only succeeded when the local execution engine of Makeflow

is used and failed on all the other execution engines, which all involve computing

and storage resources from multiple nodes. With the local execution engine, all the

computing and storage resources used are from the master node and can be tracked

and collected by Parrot Packaging Tool and Umbrella. In the case where resources

from multiple nodes are used, Parrot Packaging Tool and Umbrella can only track and

collect the dependencies on the master node and cannot track the dependencies from

the worker nodes. This only helps when the performance of running the workflows

in the local execution engine is acceptable.

Another interesting exploration we did was to specify the execution environment

for a scientific workflow and also specify the execution environments for each task in

the workflow. In Listing 5.7, an Umbrella specification, makeflow.umbrella, spec-

ifies the execution environment of the makeflow command; another Umbrella spec-

ification, blast.umbrella, specifies the execution environment for each task in the

makeflow, blast.makeflow. This exploration failed due to the unexpected behaviors

92

1 umbrella --spec makeflow .umbrella run ’makeflow --umbrella -spec blast.umbrella blast

.makeflow ’

Listing 5.7: Applying Nesting Umbrella on Makeflow

of using sandbox techniques inside each other. The sandbox techniques used to create

execution environments usually are based on virtualization, which may be hardware

virtualization, OS-level virtualization or application virtualization. It works to run

application virtualization within hardware virtualization or OS-level virtualization,

however, running hardware virtualization or OS-level virtualization within applica-

tion virtualization may not always work. For example, Parrot Packaging Tool, as an

example of application virtualization, bases on the ptrace system call trapping tool;

VirtualBox, as an example of hardware virtualization, is a setuid program; running

VirtualBox within Parrot Packaging Tool would fail because ptrace ignores the se-

tuid bit of a setuid program. Running application virtualization inside application

virtualization (e.g., running ptrace inside ptrace), running hardware virtualization

inside hardware virtualization (e.g., running VMs inside VMs), running OS-level vir-

tualization inside OS-level virtualization (e.g., running Docker inside Docker) may

fail. The exploration imposes a question of whether it is really necessary to use

sandbox techniques inside each other. In the case where multiple levels of sandbox

techniques are needed, we should carefully think about how to stack them, which one

should be the outer layer and which one should be the inner layer.

A even higher-level reproducibility of scientific workflows is about how to make it

easy to run a scientific workflow on a different scientific workflow system. For exam-

ple, how to run a Makeflow specified in the Makefile language on Swift, which does

not understand the Makefile language at all? The barrier between different scientific

workflow systems includes language specifications, task scheduling, resource manage-

ment and so on. From this perspective, a script including all the transformation and

analysis steps involved in a scientific workflow should also be preserved.

93

5.7 Conclusion

This chapter explores the challenges in reproducing scientific workflows and pro-

poses a framework for facilitating the reproducibility of scientific workflows by giving

scientists complete control over the execution environments for their workflows and

integrating execution environment specifications into scientific workflow systems. Our

framework allows the dependencies of execution environments to be archived sepa-

rately in finer granularity instead of gigantic all-in-one images. A prototype was

implemented by integrating Umbrella, the execution environment creator explained

in Chapter 4, into Makeflow, a scientific workflow system which can utilize computing

resources from a HTCondor cluster. We also compared Umbrella and Docker upon

their roles as the execution environment creator.

Two bioinformatics scientific workflows, BLAST and BWA, were used to evaluate

our framework. The execution environments of BLAST and BWA were specified as

Umbrella specification files, which were at runtime sent to execution nodes together

with the execution environment creator, umbrella, in the Notre Dame HTCondor

pool. On each execution node, the execution environment creator was used to create

the execution environment and run the task. For each workflow, the size of the Um-

brella execution environment specification, the time and space overheads of creating

execution environments using Umbrella, and the heterogeneity of execution nodes

contributing to each workflow, are evaluated.

Our evaluation results suggest that by giving scientists complete control over the

underlying execution environments for their scientific workflows, sysadmins can be

relieved from the burden of installing and configuring execution environments for

different scientific workflows on every execution node; computing resources which

could not be utilized before due to lacking of the required OS, software and data

dependencies become available and can be utilized now with the help of the execution

environment creator shipped to each execution node from the master node. This

94

improves both the portability and reproducibility of scientific workflows. The space

and time overheads introduced by the execution environment creator are acceptable.

The chapter also illustrates two methods of integrating execution environment

specifications into scientific workflow systems using Umbrella and Makeflow as exam-

ples, discusses how the preservation methods described in Chapter 3 and Chapter 4,

can be applied onto scientific workflows to improve the reproducibility of scientific

workflows, and explores how to make it easier to run a workflow on different scientific

workflow systems.

95

CHAPTER 6

CONCLUSION

6.1 Recommendations on How to Build Reproducible Scientific Applications

This work started from the problem of how to make existing scientific applications

reproducible. To this end, refinements on the preservation format and the organiza-

tion of analysis code were often needed, and reflection on the execution environments

used for running scientific applications was required. The lessons learned through-

out this exploration should be helpful for researchers to build reproducible scientific

applications from the start.

Lesson 1: Capture your entire experimental procedure into a script.

The procedure of conducting an experiment is often complex and includes the steps

of setting environment variables, downloading, installing and configuring software,

downloading data sets, and running the analysis code. Tracking all these steps via

email, documents or memory is cumbersome and error-prone. In particular, it is diffi-

cult to verify the correctness of the experimental procedure. Capturing all these steps

into a script makes it easy for the original author to rerun and verify its correctness

and also makes it convenient to share the work with others.

Lesson 2: document your execution environments up-front. It is common

currently for researchers to leave documenting the execution environments used for

scientific applications until the experiment results are collected and published, or

even until the project is close to the end. However, the software stack used for an

application may experience updates or upgrades; some core member working on the

96

project may leave; another paper deadline may rush into the schedule; the team

may run out of funding for documentation; or some key steps are forgotten during

the last-minute rush. Documenting execution environments up-front helps in that

whenever a successful execution is reached, its configurations and steps are already

there.

Lesson 3: use dependency maps to track data dependencies and com-

pose abstract scripts. It is common currently to refer to the URLs of data depen-

dencies in the middle of analysis code. This is not a big problem when the analysis

code is tiny; however, when the analysis code reaches hundreds or thousands of lines,

imports other code, or is imported into other code, tracking all the data dependencies

in these codes would become challenging or even impossible. Without a method to

track all the data dependencies, researchers do not have a way to judge the stability

of data dependencies and preserve unstable dependencies from some third-party web-

sites, both of which would cause the analysis code to stop working. To avoid burying

dependencies in the middle of analysis code, a dependency map can be utilized to

track the name of each dependency and its resource location. With dependency maps,

the analysis code refers to data dependencies by their names. Resource locations can

be easily tracked or even redirected in the dependency map.

After a dependency map is maintained to track all the data dependencies in-

volved in an application, it is possible to create an abstract script which refers data

dependencies by their names, not by their resource locations or file paths. Using

dependency maps and abstract scripts together, it is convenient to redirect data de-

pendencies and test the analysis code on new data sets without changing the abstract

script.

Lesson 4: version control your code and data. Usually the analysis code

used in an experiment is undergoing constant changes due to fixing bugs or adding

new features, and may have multiple releases or versions. Using version control

97

systems such as Git makes it easier to track the changes and tag the versions of the

code. The commit id or tag name can be attached to the experiment result to track

the analysis code used for the experiment.

Unlike the code used in an experiment which may experience frequent changes,

the data sets are usually very stable. However, the integrity of the data sets may be

broken during activities such as incomplete data movement due to disk and network

limitations, or accidental modifications. Attaching the checksum of data facilitates its

integrity by making it possible to recalculate and verify the checksum on the receiver’s

side. One option to track the checksum of each data dependency is recording the

checksum value inside the dependency map.

Lesson 5: document your motivation, goal and solution. Documenting

the complex execution environments for an experiment helps others reproduce the

experiment. However, the things which interest the readers first are the motivation,

the goal and the solution of an experiment. The larger the knowledge gap between

the original author and the readers, the more important the motivation, goal and

solution are. The time gap between the original execution and the reproduction also

demands a thorough documentation on the motivation, goal and solution.

Lesson 6: think about how others can benefit from your work. Delving

too deep into a certain research field, it is very easy to assume others also have the

background and context information required to understand your work. It would

be very helpful to think about how a researcher from a different research field can

benefit from your work, how a researcher can reproduce your work three months later

or three years later on a different machine.

6.2 Recommendations on How to Build Tools for Facilitating Reproducible Research

This work explores two different approaches for improving the reproducibility

of scientific applications and also implements a prototype for each approach. The

98

lessons learned throughout this exploration may be helpful to build new tools for

facilitating reproducible research.

Recommendation 1: differentiate preservation approaches from preser-

vation tools. This differentiation will benefit the cases where others are interested

in a preservation approach, but would like to implement their own preservation tools

which may have more friendly user interface, better performance, or target different

platforms. For example, the prototype implemented for the preservation approach

proposed in Chapter 3, Parrot Packaging Tool, only works on Linux. However, the

approach of tracking the accessed files and creating minimal execution environment

packages is broadly applicable for other operating systems.

Recommendation 2: make the preserved artifacts easy to be interpreted

by different tools. The preserved artifacts may be created by a specific preservation

tool, but should be easily interpreted by other tools for the following reasons: first,

the tool which was attached to the preserved artifacts originally may be out of date

and out of support; second, the tool which was attached to the preserved artifacts may

not work on some platforms with different operating systems; third, new tools may

perform better than the original tool due to the usage of more advanced techniques;

fourth, the original tool may require a special authority the user does not have. In

Chapter 3, the format of the preserved artifacts created by Parrot Packaging Tool

is a subtree of a typical Unix file system structure and can be interpreted directly

by different tools like Parrot Packaging Tool, chroot and PTU. They can also be

converted into Docker images or virtual machine images easily, and then run as Docker

containers or virtual machines. This improves both portability and reproducibility.

Recommendation 3: decouple execution environment specifications from

tools used to create the specified execution environments. The tools used

to create execution environments may experience frequent changes due to technolog-

ical evolution. However, execution environment specifications should be lightweight,

99

persistent and deployable. Take this work as an example, hardware virtualization

(i.e., virtual machines and virtual appliances) were first utilized to create execution

environments, then application virtualization such as Parrot were used, then OS-level

virtualization such as Docker. It is difficult to know which other tools will become

popular for the purpose of reproducibility next year or three years later. Therefore,

decoupling execution environment specifications from the tools used to create the

specified environments allows execution environment specifications to be utilized by

different tools across a longer time range.

6.3 How to Reproduce Old and New Applications in the Future

This dissertation describes several tools which can be utilized to improve the

reproducibility of scientific applications. According to their purpose, these tools can

be divided into two categories: the preserving tools which can be used to preserve

scientific applications in a certain format; and the reproducing tools which can be

used to reproduce scientific applications with the preserved artifacts. The preserving

tools and the scientific applications being preserved usually run on the same platform;

while the reproducing tools may run on a different platform currently or in the future.

As time goes by, the preserving tools may become obsolete, however, the preserved

artifacts preserved today may be, and should be easily interpreted by possibly new

reproducing tools in the future. As a software solution, each of these tools has its

own dependencies and expected execution environment. It would be worthwhile to

consider, in the near and far future, how to reproduce old applications with preserved

artifacts and how to reproduce new applications.

If these tools keep evolving to support new OSes, new kernel or hardware in the

near future, there will be no problem to utilize them to reproduce old scientific appli-

cations with preserved artifacts and new scientific applications. However, these tools

will become obsolete eventually. To reproduce new applications, new tools can be

100

implemented using the same preservation approaches as today or some novel preser-

vation approaches. To reproduce old applications with preserved artifacts, except for

the case where the old platforms are preserved via hardware preservation, the desired

platforms should be emulated somehow. Here we have multiple choices on how to

emulate the target platform on the current platform. One option is to emulate the

target platform directly on the current platform. Another option is to emulate an old

platform on the current platform, then emulate an older platform on the emulated

old platform, until the target platform is emulated. However, nesting multiple emu-

lation techniques would not only introduce more time and space overheads, but also

impose technical difficulties. It is recommended to emulate the platform required by

a scientific application directly.

6.4 Summary

Sharing single-machine scientific applications without their execution environ-

ments makes it difficult for others to reproduce and verify the experiment results.

This may be caused by incompatible hardware, kernel, OS and software, or miss-

ing data dependencies, or something trivial like incorrect or incomplete environment

variable settings.

Sharing scientific workflows without their execution environments makes it dif-

ficult to reproduce scientific workflows, which is known as workflow decay. What

makes it worse is that in scientific workflow systems, researchers often do not have

direct control over the underlying execution environments used to run their tasks,

and sysadmins need to install and configure the execution environments required for

different scientific workflows on all the execution nodes.

Various attempts have been made to enhance traditional scholarly publication

and make scientific results reproducible. However, these attempts often fail to cover

the complete software stack used by an application (i.e., miss parts of a software

101

stack); or fail on huge software stacks; or just bundle all the dependencies together

without making them directly executable; or are not space-efficient, because common

dependencies shared by multiple applications are preserved repeatedly.

This dissertation proposes two broad approaches for improving the reproducibility

of scientific applications and explore their feasibility and applicability for single-

machine scientific applications and complex scientific workflows. The first approach

wraps the minimal execution environment of an application into an all-in-one package,

which can then be used to reproduce the application. The second approach specifies

the execution environment from hardware, kernel and OS all the way up to software,

data and environment variables in an organized way, preserves dependencies in the

unit of basic OS image, software and data, and combines all the dependencies of an

application at runtime using mounting mechanisms. A prototype was implemented

for each approach - Parrot Packaging Tool for the first approach and Umbrella for

the second one.

For each approach, the following three aspects are explored: what to preserve,

how to preserve and how to reproduce. The time and space overheads to preserve

applications, the time and space overheads to reproduce applications, the correctness

of preserved artifacts are evaluated through applications from high energy physics,

bioinformatics, epidemiology and scene rendering.

The evaluation results show that both approaches allow researchers to repro-

duce an application and verify its results with acceptable time and space overheads.

However, the second approach avoids archiving shared dependencies into multiple

packages repeatedly and utilizes the storage space more efficiently by allowing the

archive granularity to be each OS image, each software and each data. Specifying a

complex execution environment in an organized method, as suggested by the second

approach, also makes it easier for others to understand the execution environment

configurations of an application and extend the original work. The first approach

102

is not applicable to scientific applications involving multiple software stacks, which

leaves the second approach to be the only choice.

This work makes its contribution by demonstrating the importance of execution

environments for the reproducibility of scientific applications, differentiating execu-

tion environment specifications, which should be lightweight, persistent and deploy-

able, from various tools used to create execution environments which may experience

frequent changes due to technological evolution. It provides two prototypes to assist

researchers in reproducing their applications for both the purposes of result verifica-

tion and research extension, and gives recommendations on how to build reproducible

scientific applications from the start.

6.5 Future Work

This work improves the reproducibility of scientific applications to some extent,

but does not solve the reproducibility problem completely.

This work focuses on how to reproduce deterministic scientific applications, does

not explore how to reproduce non-deterministic scientific applications. For determin-

istic applications, running a single application multiple times always generates the

same output byte-by-byte, and a checksum value of the output can be used to verify

the correctness of each run. For non-deterministic applications, random data such as

timestamps may be put into the output of each run, and running the same applica-

tion multiple times usually generates different outputs. In this case, it is impossible

to count on a checksum value for the correctness of each run. Instead, the statistics

information of each output should be utilized to verify its correctness. For example,

for a non-deterministic application used to conduct event simulation, the number of

events, the size and attributes of each event may be used to check the correctness.

This work focuses on output-oriented result verification, does not solve the prob-

lem of how to verify performance-oriented scientific results. In addition, this work

103

focuses on how to reproduce single-threading applications, and may not be applica-

ble to multiple-threading applications. This work discusses how to reproduce single-

machine scientific applications and scientific workflows, but does not solve the prob-

lem of how to reproduce software computing framework like HTCondor. This work

discusses how to reproduce scientific workflows which can be described as DAGs, and

may not be applicable to other scientific workflows.

The two preservation approaches proposed in this work are generic, however the

two prototypes - Parrot Packaging Tool and Umbrella - are both Linux-focused, can-

not be used to reproduce scientific applications running on other operating systems

like Mac or Windows. In addition, currently these prototypes mainly target for pro-

fessional Linux users due to their command line interfaces. To improve the easiness

of using these tools, graphic user interfaces can be added. To make composing Um-

brella specifications easier, the sections and attributes which require to be specified

by users should be reduced to the minimum.

This preservation approaches in this work does not consider the data security

problem. Researchers are still responsible for checking the potential security issue

before publishing and sharing execution environment packages and execution envi-

ronment specifications with others.

The matrix for quantifying the reproducibility of scientific applications used in

this work is a Yes/No judgment, which may not be the best way. How to disseminate

the reproducibility problem into multiple stages should be considered.

6.6 Final Words

Compared with the efforts of helping researchers use different tools to preserve

and reproduce their work, the real challenging part in this work is to convince re-

searchers of the importance of reproducibility. Except for preservation approaches

and preservation tools, achieving reproducibility also requires:

104

• Collaboration between researchers, sysadmins, archivists and designers of preser-
vation tools. Every party will benefit from this collaboration. Researchers can
have a deeper understanding of the dependencies involved in their experiments.
In addition, their research will get more recognized by the peer researchers due
to its higher reproducibility, and sharing work between researchers will also
become greatly easier. The effort of sysadmins to assist researchers to sort out
their execution environments will reduce the burden of configuring these execu-
tion environments on every execution node, because the reproducing tool can
be used to create execution environments using sandbox techniques. Archivists
can utilize the storage space in their archives more efficiently and this collab-
oration will also make it easier to reference and cite data. Tool designers can
focus on how to specify and create execution environments without worrying
about how to archive data and software.

• Proper academic culture encouraging, requiring and even rewarding the practice
of improving the reproducibility of scientific applications. Currently, some aca-
demic conferences and journals already started working towards this direction
by requiring the authors to submit the codes used for their experiment results.
What is still missing is an efficient way to allow reviewers to easily rerun the
codes and verify the results. A high bar for paper acceptance will strongly
motivate researchers to make their work reproducible.

• Research habits which really agree with the importance of documenting research
work. The preservation tools have a way to force researchers to specify the parts
of an execution environment which are vital for the execution of an application,
such as hardware, kernel, OS, software and data. It is easy to notice and warn
researchers if some of these vital parts are invalid. However, it is difficult
for the preservation tools to check the validity of documents about the goal,
motivation and solution description. These parts are very important for the
readers to understand the background and context of an application.

Once the proper academic culture and research habits are formed, researchers

may stop composing irreproducible scientific applications first and then struggling

to make these applications reproducible, instead start creating reproducible scientific

applications from the start.

105

BIBLIOGRAPHY

1. BLAST (Basic Local Alignment Search Tool). https://en.wikipedia.org/

wiki/BLAST.

2. CurateND, Curating Notre Dames Research and Scholarship for Study through-
out Time. https://curate.nd.edu/.

3. PyYAML. http://pyyaml.org/download/pyyaml/PyYAML-3.10.tar.gz.

4. Amazon Elastic Compute Cloud User Guide for Linux Instances. http://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/CopyingAMIs.html.

5. CMS Software Framework. https://github.com/cms-sw/cmssw.

6. The Linux Foundation. https://www.linuxfoundation.org/.

7. Open Science Framework. https://osf.io/.

8. Linux ptrace() System Call. http://man7.org/linux/man-pages/man2/

ptrace.2.html.

9. CMS ttH TauAnalysis. https://github.com/cms-ttH/ttH-TauAnalysis, .

10. CMS ttH TauRoast. https://github.com/cms-ttH/ttH-TauRoast, .

11. Albrecht, Michael and Donnelly, Patrick and Bui, Peter and Thain, Douglas.
Makeflow: A portable abstraction for data intensive computing on clusters,
clouds, and grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scal-
able Workflow Execution Engines and Technologies, page 1. ACM, 2012.

12. Antcheva, Ilka and Ballintijn, M and Bellenot, B and Biskup, M and Brun,
Rene and Buncic, N and Canal, Ph and Casadei, D and Couet, O and Fine,
V and others. ROOTA C++ framework for petabyte data storage, statistical
analysis and visualization. Computer Physics Communications, 180(12):2499–
2512, 2009.

13. Armbrust, Michael and Fox, Armando and Griffith, Rean and Joseph, Anthony
D and Katz, Randy and Konwinski, Andy and Lee, Gunho and Patterson, David
and Rabkin, Ariel and Stoica, Ion and others. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

106

14. Barham, Paul and Dragovic, Boris and Fraser, Keir and Hand, Steven and
Harris, Tim and Ho, Alex and Neugebauer, Rolf and Pratt, Ian and Warfield,
Andrew. Xen and the art of virtualization. ACM SIGOPS Operating Systems
Review, 37(5):164–177, 2003.

15. Bechhofer, Sean and De Roure, David and Gamble, Matthew and others. Re-
search objects: Towards exchange and reuse of digital knowledge. Nature Pre-
cedings (2010), 2010. doi: 10.1038/npre.2010.4626.1.

16. Begley, C Glenn and Ellis, Lee M. Drug development: Raise standards for
preclinical cancer research. Nature, 483(7391):531–533, 2012.

17. Berman, Fran and Fox, Geoffrey and Hey, Anthony JG. Grid computing: making
the global infrastructure a reality, volume 2. John Wiley and sons, 2003.

18. J. Blomer, D. Berzano, P. Buncic, I. Charalampidis, G. Ganis, G. Lestaris,
R. Meusel, and V. Nicolaou. Micro-CernVM: slashing the cost of building and
deploying virtual machines. In Journal of Physics: Conference Series, volume
513, page 032009. IOP Publishing, 2014.

19. Blomer, Jakob and Buncic, Predrag and Fuhrmann, Thomas. CernVM-FS:
delivering scientific software to globally distributed computing resources. In
Proceedings of the first international workshop on Network-aware data manage-
ment, pages 49–56. ACM, 2011.

20. Boettiger, Carl. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1):71–79, 2015.

21. R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,
S. Lanteri, J. Leduc, N. Melab, et al. Grid’5000: a large scale and highly recon-
figurable experimental grid testbed. International Journal of High Performance
Computing Applications, 20(4):481–494, 2006.

22. Borgman, Christine L. Data, data use, and scientific inquiry: Two case studies
of data practices. In Proceedings of the 12th ACM/IEEE-CS joint conference
on Digital Libraries, pages 19–22, 2012.

23. Borthakur, Dhruba. HDFS architecture guide. HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

24. Buncic, Predrag and Sanchez, C Aguado and Blomer, Jakob and Franco, Le-
andro and Harutyunian, Artem and Mato, Pere and Yao, Yushu. CernVM–a
virtual software appliance for LHC applications. In Journal of Physics: Con-
ference Series, volume 219, page 042003. IOP Publishing, 2010.

25. Buneman, Peter and Khanna, Sanjeev and Wang-Chiew, Tan. Why and where:
A characterization of data provenance. In Database TheoryICDT 2001, pages
316–330. Springer, 2001.

107

26. Buyya, Rajkumar. High performance cluster computing. New Jersey: Frentice,
1999.

27. Canvel, Brice and Hiltgen, Alain and Vaudenay, Serge and Vuagnoux, Martin.
Password interception in a SSL/TLS channel. In Annual International Cryptol-
ogy Conference, pages 583–599. Springer, 2003.

28. Castagné, Michel. Consider the Source: The Value of Source Code to Digital
Preservation Strategies. SLIS Student Research Journal, 2(2):5, 2013.

29. Cederqvist, Per and Pesch, Roland and others. Version management with CVS.
Network Theory Ltd., 2002.

30. Chervenak, Ann and Foster, Ian and Kesselman, Carl and Salisbury, Charles
and Tuecke, Steven. The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of network and
computer applications, 23(3):187–200, 2000.

31. Chiang, Wei-Fan and Gopalakrishnan, Ganesh and Rakamaric, Zvonimir and
Ahn, Dong H and Lee, Gregory L. Determinism and reproducibility in large-
scale HPC systems. In Workshop on Determinism and Correctness in Parallel
Programming (WoDet), 2013.

32. Chirigati, Fernando Seabra and Shasha, Dennis and Freire, Juliana. ReproZip:
Using Provenance to Support Computational Reproducibility. In TaPP, 2013.

33. CMS collaboration and Acosta, D and others. CMS Physics TDR. CERN/L-
HCC, 1(2006):421, 2006.

34. CMS Collaboration and others. The CMSSW Application Framework, 2006.

35. CMS collaboration and others. Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC. arXiv preprint arXiv:1207.7235,
2012.

36. X. d. C. de Carnavalet and M. Mannan. Killed by Proxy: Analyzing Client-
end TLS Interception Software. In Network and Distributed System Security
Symposium (NDSS 2016), San Diego, CA, USA, 2016.

37. Deelman, Ewa and Blythe, James and Gil, Yolanda and others. Pegasus:
Mapping scientific workflows onto the grid. In Grid Computing, pages 11–20.
Springer, 2004.

38. Delaet, Thomas and Joosen, Wouter and Van Brabant, Bart. A Survey of
System Configuration Tools. In LISA, 2010.

39. Dierks, Tim. The transport layer security (TLS) protocol version 1.2. 2008.

40. Diethelm, Kai. The limits of reproducibility in numerical simulation. Computing
in Science & Engineering, 14(1):64–72, 2012.

108

41. Dorigo, Alvise and Elmer, Peter and Furano, Fabrizio and Hanushevsky, An-
drew. XROOTD-A Highly scalable architecture for data access. WSEAS Trans-
actions on Computers, 1(4.3), 2005.

42. Ellenberg, Lars. Drbd 9 and device-mapper: Linux block level storage replica-
tion. In Proceedings of the 15th International Linux System Technology Confer-
ence, 2008.

43. Feitelson, Dror G. From repeatability to reproducibility and corroboration.
ACM SIGOPS Operating Systems Review, 49(1):3–11, 2015.

44. Fielding, Roy and Gettys, Jim and Mogul, Jeffrey and Frystyk, Henrik and
Masinter, Larry and Leach, Paul and Berners-Lee, Tim. Hypertext transfer
protocol–HTTP/1.1. Technical report, 1999.

45. Freire, Juliana. Making computations and publications reproducible with
vistrails. Computing in Science & Engineering, 14(4):18–25, 2012. doi:
10.1109/MCSE.2012.76.

46. Gentleman, Robert and Lang, Duncan Temple. Statistical analyses and re-
producible research. Journal of Computational and Graphical Statistics, pages
1–23, 2012. doi: 10.1198/106186007X178663.

47. Gil, Yolanda and Deelman, Ewa and Ellisman, Mark and others. Examining
the challenges of scientific workflows. Ieee computer, 40(12):26–34, 2007.

48. Goble, Carole A and Bhagat, Jiten and Aleksejevs, Sergejs and others. my-
Experiment: a repository and social network for the sharing of bioinformatics
workflows. Nucleic acids research, 38(suppl 2):W677–W682, 2010.

49. Goldberg, Robert P. Survey of virtual machine research. Computer, 7(6):34–45,
1974.

50. Gray, Jim and Liu, David T. and Nieto-Santisteban, Maria and Szalay, Alex and
DeWitt, David J. and Heber, Gerd. Scientific Data Management in the Coming
Decade. SIGMOD Rec., 34(4):34–41, Dec. 2005. ISSN 0163-5808. doi: 10.1145/
1107499.1107503. URL http://doi.acm.org/10.1145/1107499.1107503.

51. Guo, Philip J and Engler, Dawson R. CDE: Using System Call Interposition to
Automatically Create Portable Software Packages. In USENIX Annual Techni-
cal Conference, 2011.

52. Hanselman, Scott E. and Pegah, Mahmoud. The Wild Wild Waste: E-Waste.
In Proceedings of the 35th Annual ACM SIGUCCS Fall Conference, SIGUCCS
’07, pages 157–162, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-634-9.
doi: 10.1145/1294046.1294083. URL http://doi.acm.org/10.1145/1294046.

1294083.

109

53. Hettne, Kristina M and Wolstencroft, Katherine and Belhajjame, Khalid and
others. Best Practices for Workflow Design: How to Prevent Workflow Decay.
In SWAT4LS, 2012.

54. Hickman, Kipp and Elgamal, Taher. The SSL protocol. Netscape communica-
tions corp, 501, 1995.

55. Holtman, Koen. CMS data grid system overview and requirements. Technical
report, CERN-CMS-NOTE-2001-037, 2001.

56. Howard, John H and Kazar, Michael L and Menees, Sherri G and Nichols, David
A and Satyanarayanan, Mahadev and Sidebotham, Robert N and West, Michael
J. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems (TOCS), 6(1):51–81, 1988.

57. Howe, Bill. Virtual Appliances, Cloud Computing, and Reproducible Research.
Computing in Science Engineering, 14(4):36–41, 2012. doi: 10.1109/MCSE.
2012.62.

58. Humphreys, Paul. Extending ourselves: Computational science, empiricism,
and scientific method. Oxford University Press, 2004.

59. Jarmoc, Jeff and Unit, DSCT. SSL/TLS interception proxies and transitive
trust. Black Hat Europe, 2012.

60. Jeanvoine, Emmanuel and Sarzyniec, Luc and Nussbaum, Lucas. Kadeploy3:
Efficient and Scalable Operating System Provisioning for Clusters. USENIX;
login:, 38(1):38–44, 2013.

61. Jones, Christopher and Paterno, M and Kowalkowski, J and Sexton-Kennedy,
L and Tanenbaum, William. The new CMS event data model and framework.
Proceedings for Computing in High-Energy Physics (CHEP06), Mumbai, India,
13, 2006.

62. Juve, Gideon and Deelman, Ewa and Vahi, Karan and Mehta, Gaurang and Ber-
riman, Bruce and Berman, Benjamin P and Maechling, Phil. Scientific workflow
applications on Amazon EC2. In E-Science Workshops, 2009 5th IEEE Inter-
national Conference on, pages 59–66. IEEE, 2009.

63. Krishnan, SPT and Gonzalez, Jose L Ugia. Google compute engine. In Building
Your Next Big Thing with Google Cloud Platform, pages 53–81. Springer, 2015.

64. Krohn, Maxwell N and Efstathopoulos, Petros and Frey, Cliff and Kaashoek, M
Frans and Kohler, Eddie and Mazieres, David and Morris, Robert and Osborne,
Michelle and VanDeBogart, Steve and Ziegler, David. Make Least Privilege a
Right (Not a Privilege). In HotOS, 2005.

110

65. Krsul, Ivan and Ganguly, Arijit and Zhang, Jian and Fortes, Jose AB and
Figueiredo, Renato J. Vmplants: Providing and managing virtual machine exe-
cution environments for grid computing. In Supercomputing, 2004. Proceedings
of the ACM/IEEE SC2004 Conference, pages 7–7. IEEE, 2004.

66. Langlois, Philippe and Nheili, Rafife and Denis, Christophe. Numerical re-
producibility: Feasibility issues. In New Technologies, Mobility and Security
(NTMS), 2015 7th International Conference on, pages 1–5. IEEE, 2015.

67. Leavitt, Neal. Is cloud computing really ready for prime time. Growth, 27(5):
15–20, 2009.

68. Li, Heng and Durbin, Richard. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

69. Loeliger, Jon and McCullough, Matthew. Version Control with Git: Powerful
tools and techniques for collaborative software development. ” O’Reilly Media,
Inc.”, 2012.

70. Loope, James. Managing Infrastructure with Puppet: Configuration Manage-
ment at Scale. ” O’Reilly Media, Inc.”, 2011.

71. M. D. Hildreth. Data and Software Preservation for Open Science (DASPOS).
In 2014 IEEE 30th International Conference on Data Engineering Workshops,
pages 142–146, March 2014. doi: 10.1109/ICDEW.2014.6818318.

72. M. Taufer and N. Ganesan and S. Patel. GPU-Enabled Macromolecular Sim-
ulation: Challenges and Opportunities. Computing in Science Engineering, 15
(1):56–65, Jan 2013. ISSN 1521-9615. doi: 10.1109/MCSE.2012.42.

73. Malik, Tanu and Pham, Quan and Foster, Ian T. SOLE: Towards Descriptive
and Interactive Publications. CRC Press, 2014.

74. Matthews, Brian and McIlwrath, Brian and Giaretta, David and Conway, Es-
ther. The significant properties of software: A study. JISC report, March,
2008.

75. Meng, H and Wolf, M and Ivie, P and Woodard, A and Hildreth, M and Thain,
D. A case study in preserving a high energy physics application with Parrot. In
Journal of Physics: Conference Series, volume 664, page 032022. IOP Publish-
ing, 2015.

76. Meng, Haiyan and Kommineni, Rupa and Pham, Quan and Gardner, Robert
and Malik, Tanu and Thain, Douglas. An invariant framework for conducting
reproducible computational science. Journal of Computational Science, 9:137–
142, 2015.

111

77. Meng, Haiyan and Thain, Douglas. Umbrella: A Portable Environment Creator
for Reproducible Computing on Clusters, Clouds, and Grids. In Proceedings of
the 8th International Workshop on Virtualization Technologies in Distributed
Computing, VTDC ’15, pages 23–30, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3573-7. doi: 10.1145/2755979.2755982. URL http://doi.acm.org/

10.1145/2755979.2755982.

78. Meng, Haiyan and Thain, Douglas. Facilitating the Reproducibility of Scientific
Workflows with Execution Environment Specifications. In Proceedings of the
2017 International Conference on Computational Science (ICCS), 2017.

79. Meng, Haiyan and Vyushkov, Alexander and Wolf, Matthias and Woodard,
Anna and Thain, Douglas. Conducting Reproducible Research with Umbrella:
Tracking, Creating, and Preserving Execution Environments. In e-Science (e-
Science), 2016 IEEE 12th International Conference on, 2016.

80. Merkel, Dirk. Docker: Lightweight Linux Containers for Consistent Develop-
ment and Deployment. Linux Journal, 2014(239):2, 2014.

81. Merkel, Dirk. Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239):2, 2014.

82. Mesirov, Jill P. Computer science. Accessible reproducible research. Science,
327(5964):415–416, 2010. doi: 10.1126/science.1179653.

83. Oinn, Tom and Addis, Matthew and Ferris, Justin and others. Taverna: a tool
for the composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004.

84. Osterweil, Leon J and Clarke, Lori A and Ellison, Aaron M. Forecast for Re-
producible Data: Partly Cloudy. Science, 325(5948):1622–1622, 2009.

85. Palankar, Mayur R. and Iamnitchi, Adriana and Ripeanu, Matei and Garfinkel,
Simson. Amazon S3 for Science Grids: A Viable Solution? In Proceedings of
the 2008 International Workshop on Data-aware Distributed Computing, DADC
’08, pages 55–64, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-154-5.
doi: 10.1145/1383519.1383526. URL http://doi.acm.org/10.1145/1383519.

1383526.

86. Paskin, Norman. Digital object identifier (DOI) system. Encyclopedia of library
and information sciences, 3:1586–1592, 2010.

87. Peng, Roger D. Reproducible research in computational science. Science, 334
(6060):1226–1227, 2011.

88. Pham, Quan and Malik, Tanu and Foster, Ian T. Using Provenance for Re-
peatability. In TaPP, 2013.

112

89. Pham, Quan Tran. A framework for reproducible computational research. PhD
thesis, THE UNIVERSITY OF CHICAGO, 2014.

90. Postel, Jon and Reynolds, Joyce. File transfer protocol. 1985.

91. Prinz, Florian and Schlange, Thomas and Asadullah, Khusru. Believe it or not:
how much can we rely on published data on potential drug targets? Nature
reviews Drug discovery, 10(9):712–712, 2011.

92. Proebsting, Todd and Warren, Alex M. Repeatability and Benefaction
in Computer Systems Research. Technical report, 2015. URL http://

reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf.

93. Reed, Daniel A and Bajcsy, Ruzena and Fernandez, Manuel A and Griffiths,
Jose-Marie and Mott, Randall D and Dongarra, Jack and Johnson, Chris R
and Inouye, Alan S and Miner, William and Matzke, Martha K and others.
Computational science: ensuring America’s competitiveness. Technical report,
DTIC Document, 2005.

94. Reshetova, Elena and Karhunen, Janne and Nyman, Thomas and Asokan, N.
Security of OS-level virtualization technologies. In Nordic Conference on Secure
IT Systems, pages 77–93. Springer, 2014.

95. D. Ressman and J. Valdés. Use of Cfengine for Automated, Multi-Platform
Software and Patch Distribution. In LISA, pages 207–218, 2000.

96. Ricci, Robert and Wong, Gary and Stoller, Leigh and Webb, Kirk and Duerig,
Jonathon and Downie, Keith and Hibler, Mike. Apt: A Platform for Repeatable
Research in Computer Science. ACM SIGOPS Operating Systems Review, 49
(1):100–107, 2015.

97. Ruiz, Cristian and Richard, Olivier and Emeras, Joseph. Reproducible soft-
ware appliances for experimentation. In Testbeds and Research Infrastructure:
Development of Networks and Communities, pages 33–42. Springer, 2014.

98. Sandberg, Russel and Goldberg, David and Kleiman, Steve and Walsh, Dan
and Lyon, Bob. Design and implementation of the Sun network filesystem. In
Proceedings of the Summer USENIX conference, pages 119–130, 1985.

99. Smith, T and Maire, N and Ross, A and others. Towards a comprehensive
simulation model of malaria epidemiology and control. Parasitology, 135(13):
1507–1516, 2008. doi: 10.1017/S0031182008000371.

100. Stodden, Victoria and McNutt, Marcia and Bailey, David H. and Deelman, Ewa
and Gil, Yolanda and Hanson, Brooks and Heroux, Michael A. and Ioannidis,
John P.A. and Taufer, Michela. Enhancing reproducibility for computational
methods. Science, 354(6317):1240–1241, 2016. ISSN 0036-8075. doi: 10.1126/
science.aah6168. URL http://science.sciencemag.org/content/354/6317/

1240.

113

101. Szomszor, Martin and Moreau, Luc. Recording and reasoning over data prove-
nance in web and grid services. In On the move to meaningful Internet systems
2003: CoopIS, DOA, and ODBASE, pages 603–620. Springer, 2003.

102. Tansley, Robert and Bass, Mick and Smith, MacKenzie. DSpace as an open
archival information system: Current status and future directions. In Research
and advanced technology for digital libraries, pages 446–460. Springer, 2003.

103. Taylor, Ian J. and Deelman, Ewa and Gannon, Dennis B. and Shields, Matthew.
Workflows for e-Science: Scientific Workflows for Grids. Springer Publishing
Company, Incorporated, 2014. ISBN 1849966192, 9781849966191.

104. Taylor, Mischa and Vargo, Seth. Learning Chef: A Guide to Configuration
Management and Automation. ” O’Reilly Media, Inc.”, 2014.

105. Taylor, Ronald C. An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics. BMC bioinformatics, 11(12):S1,
2010.

106. Thain, Douglas and Ivie, Peter and Meng, Haiyan. Techniques for Preserving
Scientific Software Executions: Preserve the Mess or Encourage Cleanliness?
In Proceedings of the 12th International Conference on Digital Preservation
(iPRES), 2015.

107. Thain, Douglas and Livny, Miron. Parrot: An application environment for data-
intensive computing. Scalable Computing: Practice and Experience, 6(3):9–18,
2005.

108. Thain, Douglas and Tannenbaum, Todd and Livny, Miron. Distributed comput-
ing in practice: The Condor experience. Concurrency-Practice and Experience,
17(2-4):323–356, 2005.

109. Tyler, David C and McNeil, Beth. Librarians and link rot: A comparative
analysis with some methodological considerations. portal: Libraries and the
Academy, 3(4):615–632, 2003.

110. Von Laszewski, Gregor and Fox, Geoffrey C and Wang, Fugang and Younge,
Andrew J and Kulshrestha, Archit and Pike, Gregory G and Smith, Warren and
Voeckler, Jens and Figueiredo, Renato J and Fortes, Jose and others. Design
of the futuregrid experiment management framework. In Gateway Computing
Environments Workshop (GCE), 2010, pages 1–10. IEEE, 2010.

111. Waldspurger, Carl A. Memory resource management in VMware ESX server.
ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002. doi: 10.1145/
844128.844146.

112. Watson, Jon. Virtualbox: bits and bytes masquerading as machines. Linux
Journal, 2008(166):1, 2008.

114

113. Welch, Brent and Unangst, Marc and Abbasi, Zainul and Gibson, Garth A and
Mueller, Brian and Small, Jason and Zelenka, Jim and Zhou, Bin. Scalable
Performance of the Panasas Parallel File System. In FAST, volume 8, pages
1–17, 2008.

114. Wellisch, JP and Williams, C and Ashby, S. SCRAM: Software configura-
tion and management for the LHC Computing Grid project. arXiv preprint
cs/0306014, 2003.

115. Wilde, Michael and Hategan, Mihael and Wozniak, Justin M and others. Swift:
A language for distributed parallel scripting. Parallel Computing, 37(9):633–652,
2011.

116. Yu, Jia and Buyya, Rajkumar. A Taxonomy of Scientific Workflow Systems
for Grid Computing. SIGMOD Rec., 34(3):44–49, Sept. 2005. ISSN 0163-5808.
doi: 10.1145/1084805.1084814. URL http://doi.acm.org/10.1145/1084805.

1084814.

117. Yu, Yang. Os-level virtualization and its applications. ProQuest, 2007.

118. Zabolitzky, John G. Preserving software: Why and how. Iterations: An Inter-
disciplinary Journal of Software History, 1(13):1–8, 2002.

119. Zhao, Jun and Gomez-Perez, Jose Manuel and Belhajjame, Khalid and others.
Why workflows break - Understanding and combating decay in Taverna work-
flows. In E-Science (e-Science), 2012 IEEE 8th International Conference on,
pages 1–9. IEEE, 2012.

120. Zheng, Charles and Thain, Douglas. Integrating Containers into Workflows:
A Case Study Using Makeflow, Work Queue, and Docker. In Proceedings of
the 8th International Workshop on Virtualization Technologies in Distributed
Computing, VTDC ’15, pages 31–38, New York, NY, USA, 2015. ISBN 978-
1-4503-3573-7. doi: 10.1145/2755979.2755984. URL http://doi.acm.org/10.

1145/2755979.2755984.

This document was prepared & typeset with LATEX2ε, and formatted with
nddiss2ε classfile (v3.2013[2013/04/16]) provided by Sameer Vijay and updated

by Megan Patnott.

115

