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ABSTRACTIONS FOR SCIENTIFIC COMPUTING ON CAMPUS GRIDS

Abstract

by

Christopher M. Moretti

Scientific computing users often find it difficult to transform serial domain appli-

cations into workloads for large non-dedicated heterogeneous campus grids. Due to

hardware and software bottlenecks, a workload that succeeds on 8 nodes can fail disas-

trously on 128; or even fail on 8 nodes for a different instance of the same problem.

An abstraction is a flexible solution to a pattern of computation that can be used to

harness distributed computing resources more easily for non-experts. The users provide

the pieces, such as their datasets and serial function, and the workload is constructed

and executed for them in an appropriate manner for the environment in order to prevent

disastrous configurations and satisfy cost, policy, and performance constraints.

This work presents the design, implementation, and evaluation of a ”toolbox” of

middleware and abstractions: All-Pairs, Sparse-Pairs, and Data-Split-Join. These ab-

stractions are used for several problems in bioinformatics, biometrics, and data mining.

The discussion of the abstractions includes modeling of theproblem, managing input

data, organizing computation on the campus grid, and managing output data. Results

include the largest known biometrics All-Pairs result of its kind, in which over two

years’ worth of computation was executed in 10 days, and a complete alignment of the

Human genome using Sparse-Pairs, which completed in 2.5 hours on over 1000 hosts

with 952x speedup.
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CHAPTER 1

INTRODUCTION

Distributed systems are a necessary component of modern science and engineer-

ing. Individual computers continue to increase in processor speed, memory and disk

capacities. But as larger and more difficult problems are solved with these bigger,

faster computers, their successes and conclusions inspireeven bigger questions to be

answered. If individual computers must be used to solve the problem, this creates a

cycle of continual waiting for the next bigger machine to arrive. Even after improved

hardware is acquired, there are still drawbacks, includingtheapplication development

barrier [35], in which older applications do not run on new systems, or cannot take

advantage of a new system’s capabilities. This results in applications having to be re-

designed and recoded, further delaying work on the larger versions of the problem. The

well-recognized alternative is to utilize many current commodity computers to com-

plete the task instead of waiting for one next generation system to do it alone. To

meet these computing needs, many institutions have installedcampus gridsmade up of

hundreds to tens of thousands of assorted commodity processors [122].

Just providing a campus grid isn’t enough, however, becauseusers quickly realize

that distributed computing is hard. Many users construct serial versions of their ap-

plications, but are unsure how to adapt them to a parallel solution. The applications

may require exclusive access to resources, or may expect shared state among subprob-

lems. In constructing the parallel versions of applications, bottlenecks develop within
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the workload, for instance at the shared fileserver, networkdevice, or results database.

Further, failures are much more common in distributed systems than on local machines,

so applications must be expanded to deal with a new variety oferrors.

Mishandling these challenges can result in poor performance, outright failure of the

application, and abuse of physical resources shared by others. All too often, an end user

composes a workload that runs correctly on one machine, thenon ten machines, but fails

disastrously on one hundred or one thousand machines. For example, consider a non-

expert’s workload design in which each distributed processstarts execution by loading

1GB of required data from a central fileserver. If one processor alone attempts this, it

will experience a latency of a few seconds, depending on diskand network speeds. If ten

processors start up simultaneously and compete for the central fileserver’s bandwidth,

they will experience latencies of minutes. If one thousand processors connect at once,

this will require a total of 1TB of data transfers – likely resulting in dropped connections

for this and other unrelated workloads, very slow access forthose transfers that remain

active, and network congestion on shared switches that affects users not even using the

fileserver.

This dissertation proposes abstractions as the solution tothe problem of navigating

the complexities of computing on a campus grid.

Abstractions make distributed computing resources more easily used by non-experts.

Users must provide well-known pieces of their workload; butthe workload is con-

structed for them in an appropriate manner for the campus grid environment. This

improves usability, increases performance, and prevents disastrous configurations.

An abstraction is a device used to improve the ability of non-expert users to solve

problems using complex systems. The user provides elementsof a problem that he

knows, such as multiple sequential programs used to solve the problem serially and the

2



data that they process, but cedes control of the actual method of execution to a workflow

engine. That engine can then manage disk, network, and processor requirements to

complete the intended computation while hiding the detailsof how the workload is

realized in the system.

In this work, “non-experts” are those who are not specialists in distributed com-

puting. The users of the abstractions described here have primarily been computer

scientists from across the discipline, ranging from advanced undergraduates to research

faculty members. Their general computing knowledge and skills are fundamental to

their ability to do science at large scales: they must understand what they are doing and

why it is the correct course of action. Using an abstraction does not dispense with this

requirement, rather it reduces the meticulous load on theseusers to account for all of the

details of specific distributed computing challenges. The abstractions are designed with

the goal that, in subsequent work, scientists in other fieldswho are competent computer

users and programmers, even without broad computer scienceknowledge and capa-

bility, will be able to function as effectively as the computer scientists for their own

applications of the computing patterns.

Abstractions are specified in terms of their major components: inputs, functions,

and outputs. This can be applied, as in an implemented abstraction engine, or higher-

level, such as in an abstract problem specification. To introduce the way that abstract

problems will be formally defined, and to demonstrate the challenges associated with

design and development of abstractions, consider first an example abstraction. The Map

abstraction [120] is a very simple pattern that has been applied across a vast array of

problems from many disciplines. Map applies a transformation function to each mem-

ber of the input set, resulting in a new set of the same number of elements:
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Map( data D[i], function F (data x))

returns array R such thatR[i] = F (D[i])

Although Map is a simple loop operation on a single machine, developing abstrac-

tions to solve it and problems like it is not trivial. The characteristics of the application

are often not well-defined by the general pattern; e.g.F for two instances of Map might

take the same input but vary in their execution time or memoryrequirements by orders

of magnitude. Moreover, these differences can require drastically different solutions to

the problem; e.g. computing Map on 1,000,000 1KB files where eachF takes several

hours should be distributed to as many nodes as possible, whereas it would be very

inefficient to transfer 1,000,000 1KB files individually to alarge number of resources

if eachF took only a fraction of a second.

Not only are various instances of the same application likely to vary widely, but

the computing environment itself can as well. Campus grids are heterogeneous and

dynamic, so unlike a cluster in which a solution may be finely tuned for the exact envi-

ronment in which it will operate, an abstraction for a campusgrid must be flexible to a

wide range of available resources and configurations. And although the user of the sys-

tem has access to an enormous number of CPUs, a standard feature of the environment

is that his jobs may be preempted without warning when the resource provider reclaims

access.

Because an abstraction states a workload in a declarative way, it can be implemented

in whatever way satisfies cost, policy, and performance constraints – a critical flexibility

required for heterogeneous campus grids. An abstraction may also use the information

available to it about the workload and the system to avoid thebottlenecks and other

pitfalls that may not be apparent or important to a novice application developer, limiting

the opportunity for disasters. Whereas a customized solution to a problem may require
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re-engineering to adapt to even the smallest changes – perhaps even to a change in

specific inputs! – an abstraction should be flexible to many instances of a problem and

a broad set of available resources.

The contribution of this work is a “toolbox” of campus grid computing abstractions

that have been implemented and deployed for scientific applications, which are used

to present the considerations that must be taken into account in the design and imple-

mentation of campus grid abstractions. Abstractions and other high-level programming

interfaces are common on clusters, for instance the Map-Reduce [37] abstraction has

become a widely-used cluster computing paradigm in recent years. The abstractions

presented here work from a similar philosophy and towards a similar goal as Map-

Reduce: breaking down large computations into common patterns that can be modeled,

planned, and executed in efficient ways without requiring the programmer to individu-

ally solve all of the complexities of a distributed computing environment.

Where this work diverges from popular Map-Reduce implementations and other

cluster abstractions is the underlying computing environment. Many abstractions for

typical cluster environments – which often have homogeneous sets of high-end re-

sources, non-preempting scheduling policies, and a limited number of separate resource

owners and administrative domains – do not consider the implications of organizing

workloads for the characteristic campus grid challenges mentioned above. Though the

core stages of of an abstraction on a cluster versus a campus grid are quite similar (mod-

eling the problem, managing input, coordinating computation, and managing output),

the systems challenges for each stage, and thus the abstractions themselves, are fun-

damentally different because of the disparity in the capabilities and limitations of the

environment.

This primary contribution of this dissertation is the design, implementation, and
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evaluation of three abstractions for campus grid computing. Specific abstractions are

presented for three widely-applicable computation patterns: All-Pairs, Sparse-Pairs,

and Data-Split-Join. These problems are of interest to the biometrics, bioinformatics,

and data mining communities, and are not well-served by any existing abstraction. The

common goal of these three abstractions is to allow users to complete workloads on the

campus grid that would otherwise be infeasible, either due to the number of resources

required or the complexity of organizing and managing the workload efficiently.

Chapter 2 describes the work that has previously been done oncampus grids, par-

ticularly in light of the differences between campus grids and other parallel environ-

ments that tend to provide a more homogeneous set of resources, a more dedicated

environment, or both. It then addresses other workflow systems and computing ab-

stractions for distributed workloads, including the widely-used and highly-influential

Map-Reduce [37] abstraction. Workflow systems are more generally adaptable than

abstractions for specific patterns of work, but this generality comes at the cost of per-

formance or interface usability for non-experts.

Chapter 3 expands on the properties of campus grid computingenvironments and

the challenges of computing in such an environment in more detail. It is here that the

contrast between solving a problem on a traditional tightly-coupled parallel environ-

ment with a central fileserver is contrasted with the architecture for computing with

abstractions, including the differences in modeling the problem, collocating data and

computation, and specifying and managing resources. Chapter 3 also describes the

various different middleware systems used by the abstractions, including the custom

master/worker middleware, Work Queue, which ameliorates several important disad-

vantages of batch system computing on campus grids.

All-Pairs is a doubly data parallel problem in which a results matrix for two datasets
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is created by applying a function to every pair of elements from those sets. Chapter 4

describes a thorough model for analyzing an instance of an All-Pairs problem in order to

ascertain appropriate parameters for executing it on the campus grid. Parameters (such

as local versus grid computing, number of computing nodes, and size of workload jobs)

are chosen with the model to minimize the overall turnaroundtime. The implementation

focuses on efficient data distribution to all nodes and work allocation given the wide

data distribution. Results for the All-Pairs framework on biometric and data mining

applications are shown, including the largest known complete iris data comparison,

a 58639×58639 All-Pairs problem, which would not have been feasiblewithout an

efficient computing abstraction.

Sparse-Pairs is also a problem that computes the function for pairs of items from two

data sets, however unlike All-Pairs, not every possible combination must be computed.

Instead, a Sparse-Pairs problem instance also includes a list of the pairs that should be

computed. Chapter 5 describes the engineering challenges and results for a Sequence

Alignment bioinformatics application of the Sparse-Pairsabstraction. The implementa-

tion focuses on efficient network and memory management using Work Queue. Results

include scalability (measured in terms of speedup and parallel efficiency) experiments

for several increasingly large genomic datasets. The largest result is a complete align-

ment of the Human genome, which completed in 2.5 hours on over1000 hosts with

952x speedup.

Data-Split-Join is a divide-and-conquer pattern in which asingle large data set is

split into a number of partitions, a function is applied to those partitions, and the results

of those functions are then joined back into a single resultsset. Chapter 6 describes a

distributed abstraction for ensemble classification, which is a data mining data mining

Data-Split-Join application that is effective for learning on large data sets because it de-
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creases the problem’s complexity and increases variety androbustness versus learning

on the whole dataset at once. The discussion focuses on different strategies for data

partitioning and placement in the distributed system. The results are a thorough ex-

amination, using several common learning methods and a variety of real and synthetic

datasets, of several parallelization implementations that differ in how they provide the

classifier processes with data instances.

For each abstraction, the discussion begins with the general problem in abstract

terms and an application of it. Once this has been defined, theimplementation is pre-

sented in terms of the key theoretical and technical challenges associated with one or

more of four tasks for a workload: modeling the system, managing the input data,

coordinating the computation, and managing the output data. The abstraction’s imple-

mentation and performance are compared with those from a conventional alternative,

a cluster-based solution, or a different abstraction. Because the separate abstractions

naturally stress different components of the workflow, discussing each of them in se-

ries permits focusing in each chapter on different parts of an abstraction design and

implementation.

Finally, Chapter 7 puts this work into a larger context. Thischapter contains dis-

cussion of the calculus for choosing between the specific abstractions introduced in

this work and between those abstractions and widely-applied general abstractions such

as Bag-of-Tasks and Map-Reduce. Although there are severalparameters involved in

choosing which abstraction to apply to a problem, an abstraction that fits the way the

user already looks at his problem is best for minimizing the cost of translation to fit an

instance of a problem to an abstraction. Despite the popularity of several general ab-

stractions, even when a problem can be made to fit the general abstraction doing so may

yield a lower ceiling for possible performance relative to an abstraction more naturally
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aligned to the problem’s structure.

This chapter also summarizes the impact of the “toolbox” of abstractions in terms

of publications and utility to fields outside distributed systems. Designing software that

is used by others to speed up their otherwise-unmodified research projects is a benefit

of this work for other fields, however to stop there misses a more fundamental impact.

The availability of this software changes not only thespeedof results generation and the

scaleof approachable problems, but theprocessesby which others do research. Being

able to harness large numbers of resources consistently andefficiently can change the

scientific design from a focus on one singular final result into an opportunity to routinely

measure full-scale or near-full-scale waypoints along a more comprehensive iterative

research process.

Using abstraction to give users a high-level interface to complicated systems is not

a new idea. For example, assembly language and then later compilers allowed users

to provide a high-level specification of a problem without having to worry about the

intricate details of making it work on any given system. But as scientific computations

evolve to larger and more complicated systems, abstractions must evolve with them.

Distributed computing abstractions like those presented here and middleware to support

their development are key tools that allow non-expert usersto harness available campus

grid resources efficiently.

Computing efficiently on complex distributed environmentssuch as campus grids

will always require cooperation between experts in variouscomputational science do-

mains and experts in distributed systems. But this cooperation is more equitable and

sustainable when each partner is allowed to work primarily within his own area of ex-

pertise. Distributed computing experts are better served to allocate most of their effort

designing tools and middleware that can be used by many scientists on several differ-
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ent applications than to spend all their time re-engineering the non-experts’ disparate

problem-specific or domain-specific solutions. And the computational scientists are

better served concentrating on their own scientific processinstead of moonlighting in

distributed systems just to get their applications runningefficiently.
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CHAPTER 2

RELATED WORK

2.1 Computing on a Campus Grid

With the spread of computational research, shared computing grids are now a com-

mon feature of most research institutions’ campus computing environment. These

campus gridsare made up of a wide variety of computing resources, and havechar-

acteristics that can be quite different from traditional clusters, commercial computing

clouds, or tera- and peta-scale supercomputers. Using middleware, many disparate

clusters and standalone machines may be joined into a singlecomputing system with

many providers and consumers. Today, campus grids of approximately 1000 cores are

common [122], and larger initiatives grouping resources from several institutions can

combine to tens of thousands of cores, such as the 20,000-CPUIndiana Diagrid [112]

and the 40,000-CPU Open Science Grid [101].

Computing on a campus grid has a number of differences from traditional parallel

environments such as a single many-core machine, a tightly-coupled Beowulf clus-

ter [54, 56], or a BlueGene supercomputer [4, 6].

Perhaps the most widely known tools for parallel processingare parallel languages

and libraries such as MPI [41], OpenMP [34], Split C [31], andCilk [17]. Each of

these requires significant adaptation of a user’s serial code in order to take advantage

of parallel environments. This adaptation often requires careful synchronization of
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processes and direct, indirect, and collective interprocess communication. While some

problems, particularly those that are naturally parallel,can easily be scaled up with

only slight additions to a serial program’s code, in many cases scaling a problem to run

in parallel on several machines (much less hundreds or thousands) requires significant

changes beyond the serial implementation. Many non-expertusers are unlikely to want

to face the learning curve of these systems in order to scale up their applications.

Even for those who can use one of these parallel tools, a campus grid is a difficult

environment for traditional parallel computation. Campusgrid resources are heteroge-

neous, which can make synchronization (e.g.MPI Barrier operations) much more

expensive than they would be on a single many-core system or tightly-coupled clus-

ter. Similarly, performance on collective communication (or even regular interprocess

communication) can be significantly worse on a campus grid, because unlike InfiniBand

clusters [78] and similar tightly-coupled high-throughput/low-latency parallel environ-

ments, campus grid resources are linked viacampus area networkconnections. Perhaps

the largest hurdle is that the resources may be preempted often, unlike traditional par-

allel environments that give dedicated access for at least some duration; most parallel

languages and libraries do not explicitly consider preemption as a normal condition.

Unlike the problems with the traditional parallel languages and libraries, the con-

straints of a campus grid are a good fit for problems that can bescaled up by managing

large numbers of instances of the same serial program. This is a prototypical problem

for the many-tasks computing (MTC) paradigm [105], which can generally be applied

to resources that are heterogeneous in scale, performance,and networking. As an ad-

ditional benefit, this instance of MTC meshes nicely with theoverall goal of allowing

domain scientists to scale up using their own unmodified serial programs.
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2.2 Workflow Solutions

A workflow is a set of data and computation patterns arranged in an end-to-end

relationship. This set of relationships may consist of all of the activities in a project [39],

or be constrained to a certain subset pipeline of processes or services [119]. Workflows

are often distributed for intuitive and performance reasons, and can be organized in any

of several ways. A common paradigm is to orient a workflow by data-flow – that is, a

directed graph with processes as vertices and data inputs and outputs as edges – which is

both orderly and amenable to maintaining detailed metadatasuch as provenance [118].

Workflows may be solved by a continuum of systems and software, ranging from

very powerful general solution engines to very specific blackbox solutions to a particu-

lar workflow problem [131]. The latter requires an exact specification of the computa-

tion and data for a workload on each resource, much like a serial application, and is not

easily adaptable to a broader set of problems (or even possibly to other instances of the

same problem).

2.2.1 Workflow Languages

The more general languages that design and construct workflows are much more

flexible, but also more complex for users. Addis, et al. [3] define the basic require-

ments for a general workflow language as sequential flows, parallel flows, looping,

conditionals, nesting and recursion, and complex data types. This set of capabilities

makes workflow languages the most adaptable tool for constructing workflows, but

also the most complicated and least predictable. Extensiveuse of general workflow

languages risks potentially exacerbating the original problem that non-expert users are

prone to making disastrous mistakes when managing complex distributed workflows.

Between the application-specific and general language endpoints lie workflow sys-
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tems that do not provide all of the required capabilities (and thus, are not as flexible)

as the languages, but which are still extensible to a large set of problems. Often these

systems are simplified interfaces built upon a more complex back-end implementa-

tion [79, 91, 134, 136] . This combination allows a solution that is accessible to the

non-expert user, but powerful and fully featured.

Swift [136] is a general end-to-end workflow system that relies on a fully-functional

workflow language – SwiftScript [129] – to specify an abstract computation and the

logical relationships between complex data sets. That computation is then realized,

scheduled, and executed via the Karajan execution engine [127]. Swift tasks run on

virtual nodes provisioned by Falkon [104] from loosely-coupled distributed systems.

Provenance metadata, intermediate data, and final results are stored in a data catalog

that may be a virtual node provisioned identically to the computing resources or a sep-

arate permanent storage server.

Scufl [114] is a high-level XML-based language that treats each process as an

atomic task. Scufl has no variable definitions, so the state must be passed via the in-

put/output pipeline in order to be shared between instancesof tasks. Although Scufl

does not have explicit looping primitives, process or service nesting is allowed and this

can create data flows that accomplish looping, and the language is Turing-complete [51].

Taverna [90, 91] is a workflow system that manages a graph of processes, each of which

transforms data input into data output. Most processes are web-services or local Java

functions. Taverna workflows are expressed in Scufl, howeverthey are most often ma-

nipulated using the Taverna GUI.

Dryad [68] is an extensively expressive programming framework that executed di-

rected acyclic graphs (DAGs) made up of sequential programsas vertices and with

one-way data channels as edges. Dryad is a step up from the traditional MPI-like sys-
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tems, as the user does not have to be an expert in concurrent programming. Its use of

sequential building blocks to construct large parallel workflow solutions is similar in

spirit to MTC, as well as the abstractions presented in this dissertation. Dryad itself

is a robust environment that is, however, more easily accessible through code built on

top of it than via the Dryad framework itself. Examples of workflow systems that are

built on Dryad include DryadLINQ [134], which presents a SQL-like declarative pro-

gramming interface and integration into GUI solutions thatallow for easy description

of data and process workflow instructions. This allows non-expert programmers to gar-

ner automatic parallelism from .Net and C#, and even the ability to describe some other

abstraction patterns, such as Map-Reduce, in a concise manner [67].

BPEL [44] is an Oasis standard [72] workflow execution language that defines

data interaction with web services. Unlike Scufl, which is data-flow oriented, BPEL

is control-flow oriented with explicitly defined XML and WSDLvariables instead of

implicit data definition based on the input and output of a process. Links in a BPEL

graph indicate transfer of control instead of transfer of data; for instance a client will

use theinvokeactivity to hand over control to another process. Communication con-

sists ofreceiveandreplyactivity pairs or the explicitassignstatement. BPEL provides

a broad set of control logic, including event-driven control, data-conditional control,

and loops.

2.2.2 Workflow Management Systems

In addition to the GUIs, wrappers, and other high-level interfaces built atop the

workflow languages above, there are other workflow systems that realize and control

large workloads without a fully-featured language interface. Because workflows and

other specific patterns of computation can often be generalized into DAGs, many of
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these systems could be thought of as broadly-expressive DAGabstractions.

Makeflow [120] is a workflow system that exposes a less featureful language as

its interface. Based on traditional UNIX make [46], it is intended as an intermediate

interface – more general than the specific abstractions in this dissertation, but using

a language that users may be more familiar with and thus more likely to try than the

workflow languages above. Makeflow described DAG workflows ina dependency con-

trolled list of rules: a user specifies a target to be created,the dependencies it requires,

and a command to create the rule’s target. The Makeflow engineconcretizes the abstract

dependencies for a rule and executes the jobs that produce the target (using local mul-

ticore processors or remote distributed systems resources). Makeflow will not continue

on to the next rule until its dependencies (often a previous target) are produced.

Other workflow systems emphasize other elements of DAG workflows. Pegasus [38],

for instance, is a cluster solution that focuses on data deployment. The Pegasus engine

converts an abstract DAG into a concrete DAG by locating the various data dependen-

cies and inserting operations to stage input and output data. This DAG is then given to

an execution service such as DAGMan [121] for execution. DAGMan itself acts as a

metascheduler similar to Makeflow, managing the submissionof jobs to Condor based

on DAG dependencies.

2.3 Distributed Computing Abstractions

Distributed computing abstractions are intended to allow users to specify workloads

in a way that is natural and simple, without concerning themselves with the details of

how the workload will be executed on the system. The specificity to a particular pattern

of computation or class of workload allows the abstraction to model the system and

execute the workload in an efficient manner. Not surprisingly, then, abstractions are
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less general than the workflow languages discussed above. Software abstractions are

akin to hardware such as systolic arrays [76] and Kress arrays [58], which are highly

specialized machines that efficiently complete specific parallel tasks.

Because the next step up in scale beyond a single processor ormulticore server is a

small cluster, this environment has been a fertile ground for development of computing

abstractions. The most basic of these are cluster-wide versions of software systems that

abstract away complexities from the user. For example, the simple abstraction provided

by file systems has been extended on data-intensive clustersto provide interfaces for

search [66], or for distributed data structures like multidimensional arrays [15], matri-

ces [87], trees [80], and hashtables [55]. Similarly, database abstractions common in

the implementation of a single local database can be appliedacross a cluster for per-

formance or efficiency considerations, including sorting record-oriented data [10], and

managing table-relational data [26].

Beyond filesystem and database abstractions, a simple general computing abstrac-

tion is Bag-of-Tasks [11, 32], in which independent tasks are submitted and executed in

parallel. Although primitive, Bag-of-Tasks is so general that is has been the focus for

many different types of distributed systems research (scheduling [14, 77], QoS [128],

scalability [33], etc.) and is the paradigm employed by manyvolunteer computing

projects such as SETI@Home [8], Folding@Home [126], and Distributed.Net [40].

Other abstractions are designed for higher-level computing problems on clusters and

grids. For example, there are abstractions that focus on data management in a cluster,

often to collocate data and computation. Although the full scope of Pegasus [38] is

a workflow system, when deployed as a end-user data-deployment or data-realization

system it could also be considered a cluster data abstraction. Chimera [48] also is a

data-realization abstraction, which provides an interface for a user to access data from
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a cluster without having to manage staging the data to the cluster beforehand. The

user requests the data, which Chimera provides either from alocal copy already on the

cluster, a remote storage device, or a on-demand data creation pipeline.

Map-Reduce [37] is perhaps the best-known abstraction for distributed computa-

tion. The Map-Reduce abstraction considers both the data and computation needs of

a workload. The user specifies two functions that transform the data into intermedi-

ate sets of name-value pairs (map) and summarize the data into one or more final sets

(reduce), respectively. Map and similar operations have been available in functional

programming languages such as LISP [115] for many years, andhave been consid-

ered core operations for parallel programming [16, 71]. TheMap and Reduce pairing

is also evocative of operations long-seen in databases (several of which are described

in Sokolinsky’s survey of parallel database architectures[113]). The Map-Reduce ab-

straction is well suited for analyzing and summarizing large amounts of data, and has

a number of implementations [29, 106], of which Hadoop [1] isthe most widely de-

ployed, and extensions, such as the data-parallel applications of DryadLINQ [67]. If

the desired computation can be expressed in this form, either explicitly using map and

reduce operations or in a high level language [97] that defines more complicated com-

binations of operations, then the computation can be scaledup to thousands of nodes.

FREERIDE [53] is a common abstraction for the parallelization of a variety of

data mining workloads. The framework is built on the recognition that basic parallel

implementations of many data mining tasks are similar in structure, and thus a frame-

work may exploit parallelism at several well-recognized stages in the computation of

a high-level defined workload. But for the same reason, it is also difficult to manage

with remote data access or beyond a small number of nodes. FREERIDE-G [52] is

an extension on FREERIDE that adapts to larger workloads with data stored in remote

18



repositories. The framework is a client-server middlewarethat is responsible for data

retrieval from repository disks, distribution to the compute nodes, actual execution of

the computation, and data caching on compute nodes where appropriate. FREERIDE-

G has been used to complete data mining workloads that scale to several gigabytes of

data on small clusters.
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CHAPTER 3

ENVIRONMENT AND MIDDLEWARE

Campus grids are made up of both dedicated grid resources (often provided by an in-

stitution’s research computing facility), and non-dedicated scavenged shared resources.

These non-dedicated resources may come from underutilizedresearch clusters owned

by faculty, idle desktop machines in classrooms, labs, and offices, or various other as-

sorted machines. Even the non-dedicated machines are oftenidle up to 90% of the day,

providing valuable resources to the campus grid. The machines may vary significantly

in capability – from the newest state of the art many-core machines to processors that

may be 5-to-10 years old – and are primarily commodity systems with no extraordinary

guarantee of reliability. Further, they may be removed fromthe pool as a matter of pol-

icy: for shared resources, the resource owners must be givencomplete priority to their

own systems. Thus, a common policy within a campus grid is preemption [108], in

which if a resource owner requires access to a machine, the campus grid job is evicted.

These machines generally have a standard campus internet connection (currently

100Mbps-10Gbps are common), but may reside on a complicatedcampus area network

that has numerous subnets and switches that may be wildly disparate in their capaci-

ties and utilization. The machines on the campus grid may or may not have a shared

filesystem, and even when available the fileservers are intended for general campus use

instead of exclusive service for campus grid computing.
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Campus grid resources are managed by middleware such as Condor [121], SGE [49],

and Globus [47]. Though batch schedulers allow jobs to specify the exact resources on

which to run, the most common mode of execution is for users tospecify only general

requirements (for example, operating system and minimum RAM) and allow the sched-

uler to negotiate where the job will run. In this case, the high-level user interaction with

the campus grid is not unlike cloud computing [130].

3.1 Campus Grid Challenges

If workloads were to be completed on a dedicated cluster owned by one user on

a switched network, efficient use of resources might not be a concern. However, in a

large campus grid shared by many users, a poorly configured workload will consume

resources that might otherwise be assigned to waiting jobs.If the workload makes

excessive use of the network, it may even halt other unrelated tasks, thus hurting the

performance of other users of the system.

Many distributed computing problems run up against the sameset of challenges on

campus grids, and these obstacles are common to the problemsdiscussed in this work:

Number of Compute Nodes. It is easy to assume that more compute nodes is

automatically better. This is not always true. In any kind ofparallel or distributed

problem, each additional compute node presents some overhead in exchange for extra

parallelism. Data must be transferred to that node by some means, which places extra

load on the data access system, whether it is a shared filesystem or a data transfer

service. More parallelism means more concurrently runningjobs for both the engine

and the batch system to manage, and a greater likelihood of a node failing, or worse,

concurrent failures of several nodes, which consume the attention (and increase the

dispatch latency) of the queuing system. For many I/O intensive problems, it may only
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make sense to harness ten CPUs, even though hundreds are available.

Data Distribution. After choosing the proper number of servers, it must then be

determined how to get the data to each computation. A campus grid usually makes use

of an institutional file server or the submitting machine as afile server, as this makes

it easy for programs to access data on demand. Often, however, I/O patterns that can

be overlooked on one processor may be disastrous in a scalable system. One process

loading one gigabyte from a local disk will be measured in seconds. But it is much

easier to scale up the CPUs of a campus grid than it is to scale up the capacity of a

central file server, so hundreds of processes loading a gigabyte from a single disk over

a shared network will encounter several different kinds of contention that do not scale

linearly. An abstraction must take appropriate steps to carefully manage data transfer

within the workload. If the same input data will be re-used many times, then it makes

sense simply to store the inputs on each local disk, getting better performance and

scalability. Many dedicated clusters provide fixed local data for common applications

(e.g. genomic databases for BLAST [7]). However, in a sharedcomputing environment,

there are many different kinds of applications and competition for local disk space, so

the system must be capable of adjusting the system to serve new workloads as they are

submitted.

Dispatch Latency. The cost of dispatching a job within a campus grid is surpris-

ingly high. Dispatching a job from a queue to a remote CPU requires many network op-

erations to authenticate the user and negotiate access to the resource, synchronous disk

operations at both sides to log the transaction, data transfers to move the executable

and other details, not to mention the unpredictable delays associated with contention

for each of these resources. When a system is under heavy load, dispatch latency can

easily be measured in seconds. For batch jobs that intend to run for hours, this is of little
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concern. But, for many short running jobs, this can be a serious performance problem.

Even under the assumption that a system has no contention forresources and a rela-

tively fast dispatch latency of one second, it would be foolish to run jobs lasting one

second: one job would complete before the next can be dispatched, resulting in only

one CPU being kept busy. Clearly, there is an incentive to keep job granularity large

(relative to total available parallelism) in order to hide the worst case dispatch latencies

and keep CPUs busy.

Failure Probability. On the other hand, there is an incentive not to make individual

jobs too long. Any kind of computer system has the possibility of hardware failure, but

a campus grid also has the possibility that a job can be preempted for a higher priority

task, usually resulting in a rollback to the beginning of thejob on another CPU. Short

runs provide a kind ofde factocheckpointing, as a small result that is completed need

not be regenerated. Long runs also magnify heterogeneity inthe pool. For instance, jobs

that should take 10 seconds on a typical machine but take 30 seconds on the slowest

aren’t a problem if batched in small sets. The other machineswill just cycle through

their sets faster. But, if jobs are chosen such that they run for hours even on the fastest

machine, the workload will incur a long delay waiting for thefinal job to complete on

the slowest. Another downside to jobs that run for many hoursis that it is difficult to

discriminate between a healthy long-running job and a job that is stuck and not making

progress. An abstraction has to determine the appropriate job granularity, noting that

this depends on numerous factors of the job and of the grid itself.

Resource Limitations. Campus grids are full of unexpected resource limitations

that can trip up the unwary user. The major resources of processing, memory, and stor-

age are all managed by high level systems, reported to systemadministrators, and made

known to end users. However, systems also have more prosaic resources. Examples are
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the maximum number of open files in a kernel, the number of openTCP connections

in a network translation device, the number of licenses available for an application, or

the maximum number of jobs allowed in a batch queue. In addition to navigating the

well-known resources, an execution engine must also be capable of recognizing and

adjusting to secondary resource limitations.

Semantics of Failure.In any kind of distributed system, failures are not only com-

mon, but also hard to define. If a program exits with an error code, who is at fault?

Does the program have a bug, or did the user give it bad inputs,or is the executing

machine faulty? Is the problem transient or reproducible? Without any context about

the workload and the execution environment, it is almost impossible for the system to

take the appropriate recovery action. But, when using an abstraction that regulates the

semantics of each job and the overall dataflow, correct recovery can be straightforward.

Ease of Use.Most importantly, each of these considerations must be addressed

without placing additional burden on the end user. An abstraction interface must op-

erate robustly on problems ranging across several orders ofmagnitude by exploring,

measuring, and adapting without assistance from the end user.

3.2 Architecture for Computing on Campus Grids

Theconventionalimplementation for solving problems on a cluster or similardis-

tributed system executes the specification by simply submitting a series of batch jobs

that use a central file server to read data on demand and write outputs into files in the

ordinary way. The user specifies what jobs to runby name. Each job is assigned a CPU,

and does I/O calls on demand with a shared file system. The system has no idea what

data a job will access until jobs actually begin to issue system calls. Figure 3.1 shows

the difference between using this conventional cluster approach and computing with an
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Figure 3.1: Cluster Architectures Compared
When using a conventional computing cluster, the user partitions the workload into
jobs, then a batch queue distributes jobs to CPUs where they access data from a cen-
tral file server on demand. When using an abstraction, the user states the high level
structure of the workload, the abstraction engine partitions both the computation and
the data access, transfers data to disks in the cluster, and then dispatches computation
to execute on the data in place.

abstraction.

When using anabstractionimplementation, like the three discussed in Chapters 4-6,

the user specifies both the data and computation needs, allowing the system to partition

and distribute the data in a structured way, then dispatch the computation according to

the data distribution. The abstraction implementation exploits the information found

in the abstraction by efficiently distributing common data to where it will be used,

choosing an appropriate granularity for decomposition, accessing local data copies, and

storing the outputs in a manageable way, such as a custom datastructure.

Computation within a campus grid can use a hierarchy of abstraction implementa-

tions. The abstraction manages the campus-grid-level organization of a workload, but

also is applied on each individual resource to manage local resources such as multicore

processors. Figure 3.2 shows this hierarchy as a general structure for implementing

abstractions that use abstraction engines at multiple layers of a hierarchy. The user in-
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Figure 3.2: Distributed Multicore Implementation
Abstractions can be executed on multicore clusters with a hierarchical technique. The
user first invokes the abstraction, stating the input data sets and the desired function.
The distributed master process measures the inputs, modelsthe system, and submits
sub-jobs to the distributed system. Each sub-job is executed by a multicore master,
which dispatches functions, and returns results to the distributed master, which collects
them in final form for the user.

vokes the abstraction by passing the input data and functionto thedistributed master

engine. The distributed master engine performs the same tasks it does if submitting

functions directly instead of organizing a hierarchical comparison. First, the it exam-

ines the size of the input data, the runtime of the function, and models the expected

runtime of the workload in various configurations. After choosing a parallelization

strategy, the distributed master engine submits sub-problems to the localbatch system,

which dispatches them to available CPUs.

The change in the hierarchical case is that each job consistsof a multicore master

as the executable. When this multicore master is started on acampus grid resource it

examines the executing machine, chooses a parallelizationstrategy, executes the sub-

problem, and manages the partial result (either returning to the distributed master or

storing directly in the distributed data structure, depending on configuration).
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Figure 3.3. Time Variations in a Condor Pool

3.3 Notre Dame Campus Grid

The primary campus grid resources used for this work are fromthe Notre Dame

Condor pool. Over the course of this research, the pool has expanded from approx-

imately 400 cores up to over 1000 cores consistently reporting to the Condor match-

maker.

Additionally, most nodes in the system run a Chirp [123] fileserver to manage access

to the local disk. Chirp is a lightweight user-level fileserver that provides a POSIX-like

file interface, performs access control, and executes directed transfers between campus

grid nodes.

Figure 3.3 shows variations in the number of machines participating in the Condor

pool over the course of a full year. The graph plots three curves on top of each other,

which creates the equivalent of a stacked column representation. The bottom (medium

gray) indicates the of resources that are currently in use bytheir owners instead of

running Condor jobs. Local policy sets machines to this “Owner” state when there is
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either significant use of the CPU or keyboard typing detectedby the shell. The middle

(light gray) indicates the number of machines that are beingused by Condor to run jobs.

The height of each column is the total number of resources in the pool, so the top (dark

gray) indicates the number of resources that are unused – that is, neither in owner state

nor being used by Condor. As can be seen, all of these values fluctuate considerably as

machines are powered on and off, used during the work day, andharvested for batch

workloads. Large dips in the number of resources being used by Condor are often

indicative of either a hiccup with the Condor server, or a slight lull as a dominant user’s

workload is ending and he (or another power user) has not yet submitted the next large

workload.

Each processor in the pool has a set of prioritized users, primarily corresponding to

the machine’s owner. These users, then, have the choice of claiming their resources via

direct access to the system or via Condor jobs that will be scheduled there, preempting

non-prioritized users’ jobs. Where no prioritized user factors into a scheduling decision,

priority is determined by the standard Condor priority settings.

At the time that Figure 3.3 was recorded, there were 11 stakeholders who owned

the 902 resources operating in the Notre Dame Condor pool. 488 cores were owned

and operated by the campus Center for Research Computing, including 164 from the

Notre Dame Green Cloud [20]. Assorted nodes owned by the computer science de-

partment made up 182 cores, while two computer science professors accounted for 96

and 75 more, respectively. The chemical engineering department contributed 39 cores.

The remaining cores in the pool were contributed in small numbers by various other

professors.

With that many separate resource contributors, it cannot bea surprise that the ma-

chines are highly heterogeneous, as seen in Figure 3.4. New machines are added to
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Figure 3.4: Performance Variance in a Campus Grid
A campus grid has a high degree of heterogeneity in availableresources. (a) shows the
distribution of CPU speed, ranging from 1334 to 5692 MIPS. (c) shows the distribution
of disk bandwidth, as measured by a large sequential write, ranging from 2 MB/s (mis-
configured controller) to 55 MB/s. (b) shows the weak relationship between CPU speed
and disk bandwidth. A fast CPU is not necessarily the best choice for an I/O bound job.

the system and old machines are removed on a daily basis, Often these changes happen

as singletons when one machine crashes or is repaired, but sometimes they occur in

batches as entire clusters are brought up or decommissioned. As a result, both CPU and

disk performance vary widely, with no simple correlation.

3.4 Work Queue

Condor and other batch systems are well-suited and commonly-used to run large

numbers of long-running computations such as scientific simulations. But that does not

make them well-suited for workloads that have a large numberof short-running tasks,

very data-intensive tasks, or both of these characteristics. One key reason is that these

systems are designed to mediate the needs of many different stakeholders, including the

machine owner, the job owner, and the pool manager. This constant coordination means

that there is significant latency inherent in the system. Under heavy load, submitting

jobs to the queue may take several seconds. And even in a largely unused system, it

takes thirty seconds or more from the time a job is submitted until it actually begins

running on a machine. This is especially detrimental for short-running jobs, in which
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the execution time is not much more than the latency.

Additionally, because Condor is careful to clean up thoroughly after a job com-

pletes, there is no easy way to maintain state across multiple jobs even if consecutive

jobs are directed to the same machine. And if there is contention for resources, al-

though the jobs are fast-running, the large number of small jobs may count against a

user’s priority, making it even harder to get jobs running.

Work Queue [120] is an intermediate layer of software that isintended to combat

these limitations, providing fast execution and data persistence on top of Condor, other

batch systems, or arbitrary compute resources. Work Queue’s inspiration is a simple

observation from Falkon [104] that it is possible to dispatch as a batch job long-running

middleware to execute many short-running tasks on a node without having to pay the

overhead of submitting each task as a batch job.
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3.4.1 Architecture

Work Queue is a general purpose master-worker system with a simple protocol

in which the batch job (a “worker” process) connects over thenetwork to a process

on a central node (the “master”) that dispatches the smallertasks to run. Figure 3.5

shows how the pieces work together. The worker is a simple standard executable that

is the same for all work queue applications. The master is a workload-specific piece of

software that coordinates tasks based on the requirements of the workload via the Work

Queue API. Most masters perform a variation of the same submit-dispatch-wait-collect

cycle.

In practice, the user normally runs the master programs on his or her workstation

or server. The worker processes can be submitted to the campus grid, run individually

from the command line on nodes where the user has login access, or a combination

thereof.

Once running, the worker makes a network connection back to arunning Master

process, receives files that the master sends over the network, receives a task work

order from the master, executes the task as local processes,sends the results back to the

master, and waits for the next task.

Likewise, the master determines the work that needs to be done, partitions that work

into tasks, assigns a task to a worker, sends the data required by the task to the worker,

and collects the results when the worker has finished. Of course, if the batch system

decides to evict the worker batch job, it will kill any running processes and delete the

local storage. The master is able to detect these evictions,and re-assign tasks to other

workers as needed.

When the master collects the results from the worker, it is responsible for verifying

the results data and storing it. Making the master responsible for results storage allows
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several advantages over having the application or the worker store the results: no glob-

ally available shared filesystem is required, worker processes are completely indepen-

dent of the application, and master processes can interchange methods of verification

based on available resources or application-specific workload-level considerations.

3.4.2 Advantages

Task dispatch from the master to a worker is much faster than the dispatch latency

in the campus grid queue – milliseconds rather than 30 seconds to several minutes.

As contention for campus grid resources increases this advantage is compounded, be-

cause subsequent tasks can be started in milliseconds afterthe first finishes instead of

repeating the original latency for starting a batch job.

Another compounded advantage on some systems without preemption is that later

pieces of the workload are less influenced by the submitter’sdegraded priority (which

falls as the submitter uses campus grid resources over time). The worker is already

running, and thus is not affected by the degraded priority, whereas a new batch job sub-

mitted to handle the later work would be chosen to run based onthe degraded priority.

Another advantage of Work Queue tasks versus batch jobs is that the workers retain

state between tasks, so files needed by many tasks only need tobe transferred from

the master to a given worker once. And tasks can be assigned toworkers based on

the amount of data the task requires that is already present on the worker, minimizing

data transfer. (By default, Work Queue assigns a task to the next available worker,

irrespective of data. However the scheduler can be chosen from among a few simple

options using the API).
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3.4.3 API

Work Queue masters are written using the Work Queue API. Thisprovides a set of

general operations that can be combined to create a completemaster process.

The fundamental operations are creating a queue, creating aminimal task data struc-

ture, further specifying a task, waiting for tasks to finish,and cleaning up when data

structures are no longer needed.

Once a queue has been initialized, the primary driver of the submit-dispatch-wait-

collect cycle is the creation of new tasks. The task data structure is instantiated with

only the task’s command defined. The command is a string representation of a simple

shell command line that may consist of a single command or several commands in a

pipeline. All other options for a task are separate API functions that modify various

fields of this data structure, for example, itstag field, which is a user-defined short

text description of the task.

All files required by the task – the executable, files passed tothe executable on

standard input, or other required files such as data, configuration files, or libraries – are

specified using the API. Calling the API function to specify afile does not actually place

the file on the worker node, rather it adds the requirement to the task data structure’s

input files field and when the task is dispatched to a node, the master transfers the

files as part of the dispatch process.

In order to be transferred to the worker and placed on disk, data does not have to

already exist on disk in the master. This is because the API also allows the user to

specify that a memory buffer in the master process be copied into a file on the worker.

The last simple field that a user can specify is the output files. This is somewhat

unintuitive, as the specification has no bearing on whether the file is actually created.

Rather, theoutput files list field in the task data structure specifies that to be a

33



properly completed task, the function on the worker must create a certain file, which is

then passed back to the master. Thus, the members of theoutput file list function

logically as postconditions for a task. If the file cannot be transferred back to the master

when the task completes, the task is marked as a failure.

Once a task is created and all pertinent fields have been specified, the next step

for the master’s code is to submit the task. This API call doesnot actually assign

the task to a remote worker, rather it submits the task to a queue of tasks. Tasks are

not explicitly started via the API, rather they are actuallyassigned and transferred to

workers automatically after the API’swork queue wait instruction is invoked.

Thewait call indicates that the user is done specifying and submitting tasks for

now and will wait for a specified amount of time or until there is a task completed to col-

lect. Thework queue wait operation returns a task data structure (or null if no tasks

completed within the wait interval). The master may parse this data structure as needed;

generally the postprocessing includes checking the command line’s return status for an

acceptable value, verifying that the returned output fits the expected format, and copy-

ing the output to permanent storage. If the task failed (either in terms of return status

or output verification), the user can create and submit a new task with the same spec-

ification. The state for a task is finally freed with thework queue task delete

operation.

Code Excerpt 3.1 shows the typical submit-dispatch-wait-collect cycle within a

master via a sample application of compressing a set of files.The queue is created

on line 1 with the user specifying the port the queue will listen on for connections from

workers. The tasks are created in a loop, where the functionnextFile is representa-

tive of a user-defined function to determine the next quantumof work to be placed into

a task. The task data structure is created on line 3 with thegzip command line; note
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1 q = w o rk q u e u e c re a t e ( po r t , t i m eo u t ) ;
2 whi le ( n e x t F i l e ( i n p u t f i l e , o u t p u t f i l e ) ) {
3 t = w o r k q u e u e t a s k c r e a t e (
4 ‘ ‘ / u s r / b in / g z i p −9 < i n f i l e > ou t . gz ’ ’ ) ;
5 w o r k q u e u e t a s k s p e c i f y i n p u t f i l e ( t , i n p u t f i l e ,
6 ‘ ‘ i n f i l e ’ ’ ) ;
7 w o r k q u e u e t a s k s p e c i f y o u t p u t f i l e ( t , ‘ ‘ ou t . gz ’ ’ ,
8 o u t p u t f i l e ) ;
9 work queue submi t ( q , t ) ;

10 }
11 whi le ( ! work queue empty ( q ) ) {
12 t = work queue wa i t ( q , 1 0 ) ;
13 i f ( t ) w o r k q u e u e t a s k d e l e t e ( t ) ;
14 }
15 w o rk q u e u e d e l e t e ( q ) ;

Code Excerpt 3.1: Submit-Dispatch-Wait-Collect Loop in a Sample Master

that the filenames on the command line are hardcoded into the string for simplicity, but

the literal string could be replaced with a constructed string to change the command

line between tasks. The input and output files are specified for the task on lines 5 and

7. Line 9 submits the task to the queue.

In this example, all tasks are created before any task will actually begin running, but

the creation and execution could be pipelined for workloadswith very large numbers of

tasks. Thework queue empty call on line 11 checks if there are outstanding tasks

(waiting to run, running, or completed), which controls thewait-collect cycle. In this

case, because there is no output fromgzip and the existence of the output file (handled

automatically by Work Queue) is sufficient, a task can be deleted as soon as it has been

collected by the master. Once all tasks have been completed,the queue can be freed

and the master moves on to any application-specific post-processing.
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3.4.4 Fast Abort

A large computation can often be significantly slowed down bystragglers. Although

slow tasks impact any workload, two particularly noticeable cases are when there are

other tasks with dependencies on the slow task, or at the end of a workload, when a slow

task is continuing far beyond the completion times of the entire rest of the workload.

Work Queue keeps statistics on task execution times across the workload, and con-

tains a mechanism, “Fast Abort”, that proactively cancels and reassigns tasks that have

run too long. In initial versions of Work Queue, the criterion for having “run too long”

was a parameter of the system, however in the current versionallows the user to specify

his tolerance for stragglers (defined as a multiplier of the average task completion time,

or even a complete deactivation of Fast Abort) via the API.

Fast Abort is studied in considerable detail for the Wavefront and Makeflow abstrac-

tions in [133]. Section 5.4.4 evaluates activating Fast Abort near the end of a sequence

alignment workload to lessen the chance of one or more slow machines running tasks

far beyond the completion of all other tasks in the workload.
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CHAPTER 4

ALL-PAIRS ABSTRACTION

4.1 The All-Pairs Problem

The All-Pairs problem is an example of a computation that is trivial to implement for

a small computation on one computer, but has applications that would require gigabytes

of data running on hundreds of computers for several days. This chapter discusses the

aspects of the problem that make implementation non-trivial for scientific computing

users, the design and implementation of an abstraction for the problem, and results with

the abstraction for applications in several domains.

The All-Pairs problem is easily stated:

All-Pairs( set A, set B, function F ) returns matrix M:

Compare all elements of set A to all elements of set B

via function F, yielding matrix M, such that

M[i,j] = F(A[i],B[j]).

This problem is also known as theCartesian productor cross joinof sets A and B.

Variations of All-Pairs occur in many branches of science and engineering, where the

goal is either to understand the behavior of a newly created function F on sets A and B,

or to learn the covariance of sets A and B on a standard inner product F. The function

is sometimes symmetric, in which cases it is enough to compute one half of the matrix

using the custom comparison function.

37



0

1

2

3

0 1 A2 A3

        

A A
B

B

B

B

F(A  ,B   ) 2   1

F(A  ,B   ) 0   3

Matrix M

returns Matrix M
AllPairs( set A, set B, function F )

Figure 4.1. The All-Pairs Problem

The All-Pairs abstraction compares all elements of sets A and B together using a custom
function F, yielding a matrix M where each cell is the result of F (A[i], B[j]).

Solving an All-Pairs problem seems simple at first glance. The typical user con-

structs a standalone programF that accepts two files as input, and performs one com-

parison. After testingF on small datasets on a workstation, he or she connects to the

campus grid, and runs a script like this:

foreach $i in A

foreach $j in B

submit_job F $i $j

From the perspective of someone who knows how to program but is not an expert

in distributed systems this is a perfectly rational way to construct a large workload,

because one would do exactly the same thing in a sequential orparallel programming

language on a single machine. Unfortunately, it will likelyresult in very poor perfor-

mance for the user due to all the challenges of computing on a campus grid discussed

in Chapter 3. Figure 4.2 shows a real example of the performance achieved by a user

that attempted exactly this procedure at on the Notre Dame campus grid, in which 250
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Figure 4.2. Performance of All-Pairs Problem Solutions

The graph shows the performance of an All-Pairs problem on a single machine, on 250
CPUs when attempted by a non-expert user, and on 250 CPUs whenusing the optimized
All-Pairs abstraction.

CPUs yieldedworsethan serial performance.

4.2 Applications

All-Pairs problems occur in several different computing fields. The All-Pairs ab-

straction has been run and measured on the following applications:

Biometrics is the study of identifying humans from measurements of the body,

such as photos of the face, recordings of the voice, or measurements of body structure.

A recognition algorithm may be thought of as a function that accepts e.g. two face

images as input and outputs a number between zero and one reflecting the similarity of

the faces. When a researcher invents a new algorithm for facerecognition and writes

the code for a comparison function, the accepted evaluationprocedure in biometrics

is to acquire a known set of images and compare all of them to each other using the
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function, yielding asimilarity matrix. Multiple matrices generated on the same dataset

can be used to quantitatively compare different comparisonfunctions.

The biometrics All-Pairs workload benchmark considered here is the comparison

of 4010 images of 1.25MB each from the Face Recognition GrandChallenge [96] to

all others in the set. This application uses functions that range from 1-20 seconds of

compute time, depending on the algorithm in use. This workload requires 185 to 3700

CPU-days of computation, so it must be parallelized across alarge number of CPUs in

order to make it complete in reasonable time. Unfortunately, each CPU added to the

system also needs access to the 5GB of source data. If run on 500 CPUs, the computa-

tion alone could be completed in 8.8 hours, but it would require 2.5TB of I/O. Assuming

the filesystem could keep up, this would keep a gigabit (125MB/s) network saturated

for 5.8 hours, rendering the grid completely unusable by anyone else. Addressing the

CPU needs with massive parallelism simply creates a new bottleneck in I/O.

Data Mining is the study of extracting meaning from large datasets. One phase of

knowledge discovery is reacting to bias or other noise within a set. In order to improve

overall accuracy, researchers must determine which classifiers work on which types of

noise. To do this, they use a distribution representative ofthe data set as one input

to the function, and a type of noise (also defined as a distribution) as the other. The

function returns a set of results for each classifier, allowing researchers to determine

which classifier is best for that type of noise on that distribution of the validation set.

Bioinformatics is the use of computational science methods to model and analyze

biological systems. Genome assembly [59, 65] remains one ofthe most challenging

computational problems in this field. A sequencing device can analyze a biological

tissue and output its DNA sequence, a string on the set [AGTC]. However, due to phys-

ical constraints in the sequencing process, it is not produced in one long string, but in
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tens of thousands of overlapping substrings of hundreds to thousands of symbols. An

assembler must then attempt to align all of the pieces with each other to reconstruct

the complete string. All-Pairs is a natural way of performing the first step of assembly.

Each string must be compared to all others at both ends, producing a very large ma-

trix of possible overlaps, which can then be analyzed to propose a complete assembly.

Additional All-Pairs applications in bioinformatics are discussed in [102], which notes

that All-Pairs (or “doubly data parallel”) problems are common in biology.

Other Problems. Some problems mayappearto fit the common All-Pairs pattern,

but may be algorithmically reducible to a smaller problem via techniques such as data

clustering or filtering [9, 13, 43, 66]. In these cases, the user’s intent isnot All-Pairs,

but sorting or searching, and thus other kinds of optimizations apply. In the All-Pairs

problems that are outlined above, it is necessary to obtainall of the output values. For

example, in the biometric application, it is necessary to verify that like images yield a

good score and unlike images yield a bad score. The problem requires brute force, and

the challenge lies in providing interfaces to execute it effectively.

4.3 Implementation

The goal of the All-Pairs abstraction is to provide the user an interface such that he

can invoke All-Pairs as follows:

AllPairs SetA SetB Function Matrix

whereSetA andSetB are text files that list the set of files to process,Function is

the function to perform each comparison, andMatrix is the name of a matrix where

the results are to be stored.

In the initial versions of the All-Pairs engine, the user’s function was required to be

essentially a single-CPU implementation of All-Pairs. That is,Function is provided
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by the end user, and may be an executable written in any language, provided that is has

the following calling convention:

Function SetX SetY

whereSetX andSetY are text files that list a set of files to process, resulting in a

list of results on the standard output that name each elementcompared along with the

comparison score:

A1 B1 0.53623

A1 B2 2.30568

A1 B3 9.19736

...

This was good for performance, because the actual executiontime of of a single

comparison could be significantly faster than the time needed to invoke an external

program. It also improved usability, because the user couldeasily transition from a

small job run on a workstation to a large job run on the campus grid. However, the

downside was that while usability improved, the user still was required to rewrite his

serial code, and the overall performance still hinged on theuser’s single-CPU All-Pairs

implementation’s efficiency.

An improved version of All-Pairs is more amenable to using absolutely unmodified

versions of functions that operate on exactly two input items (instead of two sublists

of items). To do this it uses a hierarchical scheme in which the abstraction engine

coordinates the entire workload, then submits batch jobs that are local masters for the

system that can instantiate the computation efficiently on each individual resource in

the campus grid. This retains the usability aspect because the original serial 1-versus-1

comparison function can be used in an unmodified form. Although there are multiple
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function calls instead of a single call, performance can actually be improved by clever

design of the local master (particularly in non-trivial environments such as multicore

computers or a memory-bound problem) [132].

Regardless of the version of the function requirements, theterm function is used

in the logical sense: a discrete, self-contained piece of code with no side effects. This

property is critical to achieving a robust, usable system. The abstraction engine relies on

its knowledge of the function inputs and the problem structure to provide the necessary

data to each node efficiently and arrange the output to be collected efficiently.

Now consider the implementation of All-Pairs in terms of thefour stages shared by

many distributed computing abstractions and introduced inChapter 1. For All-Pairs, the

problem is modeled to determine an appropriate number of resources to use, input data

is distributed to all compute nodes in an efficient manner, the computation is organized

by subproblem and computed in a two-level hierarchy, and theoutput results are stored

to a distributed data structure.

4.3.1 Modeling the System

In order to decide how many CPUs to use and how to partition thework, there

must be an approximate model of system performance. In a conventional system, it

is difficult to predict the performance of a workload, because it depends on factors

invisible to the system, such as the detailed I/O behavior ofeach job, and contention

for the network. Both of these factors are minimized when using an abstraction that

exploits initial efficient distribution followed by local storage access instead of remote

network access.

Previous researchers have studied All-Pairs theoretically [124] and on small clus-

ters [28]. Unlike in those highly predictable environments, achieving optimal perfor-
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This graph compares the modeled runtime of three workloads that differ only in the
time (t) to execute each function. In some configurations, additional parallelism has no
benefit.

mance is essentially impossible in a large dynamic heterogeneous system where nothing

is under the user’s direct control. Rather, the best that theabstraction can aim for is to

avoid disasters by choosing the configuration that is optimal within the model.

The (distributed master) engine measures the input data to determine the sizes of

each input element and the number of elementsn in each set (for simplicity, assume

here that the sets have the same number and size elements). The provided function is

tested on a small set of data to determine the typical runtimet of each function call.

Several fixed parameters are coded into the abstraction by the system operators: the

bandwidthB of the network and the dispatch latencyD of the batch software. Finally,

the abstraction must choose the number of function callsc to group into each batch job,

and the number of hostsh to harness.

The time to perform one transfer is simply the total amount ofdata divided by the
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bandwidth. Distribution by a spanning tree (described below) has a time complexity of

O(log2(h)), so the total time to distribute two data sets is:

Tdistribute =
2ns

B
log2(h)

The total number of batch jobs isn2/c, the runtime for each batch job isD+ct, and

the total number of hosts ish, so the total time needed to compute on the staged data is:

Tcompute =
n2

c
(D + ct)

h

However, because the batch scheduler can only dispatch one job everyD seconds,

each job start will be staggered by that amount, and the last host will completeD(h−1)

seconds after the first host to complete. Thus, the total turnaround time is:

Tturnaround =
2ns

B
log2(h) +

n2

ch
(D + ct) + D(h − 1)

Now, the abstraction using a hillclimbing heuristic may choose the free variablesc

andh to minimize the modeled turnaround time. Some constraints on c andh are nec-

essary. Clearly,h cannot be greater than the total number of batch jobs or the available

hosts. To bound the cost of eviction in long running jobs,c is further constrained to en-

sure that no batch job runs longer than one hour. This is also helpful to enable a greater

degree of scheduling flexibility in a shared system where preemption is undesirable. In

the original implementation,c was chosen as a multiple of a result row to simplify job

partitioning, however in the hierarchical implementationthat has replaced it,c is only

constrained to be a valid number of cells in a rectangle within the results matrix.

Using the function execution timet, the engine can also model a workload run lo-

cally. This allows the engine to compare the predicted turnaround time running locally
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An efficient way to distribute data to many nodes of a system isto build a spanning
tree. In the example on the right, a file distributor initiates transfers as follows: (1) A
transfers to B, (2) AB transfer to CD, (3) ABCD transfer to EFGH. The graph on the
left compares the performance of transferring data to the first 200 available hosts using
sequential transfers, a random spanning tree, and a topology aware spanning tree.

or on the distributed resources and choose the better option. Because the distributed ver-

sion is more prone to variability, the engine is built to prefer the local execution until

there is a significant predicted benefit from distributing. The accuracy of this automatic

changeover is discussed in further detail below.

Figure 4.3 shows the importance of modeling the orders of magnitude within the

abstraction. Suppose that All-Pairs is invoked for a comparison of 1000x1000 objects

of 1.25MB each, on a gigabit Ethernet (125MB/s) network. Depending on the algorithm

in use, the comparison function could have a runtime anywhere between 0.1s and 10s. If

the function takes 0.1 seconds, the optimal number of CPUs is38, because the expense

of moving data and dispatching jobs outweighs the benefit of any additional parallelism.

If the function takes one second, then the system should harness several hundred CPUs,

and if it takes ten, all available CPUs.
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4.3.2 Managing the Input Data

The model determines how many computing resources should beused. To choose

the nodes, the engine consults aresource catalogto determine the available machines.

Because the number of computing resources can scale far faster than the capacity of

a central file server, and the often data-intensive nature ofthe All-Pairs problem, the

All-Pairs implementation prestages data to the computing nodes.

This approach is different from the conventional method, inwhich batch systems are

usually coupled with a traditional file system such that whena job issues I/O system

calls, the execution node is responsible for pulling data from the storage nodes into

the compute node. Because the abstraction is given the data needs of the workload

in advance, it can implement I/O much more efficiently. To deliver all of the data to

every node (a design decision discussed below at the end of this subsection), the engine

can build a spanning tree which performs streaming data transfers and completes in

logarithmic time. Exploiting the local storage on each nodeavoids the unpredictable

effects of network contention for small operations at runtime.

A file distributor component is responsible for pushing all data out to a selection

of nodes by a series of directed transfers forming a spanningtree with transfers done

in parallel. Figure 4.4 shows the algorithm, which is a greedy work list. The data is

pushed to one node, which then is directed to transfer it to a second. Two nodes can

then transfer in parallel to two more, and so on. The directedtransfers are executed by

the Chirp fileservers running on each node.

Dealing with failures is a significant concern for pushing data. Failures are quite

common and impossible to predict. A transfer might fail outright if the target node

is disconnected, misconfigured, has different access controls or is out of free space.

A transfer might be significantly delayed due to competing traffic for the shared net-
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work, or unexpected loads on the target system that occupy the CPU, virtual memory,

and filesystem. Delays are particularly troublesome, because it is uncertain whether a

problem will be briefly resolved or delay forever.

A greedy work list is naturally fault tolerant. If any one transfer fails outright or is

delayed, the remaining parallel branches of the spanning tree will reach other parts of

the campus grid. Because individual nodes that report as available to the catalog may

become unavailable during distribution (delaying completion or causing the distribution

to to complete with fewer nodes than requested), it is often more effective to simply give

the distributor a target numberh. This way, the distribution can continue until data has

been placed onh hosts, and then it will cancel any outstanding transfers andlist the

hosts actually reached.

Of course, a campus grid does not have a uniform network topology. Transfers

may be fast between machines on one switch, but become sloweras transfers reach

across routers and other network elements. In the worst case, the file distributor might

randomly arrange a large number of transfers that saturate ashared network link, ren-

dering the system unusable to others.

To prevent this situation, the file distributor can be provided with a simplified topol-

ogy in the form of a “network map”, which simply states which machines are connected

to the same switch. The file distributor algorithm is slightly refined in two ways. First,

the distributor will prefer to transfer data between clusters before transferring within

clusters, assuming that the former are slower and thus should be performed sooner so

as to minimize the makespan. Second, the distributor will not allow more than one

transfer in or out of a given cluster at once, so as to avoid overloading shared network

links.

The performance of file distribution is shown in Figure 4.4. Here, a 500MB dataset
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is transferred to the first 200 available hosts on the campus grid, recording the elapsed

time at which each single transfer is complete. Each of threedistribution techniques

is performed ten times, and the average at each host is shown.Sequential distribution

takes 8482 seconds to complete. A fully random spanning treetakes 585 seconds, while

a topology aware tree takes 420 seconds.

To conclude this section, consider whether it is really necessary to distributeall of

the data to every node? An alternative would be to distributethe minimum amount of

data to allow each node to run its job. In fact, however, distributing all of the data via

spanning tree isfaster than distributing the minimum fragment of data from a central

server, and it also improves the fault tolerance of the system. Table 4.1 summarizes the

result.

Proof: Consider a cluster ofh reliable hosts with no possibility of preemption

or failure. Thefragment methodminimizes the amount of data sent to each host by

assigning each host a square subproblem of the All-Pairs problem. Each subproblem

requires only a fragment of data from each set to complete. So, both data sets are

divided into intof fragments, wheref =
√

h. Each host then needsn/f data items of

sizes from each set delivered from the central file server. Dividing by the bandwidth

B yields the total time to distribute the data fragments:

Tfragment =
2nsh

Bf
=

2ns

B

√
h

Compare this to thespanning tree methoddescribed above:

Tdistribute =
2ns

B
log2(h)

Becauselog2(h) <<
√

h, the spanning tree method is faster than the minimum

fragment method for any number of hosts in a reliable clusterwithout preemption or
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failure. Of course, the total amount of data transferred is higher, and the dataset must

fit entirely on a sufficient number of disks. However, as commodity workstation disks

now commonly exceed a terabyte and are typically underutilized [42], this has not been

a significant problem.

In actuality, however, a campus grid is a highly unreliable environment. The frag-

ment method is even worse when allowing for the possibility of failures. With failures

during distribution, a given transfer must be retried in either case, but the spanning tree

has the advantage of allowing multiple attempts at once. Andbecause it delivers the

minimum amount of data to any one host, there is no other location a job can be sched-

uled if the data is not available. With the spanning tree method, any job can run on any

node with the data, so the entire computation phase is more naturally fault tolerant.

TABLE 4.1

COMPARISON OF DATA DISTRIBUTION TECHNIQUES

Distribution Total Data Fault

Method Time Transferred Tolerant?

Fragment (ns/B)
√

h ns
√

h No

Spanning Tree (ns/B)log2(h) nsh Yes
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Figure 4.5. Detail of Local Job Execution

The distributed master engine runs on the submitting node, directing each working node
to compute a subset of the All-Pairs problem. On each node, the local master invokes
the users function, buffers the results in memory, and then updates the distributed data
structure with the results.

4.3.3 Coordinating the Computation

After transferring the input data to a suitable selection ofnodes, the All-Pairs engine

then constructs batch submit scripts for each of the groupedjobs, and queues them in

the batch system with instructions to run on those nodes where the data is available.

Each batch job consists of the user’s function and the local master, shown in Figure 4.5.

Although the abstraction relies heavily on the batch systemto manage the work-

load at this stage, the framework still has two important responsibilities: local resource

management and error handling.

The All-Pairs engine is responsible for managing local resources on the submitting
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machine. If a workload consists of hundreds of thousands of partitions, it may not be a

good idea to instantly materialize all of them as batch jobs for submission. Each mate-

rialized job requires the creation of several files in the local filesystem, and consumes

space in the local batch queue. Although Condor is capable ofqueuing hundreds of

thousands of jobs reliably, each additional job slows down queue management and thus

scheduling performance. When jobs complete, there is the possibility that they produce

some large error output or return a core dump after a crash. Instead of materializing all

jobs simultaneously, the engine throttles the creation of batch jobs so that they queue

only has twice as many jobs as CPUs. As jobs complete, the engine deletes the output

and ancillary files to manage the local filesystem.

The engine and the local master together are responsible forhandling a large number

of error conditions. Again, Condor itself can silently handle problems such as the

preemption of a job for a higher priority task or the crash of amachine. However,

because it has no knowledge of the underlying task, it cannothelp when a job fails

because the placed input files have been removed, the execution machine does not have

the dynamic libraries needed by the function, or a brief network outage prevents writing

results to the matrix. Although events like this sound very odd, they are all too common

in workloads that run for days on hundreds of machines. To address this, the local

master itself is responsible for checking a number of error conditions and verifying that

the output of the function is well formed. If the execution fails, the local master informs

the engine through its exit code, and the engine can resubmitthe job to run on another

machine.

The engine can also handle the problem of jobs that run for toolong. This may

happen because the execution machine has some hardware failure or competing load

that turns a 30 minute job into a 24 hour job. Although the runtime of an arbitrary batch
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job is impossible to predict in the general case, the engine has access to a model of the

workload, as well as a distribution of runtimes, so it can cancel and resubmit jobs that

fall far out of the range of normal execution times. A variantof this procedure, “fast

abort”, is discussed at greater length in Chapter 3. To improve the “long tail” of jobs

at the end of an execution, it could also submit duplicate jobs as in Map-Reduce [37],

although this approach has not been attempted.

4.3.4 Managing the Output Data

The output produced by an All-Pairs run can be very large. A 60,000 by 60,000

comparison, approximately the size of the largest production biometric workload in

Section 4.5, will produce 3.6 billion results. Each result must, at a minimum, contain

an eight-byte floating point value that reflects the similarity of two items, for a total

of 28.8GB of unformatted data. If there is additional data such as troubleshooting

information for each comparison, the results may balloon toseveral hundred gigabytes.

Users run many variations of All-Pairs, so the system must beprepared to store many

such results.

Although current workstation disks are one terabyte and larger, and enterprise stor-

age units are much larger, several hundred gigabytes is still a significant amount of data

that must be handled with care. It is not likely to fit in memoryon a workstation and

applying improper access patterns will result in performance many orders to magnitude

slower than necessary. A user that issues many All-Pairs runs will still fill up a disk

quite quickly.

The user who applies existing interfaces in the most familiar way will run into

serious difficulties. The non-expert users of this work havebeen inclined to store each

result as a separate file. Of course, this is a disastrous way to use a filesystem, because
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each eight byte result will consume one disk block, one inode, and one directory entry.

If each row of results is stored in a separate file in the function’s text output format,

this is still storing several hundred gigabytes of data, andstill has a sufficiently large

number of files that directory operations are painfully slow. Such a large amount of

data would require the user to invest in a large storage and memory intensive machine

in order to manipulate the data in real time.

Instead, the abstraction must guide users toward an appropriate storage mechanism

for the workload. Output from All-Pairs jobs goes to adistributed data structurepro-

vided by the system. The data structure is a matrix whose contents are partitioned across

a cluster of reliable storage nodes maintained separately from the campus grid. Data in

the matrix is not replicated for safety, because the clusteris considered an intermediate

storage location in which results are analyzed and then moved elsewhere for archival.

In the event of failure leading to data loss, the All-Pairs run can easily be repeated.

The full design and performance results for the matrix data structure are reported

in [87], but are summarized here.

Because of the underlying storage, row-major access is mostefficient: a row read

or write results in a single sequential I/O request to one host. Column-major access is

still possible: a column read or write results in a strided read or write performed on all

hosts in parallel, taking advantage of hardware parallelism. Individual cell reads are

also possible, but are inefficient.

4.4 Evaluation and Results

Configurations. Evaluation is based on the two implementations of All-Pairsmen-

tioned above:abstractionandconventional. For the conventional configuration, the

central file server was a dedicated 2.4GHz dual-core Opteronmachine with 2GB of
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Figure 4.6: Challenges in Evaluating Grid Workloads
Evaluating workloads in a campus grid is troublesome, because of the variance of
available resources over time. 4.6(A) shows the CPUs assigned to two variants of the
same 2500x2500 All-Pairs problem run in conventional and abstraction modes. 4.6(B)
shows the distribution of job run times for each workload. Inthis case, the abstraction
mode is significantly better, but a quantitative evaluationis complicated by the variance
in number of CPUs and the long tail of runtimes that occurs in adistributed system. To
accommodate this variance, theresource efficiencydescribed in the text is an effective
metric.

RAM, also running a Chirp fileserver.

Note that these cannot easily be compared against a kernel-level distributed filesys-

tem like NFS [109]. This campus grid spans multiple administrative domains and fire-

walls; gaining access to modify kernel level configurationsis impossible in this kind of

environment. Both configurations use the exact same software stack between the end

user’s application and the disk, differing only in the physical placement of jobs and

data. In any case, the precise filesystem hardware and software is irrelevant, because

the conventional configuration saturates the gigabit network link.

Metrics. Evaluating the performance of a large workload running in a campus

grid has several challenges. In addition to the heterogeneity of resources, there is also

significant time variance in the system. The number of CPUs actually plugged in and

running changes over time, and the allocation of those CPUs to batch users changes

according to local priorities. In addition, the two different modes (abstractionand
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conventional) will harness different numbers of nodes for the same problem. How can

an algorithm be evaluated quantitatively in this environment?

Figure 4.6(A) shows this problem. The graph compares the twoconfigurations of

an All-Pairs run of 2500x2500 on a biometric workload. Theconventionalmode uses

all available CPUs, while theabstractionmode chooses a smaller number. Both vary

considerably over time, but it is clear thatabstractioncompletes much faster using a

smaller number of resources. Figure 4.6(B) shows the distribution of job run times,

demonstrating that the average job run time inabstractionis much faster, but the long

tail rivals that ofconventional.

To accommodate this, for each result consider two quantitative results. Theturnaround

time is simply the wall clock time from the invocation to completion. Theresource ef-

ficiencyis the total number of cells in the result (the number of function invocations),

divided by the cumulative CPU-time (the area under the curvein Figure 4.6(A). For

both metrics, smaller numbers are better.

Results. Figure 4.7 shows a comparison between the two implementations for a

biometric comparing face images of 1.25MB each in about 1s each. For workload

above 1000x1000, the abstraction is twice as fast, and four times more efficient. Fig-

ure 4.8 shows a data mining application comparing datasets of 700KB in about 0.25s

each. Again, the execution time is almost twice as fast on large problems, and seven

times more resource efficient on the largest configuration. The third application is a

synthetic application with a heavier I/O ratio: items of 12.5MB with 1s of computation

per comparison. Although this application is synthetic, chosen to have ten times the

biometric data rate, it is relevant as processor speed is increasing faster than disk or

network speed, so applications will continue to be increasingly data hungry. Figure 4.9

shows for this third workload another example of the abstraction performing better than
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Figure 4.7: Performance of a Biometric All-Pairs Workload
The biometric face comparison function takes 1s to compare two 1.25MB images.
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Figure 4.8: Performance of a Data Mining All-Pairs Workload
The data mining function takes .25 seconds to compare two 700KB items.
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Figure 4.9: Performance of a Synthetic All-Pairs Workload
This function takes 1s for two 12.5MB data items, 10 times thebiometric data rate.
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Figure 4.10. Selecting An Implementation Based on the Model

This graph overlays the modeled multicore and cluster performance on problems of
various sizes for All-Pairs. The dots indicate actual performance for the selected prob-
lem size. As can be seen, the modeled performance is not perfect, but it is sufficient to
choose the right implementation.

the conventional mode on all non-trivial data sizes.

For comparison, the graphs also show the execution time predicted by the model for

the abstraction. As expected, the actual implementation isoften much slower than the

modeled time, because it does not take into account failures, preemptions, competition

for resources, and the heterogeneity of the system.

For small problem sizes on each of these three applications,the completion times

are similar for the two data distribution algorithms. The central server is able to serve

the requests from the limited number of compute nodes for data sufficiently to match

the data staging step in the application.

For larger problem sizes, however, the conventional algorithm is not as efficient

because the aggregate I/O rate (hs/t) exceeds the capacity of the network link to the
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central file server, which has a theoretical maximum of 125 MB/s. If there were exactly

300 CPUs are in use at once (easily feasible on the campus grid), the aggregate I/O rate

is 375 MB/s in Figure 4.7, 820 MB/s in Figure 4.8, and 3750 GB/sin Figure 4.9. To

support these data rates in a single file server would requirea massively parallel storage

array connected to the cluster by a high speed interconnect such as Infiniband. Such

changes would dramatically increase the acquisition cost of the system. The use of

an abstraction allows us to exploit the aggregate I/O capacity of local storage, thereby

achieving the same performance at a much lower cost.

Figure 4.10 compares the multicore and cluster models and demonstrates actual

performance achieved when selecting the implementation atruntime. The model is

sufficiently accurate that it can be used to choose the appropriate implementation at

runtime based on the properties given to the abstraction.

4.5 Production Workloads

This implementation of All-Pairs has been used in a production mode for over two

years to run a variety of workloads in biometrics. All-Pairshas been used to explore

matching algorithms for 2-D face images, 3-D face meshes, and iris images. The largest

single production run so far explored the problem of matching a large body of iris

images. A more detailed overview of iris biometrics is givenby Daugman [36].

A conventional iris biometric system will take a grayscale iris image and extract

a small binary representation of the texture in the iris, called aniris code [18]. The

iris code is a small (20KB) black and white bitmap designed tomake comparisons as

fast as possible. To compare two iris codes, the comparison function is the normalized

Hamming distance, which measures the fraction of the bits that differ. Two random

binary strings would likely differ in about half of their bits, and would therefore have
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Figure 4.11. Results From Production Run

The results of All-Pairs on 58,639 iris codes. The gray indicates comparison of irises
from the same person (match). The black indicates comparison of irises from different
people (nonmatch).

a Hamming distance score around 0.5. Two iris codes corresponding to two different

images of the same person’s eye should not differ in as many bits, and thus have a

Hamming distance closer to 0. A comparison between two different images of the same

iris is called amatch, and comparison between images of two different eyes is called a

nonmatch. Ideally, all match comparisons should yield lower Hammingdistance scores

than all nonmatch comparisons.

The largest single run computed Hamming distances between all pairs of 58,639

20KB iris codes from the ICE 2006 [89] data set. The next largest publicly available

iris data set is CASIA 3 [25], about three times smaller, on which no results have been

published on complete comparisons. This is the largest suchresult ever computed on a

publicly available dataset, as of the time of completion.

60



Figure 4.11 shows the end result of this workload. A histogram shows the frequency

of Hamming distances formatchesandnonmatches. As can be seen, the bulk of each

curve is distinct, so an expert system for matching might usea threshold of about 0.4 to

determine whether two irises are distinct. However, these results also indicate a group

of non-matching comparisons that significantly overlap thematches. External exami-

nation by a biometrics expert discovered that these low scores occur when one of the

images in the comparison is partially occluded by eyelids sothat only a small amount

of iris is visible and available for the comparison. This observation has has spurred

development of mechanisms to account for such irregularities in data acquisition and

processing [22]. Without the ability to easily perform large scale comparisons, such an

observation could not have been made.

The pool’s fastest single machine for this experiment couldperform 50 comparisons

per second, and would take about 800 days to run the entire workload sequentially.

The All-Pairs implementation ran in 10 days on a varying set of 100-200 machines,

for a parallel speedup of about 80. The speedup is imperfect because the pool does

not uniformly consist of equivalent machines, and because it cannot maintain ideal

conditions over the course of ten days due to competition forresources and unreliability

of resources. Table 4.2 summarizes all of the failures that occurred over that period,

grouped by the component that observed and responded to the failure.

As discussed above, the Condor batch system handles a large fraction of the fail-

ures, which are preemptions that force the job to run elsewhere. However, the number

of failures handled by the rest of the system is still large enough that they cannot be

ignored. All are cases that are not supposed to happen in a well regulated system, but

creep in anyhow. Despite extensive debugging and development, the user’s function

still crashes when exposed to unexpected conditions on slightly different machines. A
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TABLE 4.2

SUMMARY OF FAILURES IN PRODUCTION RUN

Failure Type Observer Count

Job killed with signal 15. engine 4161

Job killed with signal 9. engine 372

Inputs not accessible. wrapper 5344

Failed to store output. wrapper 17

Dynamic linking failed. wrapper 45

Function returned 255. wrapper 20

Function returned 127. wrapper 300

Job preempted. batch system 14560

number of machines were wiped and re-installed during the run, so input files were

not always found where expected. There are a surprisingly large number of instances

where the job was forcibly killed with a signal; only a local system administrator would

have permission to do so. These data emphasize the point thatanything can and will

happen in a campus grid, so every layer of system is responsible for checking errors

and ensuring fault tolerance – this task cannot be delegatedto any one component.

Despite these challenges, this production workload has demonstrated that the All-

Pairs abstraction takes a computation that was previously infeasible to run, and makes

it easy to execute in a matter of days, even in a uncooperativeenvironment. Using this

abstraction, a new computer science graduate student was able to break new ground in

biometrics research without first becoming an expert in parallel computing.
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CHAPTER 5

SPARSE-PAIRS ABSTRACTION

5.1 Sparse-Pairs Abstract Problem

There are many workloads that involve the comparison of large sets of objects, but

do not requireall possiblecomparisons. One specific pattern within this group is the

Sparse-Pairs problem.

Sparse-Pairs( data A, data B, function F ( data x, data y), pairs P )

returns array R such thatF (A[P [i].x], B[P [i].y])

The Sparse-Pairs abstraction applies a functionF to pairs of elements in setsA

andB given by the setP , yielding a result setR. Sparse-Pairs fits between the one-

dimensional array abstraction of Map, and the two-dimensional array abstraction of

All-Pairs. In this way it is a bit like superimposing Bag-of-Tasks on top of the one-

dimensional structure of a Map abstraction [120].

Data considerations differentiate Sparse-Pairs from bothMap and All-Pairs. Al-

though the pairs are sparse, each sequence is still used manytimes throughout the

workload. Thus, while the pairs to be computed could be written in full to files in

which every pair was a single element, and Map could then be run using that input,

this is inefficient. And although Sparse-Pairs result is a subset of a corresponding All-

Pairs result, it is unnecessary to complete an entire All-Pairs problem for every case of
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Figure 5.1. The Sparse-Pairs Abstraction Applied to Bioinformatics

Sparse-Pairs, and for particularly sparse sets of pairs, itmay be very inefficient to do so

even if the All-Pairs abstraction is highly optimized.

Further, even disregarding the problem of unneeded computations, Sparse-Pairs

problems also do not have the regular structure that makes All-Pairs easy to interface.

The regular structure of All-Pairs allows the interface to the abstraction to require only

the function and the names of the full sets. For Sparse-Pairsthe usage is less uniform

even for the same input set size, thus it is less beneficial to prestage all data to all nodes

and assign computation to arbitrary identically prepared resources.

5.2 Application of Sparse-Pairs in Bioinformatics

Many bioinformatics problems are naturally data-paralleland thus lend themselves

to distributed computing at large scales [111]. The genome assembly problem presents

both naturally data-parallel problems that can be scaled upto thousands of nodes and

other problems that use much smaller levels of parallel computation to distribute disk
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or memory requirements. This section describes the genome assembly pipeline, the

structure, data, and algorithms for a naturally parallel application within that pipeline,

and how the Sparse-Pairs can be applied to that application.

5.2.1 Assembly Pipeline

Genome sequencingis the laboratory process of determining an organism’s DNA

string from a biological sample. A DNA string is a long seriesof bases(A, G, T, and

C); however, no current sequencing process is capable of producing an organism’s en-

tire string of millions or billions of bases. Instead, the physical process produces a large

number of randomly located substrings known asreads. Individually, these reads have

limited scientific value, as they are very short – 25 to 1000 bases each [98].Genome

assemblyis the computational process of arranging reads in the correct order to produce

the largest possible contiguous strings known ascontigs. There are many assemblers

[12, 60, 63, 88, 100] that solve the problem in a variety of ways – often performing

similar conceptual steps, but organizing and naming them differently. For this discus-

sion, the organization will be simplified to three phases: candidate selection, alignment,

and consensus. These phases are illustrated in Figure 5.2: (a) is the set of reads pro-

duced by genome sequencing; (b) shows the candidate pairs that were determined as

potential matches in candidate selection; (c) shows the best overlaps, as determined by

alignment; and (d) illustrates ordering the reads based on overlaps at the beginning of

the consensus phase.

Thealignmentstep is the process of finding overlaps between the suffix of one read

and the prefix of another. To ensure that enough reads will overlap, a genome sequenc-

ing project oversamples from the DNA in the cell by a factor of5-10. In principle, every

single read should be compared to every other read; however theO(n2) algorithm is is
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Figure 5.2. Stages of the Genome Assembly Pipeline

computationally infeasible for large numbers of reads.

To avoid this problem,candidate selectionis performed first to find candidate pairs

or reads that are likely to overlap. One common heuristic forthis asserts that pairs

without an exact short match are unlikely to be well-alignedfor a longer prefix or suffix,

and thus it is possible to discard pairs of sequences that do not share a short (usually

20-30 bases) exact match. This heuristic will filter out the vast majority of theO(n2)

comparisons [99]

Finally, the assembler lays out reads in the proper order from alignment, creates

one or more combined sequences, and then forms them togetherinto larger structures

calledscaffolds. In most assemblers these processes are divided into many separate

steps, however the rest of this chapter will refer to them jointly as theconsensusstep.

To use a layman’s analogy, genome assembly is something likeputting together a

jigsaw puzzle. One method for solving the puzzle would be to check every edge of

every piece against every edge from all the other pieces. However, this is an inefficient

jigsaw puzzle technique, and instead heuristics such as discarding pairs of pieces with

drastically different colors can be employed to reduce the number of pieces that have

to be compared – candidate selection. The remaining possible connections are tried,

and pieces are connected into small clusters – alignment. These clusters can be joined

together to form larger and larger contiguous pieces – scaffolding and consensus.
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5.2.2 Sequence Alignment

Sparse-Pairs problems occur frequently in the field of bioinformatics. One such

example is the alignment step discussed above. Most previous approaches to paral-

lelizing assembly have focused on programming models and hardware architectures for

tightly-coupled parallelism, requiring dedicated high performance clusters or massively

parallel supercomputers. The pattern of computation, however, is amenable to execu-

tion on a campus grid. The alignment step is the naturally parallel, requiring millions

of pairs of sequences to be compared using a self-contained alignment algorithm. No

task requires inter-computation communication or has dependencies on prior tasks.

In principle, one could run an All-Pairs abstraction to compare all fragments to each

other, and then match up the pieces with the best scores. However, as noted above, for

a sufficiently large problem, this is computationally infeasible – for the Human genome

discussed below, for instance, an All-Pairs comparison of reads would require nearly 1

quadrillion alignments.

The candidate selection phase of genome assembly greatly reduces the problem,

so instead of an application of All-Pairs, sequence alignment becomes an application

of Sparse-Pairs. The list of “candidate” sequences remaining after candidate selection

becomes theP set for a Sparse-Pairs workload, as shown in Figure 5.1.

It is natural to ask what good an aligner is without the other portions of the as-

sembly pipeline. However, this work latches on to the growing trend of developing

modular genome assembly components. Also, it was was developed in conjunction

with a distributed candidate selection framework [86, 92] as part of the Scalable As-

sembly at Notre Dame (SAND) software package (http://cse.nd.edu/∼ccl/

software/sand).

The trend for modular assembly components is being approached from both sides:
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the UMDOverlapper [107], for instance, can reliably work with several common as-

semblers; while the AMOS consortium [98] is actively developing an open source,

modular assembly pipeline with the intent that others will contribute new and different

approaches to each of the pipeline stages. Typical parallelsolutions to genome assem-

bly have tightly coupled alignment with the other stages of the assembly. These highly

specific assemblers have relied on batch processing, complex MPI programming or spe-

cialized hardware such as BlueGene/L [73], FPGAs [116], andthe Cell processor [110]

to speed up alignment, but the new modular approaches are agnostic to the mechanisms

of the individual modules. This presents a perfect opportunity for distributed abstrac-

tions to be supplied as modules.

5.2.3 Genomic Data and Algorithms

This chapter considers four different genomic datasets, shown in Table 5.1. The

smallest dataset consists of the all the reads from the largest scaffold ofAnopheles

gambiae S, the next largest is the entireA. gambiae Sgenome. TheA. gambiaegenome

was sequenced using traditional Sanger sequencing, which has longer read lengths, but

is more expensive and time consuming. The large dataset is a set of simulated reads

of theSorghum bicolorgenome [93], generated by extracting reads of 500-1000 bases

from the finishedS. bicolorgenome with randomized starting positions. The largest

genome is the Venter human genome [125], which is used in thiswork to demonstrate

scalability to state-of-the-art sized data sets.

An important choice in any assembler is the algorithm used for alignment of the

reads. In this work, two approaches are considered. The primary algorithm is the simple

Smith-Waterman (SW) alignment commonly taught in bioinformatics textbooks [57].

This algorithm computes alignments in time proportional tothe lengths of the sequences
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by computing progressive overlap scores in a dynamic programming matrix. The rea-

sons for using SW are twofold: it can be implemented very easily, highlighting the

ability of the abstraction to be reused by scientists who arecapable but not familiar

with distributed systems programming; and its increased sensitivity may be required in

certain cases, such as in SNP discovery programs like MOSAIK[61] and in short-read

sequence assemblers. The second approach is a simple bandedalignment, also intro-

duced in [57], in which only a narrow band of the SW dynamic programming matrix is

computed. In this case, the amount of data remains the same while the execution time

of each task decreases significantly. This is used as an example of the various heuristics

that are not as sensitive much run much more quickly than SW.
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TABLE 5.1: GENOMES USED IN THIS CHAPTER
Number Average Candidate Uncomp. Task Data Comp. Task Data

Dataset Reads Read Size Pairs Size Size Size Comp. Size
Small A. gambiae scaffold 101617 764.22 738838 80.2MB 684.2MB 21.9MB 187.6MB

Medium A. gambiae complete 1801181 763.66 12645128 1.4GB 13.2GB 0.4GB 3.6GB
Large S. bicolor simulated 7915277 747.57 121321821 5.7GB 127GB 1.7GB 34.6GB
Huge H. sapiens complete 31257852 654.49 327025224 20.0GB 299GB 5.5GB 79.7GB
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5.3 Implementation

The sequence alignment application of Sparse-Pairs is built with a Master-Worker

paradigm using the Work Queue API. Figure 5.3 shows how the master and worker

pieces of the work together in SAND. The piece considered in this chapter is the mid-

dle operation: Alignment. Typical of the general case, the master is responsible for

transferring the serial executable and task-specific data to the worker – in this case, the

task-specific data is a pair of sequences for which an alignment score should be calcu-

lated. The worker completes the assigned computations and transfers the results back

to the master, which sanity checks them and releases them to archival storage.

The alignment master is executed by the worker with few requirements:

sand align master align.exe cands.cand seqs.cfa results.ovl

The user supplies only his serial alignment executable, twoinputs, and a target output

file that will store a list of sequence pairs that overlap and data about the quality of the

overlap and where the alignments occur within the sequences. The two inputs are the

list of candidate pairs generated by the candidate selection step, and the actual library of

reads. The candidates can be pre-computed by a candidate selection program or, with a

runtime option, computed and supplied concurrently in a pipeline.

With the very large size of genomic datasets, management of data both before and

during computation is the critical challenge for this application of Sparse-Pairs.

5.3.1 Managing the Input Data

The principal complication for Sparse-Pairs is that it is not generally feasible to

optimize a bulk transfer of data files to many nodes because while each data item is

used multiple times, the number of repetitive uses may be farless than the number of

nodes. Additionally, input datasets are quite large and thetarget campus grid resources
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Figure 5.3. A Scalable Modular Assembler

are neither persistent nor reliable. The former limits the effectiveness or ability to

prestage all the tasks’ data to every compute node. The latter limits the effectiveness or

ability to carefully craft exactly which tasks will run on which resources and prestage

the appropriate task input files accordingly.

So the conventional approach [64, 88] is to prestage the worklocally, split the prob-

lem up into as many tasks as there are resources, submit thosetasks as batch jobs to the

campus grid , and require the batch system to transfer the task input data with the batch

job.

An issue with this solution, however, is its voracious consumption of local state. As

most batch systems require all files to be in place on submission and remain in place

(because of the likelihood of latency, out-of-order execution, or eviction) the framework

would have to prestage locally a file corresponding to every task. For workloads in

which sequences appear in many different candidates this means that the master must
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have enough disk space for many times the total data set size.As an example, Table 5.1

shows the sequence library and required task data sizes for the four workloads used in

this chapter. The task data corresponds to the amount of datathat must be sent over the

network.

To prevent excessive consumption of disk space and slow filesystem access to many

small files, at runtime the master process reads the genetic sequences into a hash table

in memory for fast lookup based on the sequence identifier. The abstraction engine

(Master) can construct tasks on the fly as the workload advances, streaming data from

memory buffers across the network.

The hash table can be extremely memory consuming on the Master, which also must

be active in transferring data. This potentially creates a single bottleneck at the Master’s

outgoing network link. Both the memory consumption and the network bottleneck

can be alleviated with compressed data – in bioinformatics,the alphabet{ACGT} can

easily be compressed to two bits per basepair – or multiple Master processes running

on different nodes.

For fast-finishing functions, even if the Master has sufficient bandwidth the network

latency may be too great to keep a sufficient number of Workerssatiated. To prevent

task submission latency from limiting effective parallelism, the input data (the sequence

ID, the sequence metadata, and the sequence data for each candidate pair) for many

separate instances of the serial program are grouped together into task buffers.

To decrease total data sent over the network in tasks that consist of many separate

instances, the candidate list is sorted. This allows the master to easily group together

pairs sharing a first sequence, abbreviating the task bufferso that the shared sequence

is copied only once in a task buffer instead of once for every pair that includes it.
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5.3.2 Coordinating the Computation

Because of the data-intensive nature of the bioinformaticsapplication, the natural

parallelism of the actual computation tasks, and the simplicity of Work Queue’s Master-

Worker framework, most of the challenges with this abstraction application are data

management. However, there is one particular computational challenge that impacts

users’ satisfaction.

All candidate pairs are independently computable, and thusduring a workload even

very slow machines do useful work. At the end of a workload, however, slow machines

may take work that would be completed faster on other available resources. In the

worst case, this can hold up completion of the workload significantly and cause a long-

tail effect at the end of the workload. Although unpredictable, this situation was not

uncommon in the initial sets of experiments.

Even beyond the performance impact of these longs tails, thepatience for slow (but

eventually completing) tasks decreases significantly at the end of a workload. Users

following the progress of their workload are anxious to see the results, and may get

concerned about the correctness of the system if a few individual tasks appear to be

hanging.

Avoiding long tails is the intent of the Work Queue fast abortmechanism. In all

previous applications of fast abort, however, the mechanism was either enabled or dis-

abled throughout the workload – generally based on whether there were computation

dependencies throughout the workload. In this implementation, however, the fast abort

mechanism is enabledduring the workload at a certain point as an end-game strategy.

This allows slow machines to contribute during most of the workload, but lessens the

chance that they will result in a long tail in finishing.
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5.3.3 Managing the Output Data

When Work Queue tasks complete, the worker send results backto the master to be

written to persistent storage (in this case, the OVL record file provided as a command

line argument). Because the master may run for many hours or days, it includes a recov-

ery mechanism for starting back up a workload during which the master has crashed.

The recovery mechanism in the master scans the completed OVLresults (in linear time

to the number of completed pairs) for the partially-completed workload. Because can-

didates may complete out-of-order, it is not possible to simply start in the candidate file

at the next candidate beyond the last completed result from the results file.

For each completed result, a tag consisting of the two sequence identifiers is loaded

into a recovery hash table in memory. Once tags are loaded forevery completed result,

the master mimics starting a new workload, with one key difference. As the master

scans the candidate list to create and buffer new tasks, it checks each candidate pair

against the tags in the recovery hash table. The master only needs to create tasks for

those candidate pairs that are not yet completed (that is, those that don’t have a tag

in the recovery hash table). Because the recovery hash tablemay require significant

memory, and this application does not have repeated tasks, the recovery mechanism

removes completed tasks from the hash table as they are reached in the candidate file.

This process gradually reclaims memory as each of the completed results is reached;

and once all completed pairs have been scanned (so the hash table is empty), the hash

table itself is freed. The remainder of the workload continues unhindered as though the

recovery mechanism was never activated.
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5.4 Evaluation and Results

Candidate selection for each of the first three datasets described above was com-

pleted on the reads using the complementary SAND module. Thememory required for

candidate selection was reduced from 18GB on a single core toless than 2GB per core

across the cluster throughout the workload, ensuring consistent access to data without

costly paging to disk, and garnering speedup [86]. After this process, sequence align-

ment on the datasets were benchmarked, varying the number ofresources provisioned

from the Notre Dame campus grid. Those results are presentedin this section. Per-

formance at larger scales (in terms of both data set size and number of workers) is

examined in the next section.

5.4.1 Task Size

In the benchmarks below, each task contained 5000 alignments. However, when

running on a sufficiently fast network, such as a local cluster, task size does not have a

significant effect on performance, which can be seen in Figure 5.4.

Task size becomes more important when many nodes are furtheraway over the

network, as the transfer time for each task does not scale linearly with the size of the

task. Larger task sizes pay the same overhead while sending more data, and utilize the

workers better, resulting in faster run times and better speedup. However, there are two

major downsides to increased task size. First, if the systemis especially volatile, more

work is lost when a worker is evicted. Second, the master queues a large amount of tasks

to ensure that the it can quickly dispatch tasks to workers that have returned a completed

task, or to new workers that join. A larger task size will takeup more memory per task,

increasing the memory consumption. The effects of excessive memory consumption

are discussed in more detail in Section 5.5.
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Figure 5.4. Alignment Candidates Per Task

There is little difference in workloads with different numbers of alignments per Work
Queue task, extreme task sizes may be inefficient with many workers.

5.4.2 Scalability Benchmarks

A workload that indicates good strong-scaling efficiency will, for a constant work-

load problem size, see its speedup scale by the same factor asthe increase in number

of processors. A workload that indicates good weak-scalingefficiency will keep a con-

stant turnaround time if both the problem size and the numberof nodes are increased

by the same scaling factor. Sequence alignment demonstrates both strong-scaling and

weak-scaling in the benchmarks in this section.

Calculating conventional parallel speedup (the sequential wall-clock turnaround

time divided by the parallel wall-clock turnaround time) for a heterogeneous and dy-

namic set of resources is not meaningful, because the serialresource has little perfor-

mance relation to the parallel resources. Further, becausethe benchmarks were so large

and contained so many alignments it was not feasible to simply run all the alignments

sequentially. Instead, the speedup metric in this work usesthe workload’s average
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Figure 5.5. Scalability of Alignment on Small Genome

The small genome scales efficiently to 128 local campus grid nodes. Beyond that, the
problem is not large enough to exploit additional parallelism.

execution time across all tasks, multiplied by the number oftasks completed as the se-

quential runtime for the parallel speedup computation. Note that in Figures 5.11, 5.12

and 5.10, which consider both problematic and corrected instances of workloads, the

average run time from the corrected version is used to calculate speedup as a function

of time.

Almost all of the benchmarks exhibit scaling speedup. However, each benchmark

has features that shed light on the strengths and weaknessesof the system. For the

smallest dataset, benchmarks achieved near linear speedupuntil about 128 workers

(Figure 5.5). Because this is the smallest dataset, with toomany nodes all the work is

completed before some nodes receive a task.

The medium dataset (Figure 5.6) yielded better results; thedropoff in speedup did

not occur until 512 nodes were used. The large dataset (Figure 5.7) displayed similar

scalability to the previous dataset. It was able to run on 512cores in only 9595 seconds,
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Figure 5.6. Scalability of Alignment on Medium Genome

The medium genome scales efficiently to 128 campus grid nodesat the same institution
as the master, and scales to 512 nodes while retaining 80% efficiency.

for a speedup of 455x. This dataset did highlight some of the challenges of the assem-

bly problem and of distributed computing in general. These are discussed in detail in

Section 5.5.

5.4.3 Banded Alignment

One of the primary advantages of the abstraction framework is its ability to substi-

tute any alignment algorithm for the one used in the above benchmarks. So, in addition

to the benchmarks using SW, Figure 5.8 shows execution of themedium dataset with

Banded Alignment to consider how the framework adapts to alignment programs that

are considerably faster. As a result of the increased relative overhead, scalability should

decrease, and the results confirm this – scaling speedup up to64 workers, beyond which

are diminishing returns.
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Figure 5.7. Scalability of Alignment on Large Genome

The large genome scales efficiently to 256 campus grid nodes at the same institution as
the master, and scales to 512 nodes while retaining almost 90% efficiency.

5.4.4 Preventing Long Tails

Although long tails are common, even identical workloads onidentical resources

within a campus grid vary too much for long-tail conditions to be predictable. Because

of this, in order to evaluate the fast abort mechanism a set ofidentical resources were

picked from a 64-node cluster in which one of those nodes was handicapped to take

5-10x longer to complete tasks than the other nodes. This environment is much more

prone to substantial delays in the workload due to a single very slow node.

Figure 5.9 shows a histogram of completion times for 38 workloads with the Small

dataset on this set of resources. The white boxes show countsof workloads in which

fast abort is not activated and the dark boxes are counts of those in which fast abort was

activated after all tasks had been submitted. Though variations in workload timings

didn’t result in long tails every time without fast abort, itis clear that a significant

amount of the trials took much longer to complete. Upon inspection, every one of these
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Figure 5.8. Effect of Faster Alignment

Many applications do not need the precision of a complete Smith-Waterman align-
ment and can use faster alignment heuristics. This graph of aworkload on the
medium dataset with faster alignments shows decreased scalability, but retains sig-
nificant speedup over a serial solution of approximately 60x.

delays resulted from having one remaining task being computed on the slow worker

while all other workers were idle. The version with fast abort enabled to cut off a

worker after it has exceeded the average completion time by 50% does not suffer from

these extreme tails.

5.5 Production Workloads on the Grid

For very large problems, the computational resources required exceed the capacity

of the clusters comprising Notre Dame’s campus grid. This section explores the ramifi-

cations of running on multi-institutional resources such as remote Condor pools or the

Open Science Grid [2]. The primary experiments run on the large dataset for sufficient

available parallelism, using Condor’s flocking mechanism as an example of using re-

mote grids. This section illustrates the problems that led to design decisions discussed
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Figure 5.9. Using fast abort to prevent long tails

A heterogeneous environment is prone to long tails at the endof workloads. This his-
togram groups the runtimes of 38 identical workloads in suchan environment, half with
the fast abort countermeasure in place and half without. Almost all of the runs without
fast abort take significantly longer than the ones in which itwas turned on.

in Section 5.3, which often cannot be seen at benchmark scales, and examples of large

workloads that run efficiently when these problems are eliminated.

The last two subsections below describe two types of highly-scaled workloads that

demonstrate the capabilities of the abstraction frameworkto run on a wide variety of

scales and use-cases. The first of these is a contrived (but realistic) scenario that demon-

strates how a scientist may use the system to test a new methodin production and then

quickly scale the workload up to a multi-institutional gridto generate complete results.

The second is an even larger run coordinated from the start touse more than 1000 cores

to complete a workload of particular interest to the bioinformatics community and the

public at large.
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Figure 5.10: Scaling Up to the Grid
This figure shows the timeline of a large assembly run on a system grown progressively
from a single workstation up to a large scale grid including resources at the University
of Notre Dame, Purdue University, and the University of Wisconsin. The master is
forcibly killed halfway through to demonstrate failure recovery.

5.5.1 Out-of-Core Task Data

Complete alignment on the large dataset scales at nearly linear speedup up to 256

workers, but saw a marked decrease in performance when using512 workers. The

biggest problem with running such a large dataset was memory. Although the master

was running on a machine with 8GB of memory, the large datasetwas 5.7GB. This is

loaded into memory to achieve the best retrieval times when building tasks. Addition-

ally, the master buffers a significant number of tasks in memory, and this number scales

up with the number of connected workers.

With 512 workers, the additional buffered tasks caused the master to exceed phys-

ical memory. When the master began to need paging for its taskmanagement, perfor-

mance began to degrade. The effect of this can be seen in Figure 5.11(A). Because

it takes significantly longer to create the number of tasks required, workers must wait

longer to receive their task. When running with many workers, the amount of time
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(A) No Compression (B) Compression

Figure 5.11: The Effect of Data Compression.
These graphs show the effect of data compression on the master’s ability to dispatch
tasks using the large dataset. Each shows a timeline of a single run, with the number
of tasks running, the cumulative speedup, and the percent complete over time. Figure
5.11(A) does not use data compression, and oscillates between 300 and 400 tasks run-
ning at once, reaching a speedup of slightly better than 300x. Figure 5.11(B) uses
compression, and stabilizes at about 500 workers with a speedup of about 500x.

necessary to give tasks to all the workers is longer than the amount of time it takes a

worker to complete this task. This creates a convoy effect, where workers are spending

more time waiting to be processed by the master than they spend actually working. This

explains the large variation in the number of tasks working.

Figure 5.11(B) shows how the same job ran on 512 workers with compression en-

abled. Once the amount of memory needed can be kept within thephysical memory,

the master is easily able to keep up with the workers requesting tasks. In this case,

the number of workers running at any time remains relativelyconstant, subject only to

minor fluctuations, mostly caused by changes in the number ofworkers active.

This continues to be necessary even as resources scale up with the data set sizes.

For example, the master for the human dataset was run on a machine with 32GB of

RAM, which was enough for its 20GB requirement. Without compression, however,

that requirement would have been far exceeded even the largememory machine’s core

memory.
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(A) Single Master (B) Dual Masters

Figure 5.12: The Effect of Splitting Masters.
When using a sufficiently large number of workers on the largedataset, the master does
not have enough network bandwidth to keep all of them busy. These figures show a
timeline of a single run with approximately 950 workers using one master (A) and two
masters (B). With a single master, workers complete faster than the master can dispatch
new work, so not all nodes can be kept busy processing at once,and the speedup reaches
less than 400x. With dual masters, peak speedup reaches 790xbefore settling out about
700x. Note that the unequal rate of completing work in (B) causes the dropoff beyond
3000s.

5.5.2 Waiting for Task Assignment

When a master has many workers connected to it, it takes the master longer to

assign tasks to all the workers in round-robin fashion. If task assignment is slow, it

can take the master longer to assign tasks to all workers in the pool than it takes for

an individual worker to finish its task. The same symptoms appear as in the memory

case above: workers spend more time waiting to be given new tasks than they spend

working, and efficiency suffers. In this case, the main problem is waiting for the master

to transfer task data to every worker. To exceed the number ofmachines available

in Notre Dame’s Condor pool, machines are available from other computing pools on

campus and other institutions’ Condor pools, particularlyPurdue University and the

University of Wisconsin.

Resources beyond the local campus grid, however, introducesignificant data trans-
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fer complications due to reduced throughput capacity. While data transmission to ma-

chines at Notre Dame averaged of 42.29 MB/s (meaning data fora task could be trans-

fered in only a few hundredths of a second), data to Purdue took an average of .36s,

and data to Wisconsin was even slower, at .53s per transfer. In a with 900 submitted

workers for a single master with 5000 candidates per task, the average transfer time was

0.27s. 835 workers completed tasks, with the others failingto find an available campus

grid resource or exiting after starvation. This means the average time to transfer files to

all 835 workers was 225s, which is greater than the typical task completion time.

Ideally more nodes with fast connections could be added in place of machines at

other institutions, however this is not always feasible – campus grids are often at the

whim of voluntary contributors and institutional budgets.In order to take advantage of

remote computing resources that have slower network transfer times without compro-

mising the efficiency of a workload, one mechanism is to divide the workers between

two controlling masters, balancing the slow connections between them. This is not an

ideal approach, as it requires splitting the list of candidate pairs half and running the

master program on two separate machines with the same list ofsequences but differ-

ent halves of the candidate pairs list. When using two masters on the above workload,

sending data to 450 workers each averaging 0.27s per task takes only 121s, so both

masters were able to work efficiently.

Figure 5.12(A) shows a timeline of workers waiting rather than actively computing

associated with this problem for a similar job with 950 submitted workers, while Figure

5.12(B) shows the smoother two-master version of the same workload. The maximum

number of workers running tasks at a time was 921 with two masters.

The multiple-master technique is not limited in application to workloads with large

number of workers with slow connections. Various other system resources limitations
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can cause workers to experience starvation even if network speeds are fast enough to

support all workers. For instance, many Linux systems have hard limits on file de-

scriptors open by a process (usually 1024), and users might not have root access to

increase this limit. Using multiple masters multiplies thenumber of connections, and

thus supportable workers, in this case.

In the future, instead of running multiple masters as separately invoked user pro-

grams, the masters themselves could be Work Queue tasks. In this case, a single hier-

archical master would be invoked by the user, which would be responsible for starting

masters as Work Queue tasks and dividing work between them.

5.5.3 Growing From Desktop to Grid

This subsection presents an example that is contrived – thatis, an actual domain

scientist did not proceed through this set of steps attributed to him, instead applica-

tion developers performed actions typical of an exploratory use case for the abstraction

framework. This scenario serves not only to illustrate a typical user’s actions, but also

to demonstrate all of the features and flexibility of the framework: adaptability to many

types of resources (local execution, execution as a clusterjob, execution on a campus

batch system, execution as part of a multi-institutional resource pool); fault-tolerance

to failures on the worker nodes; and fault tolerance to failures on the master node.

As in many fields, research in bioinformatics is highly exploratory. An active re-

searcher may test many slight variations upon an algorithm,generating a number of

tests of various sizes before proceeding to analyze an entire dataset. Because Work

Queue does not require a predetermined set of workers, a usermay slowly generate

small results, then progressively add resources as confidence is gained. Figure 5.10

graphs such progressive growth for this contrived example:

87



TABLE 5.2

SUMMARY OF MULTI-INSTITUTIONAL WORKLOAD

Tasks Average Runtime (s)

Total 16936 184.1± 53.8

Notre Dame 7998 215.3± 46.4

Purdue 7760 154.0± 40.8

Wisconsin 1232 170.1± 56.2

With the master running a scientist started a worker processon his workstation.

After a few minutes, he surveyed the progress and determinedthat the results were

promising, but serial execution would not be sufficient, so he asked a coworker to start

a worker on her own machine, and also prepared and submitted some batch jobs to

his research group’s 32-node cluster. As these jobs startedrunning, speedup increased

accordingly. Hoping to finish the alignments that afternoon, he submitted jobs to the

campus computing grid at Notre Dame, followed by submissions to Condor-based grids

at Purdue University and the University of Wisconsin. Abouthalfway through the com-

plete assembly, however, he accidentally killed off the master, causing the computation

to halt. Fortunately, when the master was restarted, it loaded all of the complete re-

sults, accepted connections from the still-running workers, and continued where it left

off. The entire assembly completed in just over two hours, with a speedup of 269x

and a maximum of 680 CPUs in use at once. Note that the low speedup should not be

alarming, because of the gradual nature in which the workerswere added, and because

it includes the unproductive time during the crash in the middle of the job.

Table 5.2 summarizes the work distribution across sites. The tasks running at home
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were slower and exhibited more runtime outliers, because the local campus grid in-

cludes a large number of scavenged resources compared with more homogeneous ded-

icated grid resources at the other sites.

Even making many connections over the WAN, the master was still able to maintain

a steady task throughput with machines at three different institutions. The scalability is

strong – taking into account that the final speedup is not reflective of the final state of

the workload – and with an improved wide area network connection or a larger number

of local resources available even more resources could be harnessed. Additionally the

multiple-masters technique used before to demonstrate a solution to insufficient net-

work bandwidth will still be advantageous.

5.5.4 Many-Node Runs on the two Largest Datasets

When there are not enough local machines, so resources from other institutions are

used (thus significantly increasing the master’s transfer times to each worker), using

two masters on a single workload shows scalability beyond that seen in this section’s

first scenario. Using multi-institutional resources, Smith-Waterman alignments were

computed for the large dataset – 121 million candidate pairsfrom a set of 8 millions

sequences – in under one and a half hours. For comparison, thesame workload serially

would take over 57 days on an average resource from the campusgrid pool. Figure 5.13

shows a peak of almost 1300 resources harnessed, sustained levels above 1000 for an

hour during the workload, and a final speedup of 927x at 71.3% parallel efficiency.

Finally, the last workload demonstrates scaling beyond even the large workload. A

complete alignment of the Human genome [125] – 327025224 candidate pairs from

a set of 31257852 sequences – was computed in 2.5 hours using 1024 nodes with one

master. The pool of resources was limited to 1024 nodes because this was the maximum

89



 0

 200

 400

 600

 800

 1000

 1200

 0  1000  2000  3000  4000  5000  6000
 0

 20

 40

 60

 80

 100

T
as

ks
 R

un
ni

ng
 a

nd
 S

pe
ed

up

P
er

ce
nt

 C
om

pl
et

e

Time (seconds)

Tasks Running
Speedup

Pct Complete

Figure 5.13. Multiple masters at grid scale

This figure shows the timeline of a 121M candidate run on the large sequence set us-
ing approximately 1300 workers at two institutions separated by a WAN. Two masters
support almost 1300 at peak and use 1000 or more workers consistently for most of the
90-minute runtime, totaling a speedup of 927x.

supportable number of connections on the machine where the master was run, but the

master process could have supported 3000-4000 workers in terms of network transfer

performance. The resources were all located on the local campus grid at one institution,

so there was no detrimental effect of transferring data overthe WAN, although they

came from several different resource pools on campus. Figure 5.14 shows a peak of

over 1000 cores harnessed (the theoretical maximum given the number of available file

descriptors), sustained peak levels once the peak is reached, and a final speedup of 952x

at 93.0% parallel efficiency.
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Figure 5.14. Human genome at scale

This figure shows the timeline of a 327M candidate run on the huge sequence set using
1024 workers on the Notre Dame campus grid. The master supports all workers at
peak, and sustains peak performance for over two hours during the run, totaling a
speedup of 952x.
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CHAPTER 6

DATA-SPLIT-JOIN ABSTRACTION

6.1 Data-Split-Join Abstract Problem

The Data-Split-Join problem is an example of a computation that is straightforward

to write up on a chalkboard, but not so easy to implement for applications that must

manage gigabytes of data splits to campus grid nodes, hundreds of computation tasks,

and a summary operation that of a collective join across a campus grid. This chapter

discusses the design, implementation, and deployment of anabstraction for Data-Split-

Join, particularly as applied to a general data mining application.

An abstract Data-Split-Join problem can be defined as follows:

Data-Split-Join( D, T, P, N, F, C ) returns R:

D - Primary (Split) Dataset: list of (name,properties)

T - Secondary (Join) Dataset: list of (name,properties)

P - Partitioning method.

N - Number of partitions.

F - Function.

C - Collection process.

R - Result set: list of (name,class)

The Data-Split-Join workload starts by dataset D into process P, which creates N

partitions D1...DN. These partitions are the initial inputinto N copies of F in parallel.
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Once a function has completed its computation on the partition of D, it then completes

a computation on set T, generating results R1...RN. Resultsare joined by collection

process C into a final result R returned to the user. The function F is simply an existing

sequential function with the following signature:

F( D, T ) returns R:

D - Partition of primary dataset: list of (name,properties)

T - Full secondary dataset: list of (name,properties)

R - Result set: list of (name,class)

Although Data-Split-Join has many more parameters as an abstract problem than

All-Pairs or Sparse-Pairs, its implementation can be broken down in the same way. The

first consideration is how to appropriately partition the subsets (that is, manage the input

data) for learning. As with the previous abstractions, modeling the problem, managing

the input data, and coordinating the computation are intertwined – part of what makes

a general problem solvable with a computing abstraction is that the design decisions

are interrelated in clear patterns. Thus, the subset partitioning approaches will often be

coupled with corresponding approaches for coordinating the computation.

6.2 Application of Data-Split-Join

6.2.1 Challenges of Data Mining Large Datasets

In recent years increasingly massive datasets have become available from scientific

research and data collection on numerous real-world applications. The large increases

in dataset size and complexity taxes data mining algorithmsand the computer systems

they run on. Dataset sizes that exceed the memory capacity ofa desktop computer, in

particular, are a continually expanding challenge if data grow much faster than memory
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capacity.

Parallel and distributed data mining [74] systems have heldback the wall of data

with scalable implementations of various learning algorithms, allowing a capability to

scale to massive datasets. As a benefit, sampling [30] and ensemble methods [27] can

even gain a significant improvement in accuracy in such systems. Building on these

successes, workloads have been applied across even larger distributed systems [24, 53,

62, 75, 95, 117].

But, as with many such developments, there have been two nearly-disjoint ap-

proaches. The projects that have successfully scaled to larger systems [21, 50], by

and large, have done it with application-specific designs and implementations. The

implementations are often limited to highly-reliable clusters, or complicated to design

without expertise in distributed computing. On the other side, general-purpose systems

may require less effort from the programmer and/or user but still cannot scale beyond

several Gigabytes of data [52].

6.2.2 Ensemble Methods for Classification

Ensemble classification is a general divide-and-conquer data mining technique in

which a classification decision is reached through the coalescence of several indepen-

dent classifiers, each of which was learned on a different subset of the training data.

This problem lends itself to parallelization. In the parallel case, a dataset is partitioned

across a group of processors. Each of those processors learns a classifier concurrently,

and a central processor coalesces these disparate classifiers as an ensemble.

There are numerous variations for how to construct the ensemble from the separate

classifiers. For this work it is asserted that the independent classifiers are applied to

the testing set on the same parallel nodes they are already running. Their votes are
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collected by a process running on the central processor, which coalesces them with a

majority vote. By structuring the problem this way, ensemble classification matches

the signature of the Data-Split-Join abstraction; the training set is the primary dataset

D and the testing set is the secondary datasetT .

Ensemble classification can benefit both performance and accuracy of a workload.

An attractive characteristic of ensembles is that they reduce the computational com-

plexity of the problem (oftenn problems of sizem are easier to solve than one problem

of sizemn) which also decreases the hardware requirements for solving the problem.

Smaller training sets also decrease the risk of an inductivelearner overfitting as it tries

to model the entire training set. And because each independent classifier learned on a

different small subset of the data, the classifiers are diverse, which can also improve

overall accuracy.

Parallelization of ensemble classification doesn’t diminish any of these advantages,

and it gives the additional benefit of computing the small independent classifiers at the

same time. The Data-Split-Join abstraction allows data miners to scale up the gen-

eral pattern of ensemble classification efficiently on several scales of resources from a

campus grid.

6.3 Implementation

6.3.1 Managing the Input Data

There are many possible ways to implement Data-Split-Join in a parallel or dis-

tributed system. An implementation must choose how to use nodes for computation,

how to use nodes for data, and how to connect the two. Figure 6.1 shows several possi-

bilities, differing only in where data is placed in the system.

Like All-Pairs, data movement and placement is critical, because network and file
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Figure 6.1: Four Implementations of the Data-Split-Join Abstraction
This figure shows four possible ways of implementing the Data-Split-Join abstraction
by varying the placement of data and functions on the nodes ofthe system. Rounded
boxes show the boundaries of one node in the system, which hasboth a CPU and local
storage. For example, in the Pull implementation, the partition function P reads the
training data D and writes the partitions D1...DN back to thesame node. Each of the
functions F run on separate nodes and pull the data over the network. But in Push, the
partition function P reads the data D from one node and writesthe partitions directly
to the execution nodes, where the functions F read the local copy. Full details are given
in Section 6.3.

server access is a key limitation at large scales. Unlike All-Pairs, there is little to gain

from putting all data everywhere, because each partition requires only a subset of the

full data.Even if many separate partitions will be computedon each node, this still

requires solving something akin to the partitioning problem on each individual node,

because the function must be able to address and access its specific partition from within

the full dataset.

Streaming. The simplest implementation of Data-Split-Join connects each process

in the system at runtime via astreamsuch as a TCP connection or a named pipe. Data

only exists in memory between processes and, except for someminimal buffering, a

writer must block until a reader clears the buffer of data. The simplicity of avoiding the
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disk, however, results in the requirement that all processes be ready to run simultane-

ously. It also affords no simple recovery from failure – if one process or stream fails,

the abstraction has two options. It can either perform a significant collective communi-

cation to determine what data has been distributed, then compare that to the entire data

set to determine the contents of the lost partition, or it cangive up and retry from the

beginning. Neither of these is attractive if failures are common, thus, Streaming is ap-

propriate only in very select cases. One such case is an implementation for a multicore

machine with the number of partitions less than or equal to the number of processes.

Except for very small workloads, Streaming is not practicalfor larger clusters or a

campus grid where the possibility of network or node failureis very high. To make

the abstraction robust, the implementation must make use ofsome storage between

processes.

Pull. In this implementation, P reads data from the source node andwrites partitions

back to the same node. When the various Fs are assigned to CPUs, they connect to the

source node andpull in the proper partition. This provides maximum runtime flexibility

as there is no constraint on where an F may run. Because each partition is stored on

disk, individual Fs may fail and restart without affecting the rest of the computation.

This places a significant I/O burden on the source node in boththe partitioning and

computing stages, however. The technique may be appropriate for a cluster with a large

central file server, but is not likely to scale to a campus gridof any significant size.

Push. In this implementation, P choosesin advancewhich nodes will be responsi-

ble for working on each partition. As it reads data items fromthe training set, they are

pushed outdirectly to the assigned nodes. The Fs are then dispatched for execution. In

“Pure Push”, each F must run only on the node where data is located. This may not

be possible in the absence of dedicated resources, as that node may have been dynam-
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ically assigned to an unrelated task. “Relaxed Push” is a slight variation that resolves

this, where each F prefers to run on the node with its partition but may also run on

another node and access that partition remotely. This technique can improve the per-

formance of partitioning and the overall I/O rate as the number of nodes increases. The

value of the Relaxed version is particularly significant when contention for resources is

high.

Note that relying on nodes from the campus grid for data access will increase the

exposure of the system to failed, slow, or otherwise misbehaving disks, which are sur-

prisingly common across a large computing pool. This is a keytradeoff between the

reliable (but possibly underprovisioned) central server and a set of remote resources.

Hybrid. To address thelimitationsof Push and Pull, a fourth implementation, Hy-

brid, is designed with thestrengthsof each. In this mode, P chooses a small set of

intermediate nodes known to be fast, reliable, and of sufficient capacity to write the

partitioned data. At runtime, each F then reads its partition over the network from these

nodes. This combines advantages of Pull (flexible allocation of CPUs, reliable parti-

tioning) with advantages of Push (increased I/O performance). However, it requires the

implementation to have some knowledge of the reliability ofthe underlying system,

which may not always be possible.

Even once a general pattern for data distribution to the location of the computation

is establishes, there is still the matter of the actual partitioning mechanism. There are a

number of different partitioning techniques for the training set, each again with certain

tradeoffs.Shuffleselects data items one at a time and sends each to a random partition,

resulting in roughly equal-sized partitions. These partitions are unlikely to be corrupted

by the structure of the input data (if the instances are sorted, for instance), however this

comes at the cost of having to make a separate decision for every single instance. A
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shuffle partition may also beM-overlapping, in which an item may appear in M parti-

tions, allowing for more accurate sampling of minority classes but increasing data sizes

and runtimes.Chop, on the other hand, does not make separate placement decisions for

each instance, but rather divides the training set into equal pieces, preserving the exist-

ing order. For the ensemble classification application, this is typically only appropriate

when the data is pre-randomized, or when the user wishes to reproduce runs exactly, as

any inherent structure or organization in the training set may corrupt classifiers.

6.3.2 Coordinating the Computation

The source node running the Data-Split-Join abstraction isresponsible for several

tasks: partitioning the data, configuring local state to define the batch jobs, submitting

the batch jobs, and collecting the results after all jobs have completed. The remote

nodes on the campus grid are responsible for executing the function instances and gen-

erating the prediction output.

Local state requirements include an execution directory, the primary and secondary

dataset definitions required by all functions, and the batchjob definition files. The

secondary dataset (and other shared metadata, such as the.names dataset definition)

is not replicated on the local disk, but rather shared efficiently. The job definition files

are created after the data partitioning, and the batch jobs are submitted using these

definitions.

Within the batch jobs themselves, there is a hierarchical architecture of processes.

The batch job that is run on each remote node is thewrapper, a standard piece of code

that is the same for all instances of the ensemble classification application of Data-

Split-Join. The wrapper is responsible for setting up the execution environment on

the remote compute node, then executing thefunction. The function is a user-provided
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application-specific piece of translational middleware. The function executes the under-

lying executable (theapplication) and maps application-specific output to the structure

expected by the wrapper. The function allows execution of any underlying application

without having to change core pieces of the abstraction framework. After the func-

tion is complete, the wrapper is again responsible for ensuring that all items are in the

required places to be picked up by the batch system.

6.3.3 Managing the Output Data

Collection is the process of managing the output data, which consists primarily of

the results from each function. In the case of ensemble classification, the results are

the votes from each individual classifier on each instance. This section considers two

approaches for collection, each of which is vaguely analogous to one of the partitioning

methods in terms of the order in which it accesses and manipulates the data.

The first,by-file, is analogous to chop partitioning. The algorithm completes the

entire results file for one function at a time, maintaining a plurality-determining data

structure for each instance in the secondary dataset. Afterall files are processed, each

data structure contains the combined final result. The overall accuracy, accuracy per

class, and other important data mining statistics can be computed from these data struc-

tures. As the number of instances in the secondary dataset increases, this version needs

more memory to maintain data structures for each instance. Memory requirements scale

by a factor of the product of the number of secondary dataset instances and the number

of classes in the dataset.

The alternative, collectingby-instance, is akin to shuffle partitioning. The results

files for all the functions are accessed concurrently, and only one data structure is

needed as each instance is tallied serially across all results files. Memory for this
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version remains constant as the number of instances increases, since the memory re-

quirement is only a factor of the number of classes in the dataset. On the other hand, it

requires more files open at once and accesses individual results files less efficiently.

An abstraction may decide the tradeoff between file resources accessed concurrently

and memory used for concurrent tallying data structures. For datasets that have few

classes, concurrent data structures for each partition fit in memory easily even when

the test set is large. However, for very large numbers of classes or very large numbers

of instances in the secondary dataset, it is possible for thecollection to exceed main

memory capacity.

Because the largest collection memory requirement of any dataset tested in the eval-

uation below was less than 100MB, all of the results use by-file collection. Note that

another concern could be the transfer of all prediction filesback to the submitting node,

however because the largest set of prediction files was stillless than 10MB of output it

was not necessary to use separate file server or distributed filesystem.

6.4 Evaluation and Results

This section summarizes the results of the large number of experiments – across

datasets, algorithms, and system sizes – to evaluate the performance and scalability of

the Data-Split-Join abstraction implementation as applied to ensemble classification.

The platform used as testbed to evaluate the performance andscalability character-

istics of Data-Split-Join is the same institutional condorpool as described in Chapter 3.

Although the pool as a whole is a campus grid with limited control for the user, in con-

ducting the experiments a 48-node subset allowed direct control. This allowed more

power over the environment (e.g. reliability of resources,priority status for execution).

The machines in this dedicated cluster are dual-core 64-bitx86 architectures with ei-

101



TABLE 6.1

ATTRIBUTES OF DATASETS

Dataset
Training Instances Test Instances

Attributes
(Size on Disk) (Size on Disk)

Protein 3,257,515 (170 MB) 362,046 (20 MB) 20

KDDCup 4,898,431 (700 MB) 494,021 (71 MB) 41

Alpha 400,000 (1.8 GB) 100,000 (450 MB) 500

Beta 400,000 (1.8 GB) 100,000 (450 MB) 500

Syn-SM 10,000,000 (5.4 GB) 100,000 (55 MB) 100

Syn-LG 100,000,000 (54 GB) 100,000 (55 MB) 100

ther 2GB or 4GB of total memory (1GB or 2GB per core, respectively). Jobs were

instructed to prefer this cluster over other nodes when available.

6.4.1 Datasets

The data for these experiments is a combination of real and synthetic datasets

with varying dimensions covering a wide range of sizes. The Protein dataset is real

data describing the folding structure of different amino acids; the task is to predict

the structure of new sequences. The second dataset stems from the 1999 KDD-Cup

(http://www.sigkdd.org/kddcup/index.php) and contains real network

data; the task is to distinguish the “good” instances of network traffic from the “bad” in-

stances (intrusions). The next two datasets, Syn-SM and Syn-LG, were produced with

the QUEST generator [5] using a perturbation factor of 0.05 and function 1 for class

assignment. The last two datasets, Alpha and Beta, are takenfrom the Pascal Large
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Scale Learning Challenge1. These were included in order to have an appropriate set

for support vector machines, as the other datasets requiredsignificant SVM parameter

changes even on much smaller subsamples than were used with the other algorithms.

6.4.2 Algorithms

Three traditional learning methods were used to evaluate the abstraction frame-

work’s scalability:

• Decision trees (popular C4.5 implementation [103])

• SVMs (efficient implementation [70])

• K-nearest neighbor classification (implementation by Karsten Steinhaeuser)

The algorithms cover a range of computational complexitiesand rank among the

most popular learning methods. For decision trees and support vector machines, they

were configured with the default parameters provided by the respective implementa-

tions. Fork-nearest neighbor classification there werek = 5 neighbors. All of the

algorithms were compiled for 32-bit x86 systems withg++ v3.4.6 using optimization

-O3.

These algorithms naturally fit the distribute-compute-collect paradigm. However,

it is worth noting that with only minor modifications to the abstraction, other learning

methods could be accommodated, such as Distributed K-MeansClustering [69] or find-

ing frequent itemsets using Apriori-Based methods [135], which may require multiple

distributed stages.

The scalability experiments covered the range from 1 to 128 nodes for the five

smaller datasets. With Syn-LG the memory requirements for each individual partition

are much larger, so 48 to 256 nodes are used with that dataset.For k-nearest neighbor

1http://largescale.first.fraunhofer.de/
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classification, the test set size was 1,000 instances for thesynthetic datasets and to

10,000 instances for all other datasets to keep computationfeasible within the system.

6.4.3 Partitioning and Collection

In large clusters or across a campus grid, data would ideallybe Pushed to a num-

ber of remote nodes equal to the number of partitions to maximize parallelism. Fig-

ure 6.2(a) shows, however, that chop partitioning to a largenumber of remote resources

begins to reduce performance due to moving beyond homogeneous clusters and en-

countering a greater variety of hardware. Shuffle partitioning has its own drawback in

the larger environment, because it requires remote connections to remain open to every

remote node throughout the entire partitioning.

Figure 6.2(b) shows that remote partitioning even to a modest set of reliable nodes

is faster than local partitioning, without the pitfalls of Pushing data to unreliable envi-

ronments.

Figure 6.3 shows the time required to collect results of a distributed ensemble of

classifiers using these two approaches, varying the number of partitions. The input

data is the set of prediction files from a run of the KDDCup data, chosen because

it the largest by-file memory requirement among the datasets(approximately 91MB).

However, even this dataset does not result in significant concern due to prediction files

being too large to collect in-core.

6.4.4 Campus Grid Execution

The primary thrust lies in the scalability analysis moving beyond the component

benchmarks to larger executions. Figure 6.4 shows the execution time for decision trees,

k-nearest neighbor classification, and support vector machines on multiple datasets for
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Figure 6.2: Performance of Partitioning

6.2(a) shows the time to partition 5.4GB of data into 256 partitions on a single local
disk or a varying number of remote disks. Figure 6.2(b) showsthe time to partition
5.4GB of data into a varying number of partitions, using a single local disk and writing
to 16 remote disks
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Figure 6.3. Performance of Collecting

This figure shows the time to collect classifier output (3.2MBper partition) from each
of a varying number of remote disks. By-file collection uses 91MB of memory, while
by-instance uses less than 1KB.

varying number of partitions. Within the grid of plots, rowscorrespond to datasets and

columns correspond to learning algorithms. Each individual plot contains three lines

for the different data distribution methods.

The results for Syn-LG with decision trees and k-nearest neighbors are omitted for

space reasons as the trends observed are very similar to Syn-SM, albeit at a larger scale.

In addition, for massive datasets it is difficult to measure Push partitioning. This task

is feasible for smaller datasets and controlled environments, but becomes more difficult

as the size of the dataset or number of hosts and diversity of the system increases.

Decision Trees. The first column of Figure 6.4 shows strong parallelizability of

decision trees across all datasets. In most of the experiments, the data distribution does

not significantly influence the execution time through 16 or 32 partitions, demonstrat-

ing extensive, though not exclusive, use of the 48-node dedicated cluster. Beyond that
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threshold, performance diverges as jobs begin utilizing unreliable, heterogeneous nodes

from the campus grid. Even beyond the cluster/grid threshold, however, there are im-

proved turnaround times for several algorithms using the Hybrid approach.

As an example of a case where additional parallelism didnot provide any added

benefit, the KDDCup plot for decision trees shows that no improvements in execution

time are achieved beyond 32 partitions. For decision trees in particular, the small work-

loads result in very minimal classifier training times. In addition, smaller jobs yield

more relative overhead and higher costs to complete the serial stages of the process. It

is unsurprising, then, that almost exactly the same amount of time is required for the

execution phases when exceeding 32 partitions. For instance, doubling the collection

time (twice as many predictions to process per instance) requires more time than is

saved by the marginal improvement in execution time afforded by the resources.

Another factor impacting the scalability of executions is the data set size. The Syn-

SM set continues to improve execution time using Hybrid through 128-way parallelism,

whereas a smaller dataset, Beta, achieves limited further improvement beyond 32 nodes.

The primary difference here is that for small data sets, further partitioning results in no

effective gain when balancing batch job execution time against additional overhead

from greater parallelism (partitioning, collection, and batch system overhead).

For almost all configurations the Hybrid approach yielded shortest turnaround times,

and Pull yielded the longest turnaround times. Combining the advantages (and mitigat-

ing the disadvantages) of the Push and Pull techniques is particularly apparent for the

larger datasets and as the number of partitions gets larger.

K-Nearest Neighbor Classification.The results in the second column of Figure 6.4

also show encouraging trends in execution time with respectto the number of partitions.

All datasets observe consistent improvements in executiontime while staying within the
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Figure 6.4: Scalability of Classifiers from a Cluster Subsetto the Campus Grid

This figure shows the runtime of executing Data-Split-Join on five different datasets
with decision tree and k-nearest neighbor classifiers. Eachconfiguration is scaled up
from 1 to 32 nodes on a homogeneous reliable cluster, and thenup to 128 nodes on
a campus grid. Each abstraction is run in three different configurations: Push, Pull,
and Hybrid, as shown in Figure 6.1. Each graph shows the number of hosts on the X
axis and the execution time in seconds on the Y axis. Generally speaking, the hybrid
implementation is the most robust across the various configurations.
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Figure 6.5: Scalability of Support Vector Machines

This figure shows the runtime of executing Data-Split-Join on the Alpha and Beta
datasets. Results for SVM are not shown on the first three datasets from Figure 6.4,
because the algorithm does not converge.

small cluster (up to 32 nodes) and with one exceptions also with 64 partitions. Only

for 128 partitions is there increased execution times in several cases, most notably for

the Push method. This behavior is due to some jobs getting placed on slower machines

in the campus grid. In addition, the plots only show times forsuccessful runs, but it

is worth noting that with Push it sometimes took several attempts to complete the task

without experiencing a failure.

The aforementioned tradeoffs are also apparent in these results, in particular with

dataset Syn-SM. Neither Push nor Pull are able to improve beyond 64 partitions, and

in fact both achieve significantly worse performance. However, the flexibility of the

Hybrid method allows it to efficiently distribute data and computation, resulting in ad-

ditional gains when going to 128 partitions.

Dataset size should also be taken into consideration when determining the appro-

priate configuration for a given problem. For smaller datasets, the choice of data distri-
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bution method is largely irrelevant, as all three lines exhibit very similar behavior. But

for large problems the Push and especially Hybrid models arebetter suited as using the

maximum number of available partitions achieves the best performance and therefore

is advisable.

Support Vector Machines. As shown in the right column of Figure 6.4, support

vector machines exhibit behavior different from the other algorithms. Most notably, the

majority of experiments do not achieve the best execution time for the largest number

of partitions. And with SVMs this is not only due to heterogeneity in the campus grid,

but also to the strong dependency of the algorithm runtime onthe characteristics of the

data.

Once again, the data distribution method is less of a factor than the amount of par-

allelism in determining the execution time, although the pull method is consistently the

worst performer. In the actual executions there was also a tendency towards a smaller

number of partitions to achieve the best result than the other algorithms. More specifi-

cally, the best performance was achieved with 8 to 16 partitions in all configurations.

6.4.5 Accuracy

It is generally established that ensemble learning can result in improved accuracy [27].

The fundamental goal in this chapter is to work with that assumption and evaluate the

systems aspects of distributed data mining. For the experiments there are primarily

synthetic datasets, and therefore observe only modest improvements.

Figure 6.6 shows the trends for each classifier on all applicable datasets. In most

cases, accuracy is quite stable with an increasing number ofpartitions. Exceptions are

increased accuracy for decision trees on the Alpha and Syn-SM datasets, and decreases

for decision trees on the Beta and the 8-partition k-nearestneighbor for Syn-SM.
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Figure 6.6: Trends in Accuracy with a Varying Number of Partitions.

6.4.6 Generalization

Let the evaluation conclude with Table 6.2, a set of general observations about the

tradeoffs in switching from a well-controlled subset of a campus grid to the entire pool

at large.

111



TABLE 6.2: EMPIRICAL ANALYSIS OF TRADEOFFS BETWEEN DIFFERENT CRITERIA
Cluster Campus Grid

Pull - chop is necessary for large number of partitions - chop is necessary for large number of partitions
- for large clusters, submitting node can become a - for large clusters, submitting node can become a
bottleneck as the data server bottleneck as the data server

- worst turnaround time in most experiments - less concern about heterogeneity (fast nodes run
bigger share), reliability (data not on remote nodes)

Hybrid - shuffle is preferred partitioning method - shuffle is preferred partitioning method
(can randomize, overlap, etc.) (can randomize, overlap, etc.)

- less risk of bottleneck in large clusters where - not reliant on central file server during execution
submitting node has limited resources - best choice for turnaround for most configurations

- sweet spot trading off parallelism for robustness (mitigates disadvantages of the other two methods)
Push - good for small runs with limited parallelism available- tradeoff between partitioning robustness (chop)

- shuffle is preferred partitioning method and performance (shuffle)
(can randomize, overlap, etc.) - tradeoff between parallelism and reliability (more

- good for algorithms with super-linear complexity available resources but less reliable on full campus grid)
- brittleness less concern in controlled environment

1
1

2



CHAPTER 7

CONCLUSIONS AND BROADER IMPACT

As distributed computing, particularly cloud and grid computing, has become more

widespread, there has been an increase in interest in abstractions for scaling up repeat-

able patterns of work to larger systems for tackling larger problems. Patterson [94] has

proposed that abstractions will be the assembly language for large distributed systems.

This dissertation has explored how abstractions can be usedto improve the usability,

performance, and efficiency of a campus grid to scientists with large, sometimes data-

intensive, computational workloads.

Unlike arbitrary workloads, abstractions are designed with the high level structure

of a workload in mind, and it is feasible to accurately model the performance of large

scale abstractions across a wide range of configurations. Some abstractions will be able

to target provably optimal solutions, particularly on predictable systems. In general,

though, these models aim for an execution that avoids disastrous configurations that

get poor performance, waste resources on unproductive tasks, and potentially slow or

disable resources shared with other users. Computing with an abstraction is more likely

to result in an efficient execution that fits the data and computation requirements.

This work also examines several considerations that must bemade when design-

ing any abstraction for campus grid computing. Resource selection, data distribution,

memory and disk management, job size selection, recovery from failure, and other

topics addressed within the context of the specific abstractions in Chapters 4-6 will be
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encountered by abstraction frameworks for almost any problem. This work discusses in

particular some of the building blocks – and stumbling blocks – for designing abstrac-

tions for computing on a campus grid. While cluster computers have been well-studied,

and grid and commercial cloud computers have recently been apopular field, campus

grids have emerged as an architecture available to most institutions with minimal ad-

ditional infrastructure required beyond the computing resources they already own for

various purposes.

7.1 Choosing the Right Abstraction

The All-Pairs, Sparse-Pairs, and Data-Split-Join abstractions provide high level in-

terfaces to a distributed system, improving both performance and usability compared

to the conventional solutions that are likely to be developed by scientists without dis-

tributed computing expertise. These are not universal abstractions, however, and there

are other abstractions that satisfy other kinds of applications for which the three pre-

sented here would not suffice. For example, Wavefront [120, 133] is an abstraction for

a recurrence relation pattern that has different properties from these problems such as

task interdependencies. Thereareproblems, however, that could be solved by multiple

different abstractions: so how can a user decide which abstraction to choose?

The formal relationship between different abstractions, and how to choose amongst

them, remains an open problem in the field and an opportunity for future work. How,

then, can a user choose which one to use for a given problem? Sofar, the abstrac-

tions toolbox has been developed by working closely with potential users to choose and

develop the appropriate abstraction for their needs. With the growing suite of abstrac-

tions, though, it is becoming important that users in various fields can select the right

abstraction from the toolbox based on their knowledge of their own problem.
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The intent of providing abstractions is for the user to definea large workload in a

simple manner. The user should be able to use codes that are very similar or identical

to their serial implementations. The user should be able to garner good performance

without having to separately implement complicated resource management, data man-

agement, and fault tolerance mechanisms into each application.

Abstractions on the whole shield the user from difficult details about executing a

workload in a distributed environment. However, it is oftenthe case that the abstraction

that fits the problem best – either due to the design of the abstraction or the way a user

has defined the problem – will be more efficient due to less transformation required to

scale up to the cloud and because of greater possibilities for problem-specific solution

optimizations.

The general suggestion is that a user should choose the abstraction that fits the way

he already thinks about his problem. This most easily fulfills the intent of running a

workload as-is, and simply scaling up to a cloud while abstracting away the messier

details of the larger scale. This also usually requires the least amount of user overhead

to handle the details of transforming his serial application into an entirely different

problem before scaling it up.

An example of additional work required to transform the problem is seen when

comparing a Sparse-Pairs problem to a general DAG or Bag-of-Tasks workflow. A par-

ticular piece of a computation within the more specific abstraction can be referenced

simply by coordinates of the two input sets. That ordered pair, when combined with the

problem definition, is sufficient to enumerate all incoming and outgoing edges in the

DAG. The more general DAG abstraction would need to define theproblem in a less

efficient manner, costing execution time to complete the transcription into the more

general definition and also the disk/memory resources to store it. Even then, when exe-
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cuting, a general abstraction would still not have the advantages of automatically being

able to optimize disk and memory management to the rigid patterns of a specific prob-

lem. Likewise, it only makes sense for a user who is already looking at his workload

as a Sparse-Pairs problem to use the abstraction that is mostspecific for that problem –

because it fits with how he has already designed his approach,and transforming a more

general problem to an instance of the more specific pattern can be equally as costly as

transforming the opposite direction.

This is, however, only a general suggestion, and must be reevaluated even when

scaling up the same workload. An example of a case in which this is important was

shown above when discussing the Sparse-Pairs problem. A scientist may start with a

fairly dense set of pairs to compute between two sets, and decide to use the All-Pairs

problem. However, as the problem is scaled up and the set of pairs becomes sparser,

even though the All-Pairs abstraction is still available and will still solve the problem, it

no longer is the appropriate choice. Generalizing an arbitrary set of computation pairs

into the superset of computation pairs will increase the amount of work he requires

significantly. Not only will it require much more time to compute all the extraneous

pairs that he isn’t interested in, but the abstraction solving that problem will provision

more remote resources (data and worker nodes, for instance)to solve the larger version.

7.2 General Abstractions as Alternatives

As mentioned above, some abstractions can be interchanged with each other, with

the cost as some loss of efficiency. Is it possible, though, that there are abstractions that

could perform several of these patterns with similar efficiency? In this section Bag-of-

Tasks and Map-Reduce are considered for the general patterns attacked by All-Pairs,

Sparse-Pairs, and Data-Split-Join.
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Bag-of-Tasks is a powerful abstraction for computation-intensive tasks, but ill-suited

for All-Pairs problems. If a user attempts to map an All-Pairs problem into a Bag-of-

Tasks abstraction by e.g. making each comparison into a taskto be scheduled, this will

end up with all of the problems described in the naı̈ve solution to All-Pairs. Bag-of-

Tasks is insufficient for a problem in which the abstraction achieves its greatest gains

via data management, as Bag-of-Tasks does not recognize theoverarching workload

structure to exploit data patterns. Similarly, Bag-of-Tasks is less effective for Sparse-

Pairs workloads because its model does not recognize the data reusage pattern and thus

will likely read repeated data items from disk instead of maintaining them in memory

like the specific Sparse-Pairs abstraction. Like the other two abstractions, Bag-of-Tasks

couldbe used to solve a Data-Split-Join problem, but not with similar efficiency. Using

Bag-of-Tasks, the inherent data pipeline from the split to the computation and from the

computation to the join would be lost by treating them as completely separate tasks

joined only by a order-of-completion dependency, and thus all data would have to be

written to disk instead of pipelined directly between memory buffers.

Another common abstraction that targets a very general computation pattern is Map-

Reduce [37], which encapsulates both the data and computation needs of a workload.

This abstraction allows the user to apply amap operator to a set of name-value pairs

to generate several intermediate sets, then apply areduce operator to summarize the

intermediates into one or more final sets. Map-Reduce allowsthe user to specify a

very large computation in a simple manner, while exploitingsystem knowledge of data

locality.

Hadoop [1] is a widely-used open source implementation of Map-Reduce. Although

Hadoop has significant fault-tolerance capabilities, it has developed out of original as-

sumptions that it is the primary controller of a dedicated cluster, so it does not thrive
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in a campus grid environment made up of volunteered resources where policy and pre-

emption mechanisms are a critical necessity.

Even setting aside the fundamental differences between cluster abstraction assump-

tions and campus grid environment realities, can one express an All-Pairs problem using

the Map-Reduce abstraction? It is possible, but an efficientmapping is neither trivial

nor obvious. A pureMap can only draw input from one partitioned data set, so it might

itemize the Cartesian product into a set likeS = ((A1, B1), (A1, B2)...) then invoke

Map(F, S). Obviously, this would turn a dataset ofn elements into one ofn2 ele-

ments, which would not be a good use of space. If setA is smaller, it would be better

to packageA with F and defineF+ = Map(F, A) and then computeMap(F+, B),

relying on the system to partition B. However, this would result in the sequential dis-

tribution of one set to every node, which would be highly inefficient. A more efficient

method might be to add the All-Pairs spanning tree mechanismfor data distribution

alongside Hadoop, and then use the Map-Reduce to simply invoke partitions of the data

by name. However this already departs significantly from thepure Map-Reduce model,

and requires running multiple abstractions developed for different purposes side-by-

side. While this is possible to orchestrate, this hybrid solution increases the complexity

for an end user instead of decreasing it!

Data-Split-Join also appears similar to Map-Reduce. The assignment of tasksF

ontoD1...DN is completed by the Mapper function, andC, the collection of indepen-

dent distributed results into a final result, is the job of theReducer function. But sev-

eral components of Data-Split-Join are not strictly accounted for by the Map-Reduce

abstraction – that is to say, the problem cannot be represented as Map-Reduce in its

present form. The Map-Reduce model does not consider logical partitioning as a first-

class component of the model, rather it delegates partitioning as an implementation
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detail of physical partitioning of the underlying filesystem. The inclusion of additional

files in each partition’s computation (for example, the testing set in the data mining en-

semble classification problem) also does not fit into the Map-Reduce abstraction model.

Some Map-Reduce implementations [1, 29, 106] adapt the Map-Reduce model to

recognize logical partitioning in various ways, such as allowing for custom partitioning

algorithms or actually including partitioning as primitive in their adjusted models. Map-

ping logical partitions onto physical partitions within the filesystem, however, remains

a characteristic highly dependent on the implementation rather than strictly defined

within the Map-Reduce abstraction.

The various Map-Reduce implementations also offer relaxednotions of what data

can be computed at which stage of the workflow. But even this accommodation means

that included files such as the testing set must either be encapsulated in the Mapper

and Reducer functions or be stored on the distributed filesystem. The former is a rather

significant design change associated with deploying the Mapper or Reducer tasks, while

the former is potentially costly in terms of performance because of multiple replicas and

significant metadata for each instance of various sparsely-used files (many of which

have short lifetimes).

Data-Split-Join is a good fit when the key to success is careful consideration of data

placement and access patterns, as it has been designed and implemented to consider

workflow elements relating to data placement directly as first-class components of the

abstraction model. So although it may be possible to complete a specific ensemble

classification workload using Map-Reduce, it is difficult todo a thorough examina-

tion of the separate abstract parts of a Data-Split-Join workload while using a strict

Map-Reduce paradigm. Even setting this aside, when implementations allow users to

leverage a large number of options in setting parameters, this devolves into the origi-
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nal problem of requiring non-expert users to appropriatelyconfigure complicated dis-

tributed systems.

An overarching observation of the difference between the three abstractions pre-

sented here and the more general Bag-of-Tasks and Map-Reduce abstractions is the

notion of task planning and allocation as the primary control exerted by the abstraction.

In the specific abstractions, the problem is modeled in orderto plan specific allocations

of data and computation such that they will be executed efficiently. In the more general

abstractions, computations are placed into a larger systemand run with little or no sense

of planning for logical tasks. An example where this is most clearly evident is in the

desire for an active storage computation: instead of activestorage being a direct result

of the abstraction’s explicit coordination of data and computation, using a the general

abstraction collocation happens more as byproduct of otherparameters such as mirror-

ing in the underlying filesystem. Thus, though it is possiblein various implementations

to tune parameters to make the system behave more like the result of the planning and

allocation, the model is still quite different. This makes general abstractions prone

to suffering from high translational overhead, and less adaptable to the differences in

where the greatest benefit of parallelization can be harnessed in different workloads.

7.3 Lessons Learned

In Section 3.1, a number of general challenges associated with computing on a cam-

pus grid were laid out, many with subtle difficulties that tend to elude users (both expert

and non-expert) at first glance. In this section, several items from the list of challenges

are revisited to discern lessons learned that proved key to solving these specific issues

and may be carried on to future projects. The last part of thissection considers the

sociological and group dynamics challenges of distributedsystems research, which is
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multidisciplinary by the nature of the systems as tools for wide-ranging applications.

Although seemingly obvious at face value that using the maximum available num-

ber of compute nodes is not always advisable, the data-intensive operations in this work

emphasize the point. Even though All-Pairs and Sparse-Pairs are naturally parallel,

there were significant limitations to the available parallelism due to factors beyond the

structure of the problem. The resource cost of data management before and after com-

putation is a necessary component to any model that, if considering only computation,

would be likely to scale – on paper – to arbitrarily many nodes.

I/O patterns are one of the most natural starting points for exploiting a problem’s

regularity with abstractions. Because of the significant difference in memory versus

disk bandwidth, exploiting I/O patterns to introduce streaming in and out of memory

buffers instead of between disks is critical when dealing with data intensive tasks. This

was a critical piece in the development of the Split-Map-Join abstraction, and it is an

important missing piece of Work Queue, which can manage buffers in the master but

realizes data exclusively as files on worker nodes.

When disks are required, active storage is generally an attractive option for two

major reasons: computation on local data is generally much more efficient than com-

putation on remote data; and computation is generally much less costly to relocate than

data. In some systems and for some problems data must be moved, however these cases

should lean heavily on avoiding disk accesses, partitioning the work to keep as much

data in the whole of distributed memory as possible, and reusing data once it has been

moved.

Although dispatch latencies of seconds seem easy to work around for systems of any

significant size, when combined with start latencies (particularly with contention for

resources) these delays can cripple performance. One way that has worked is increasing
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job size so as to keep hold of the resource, however this has the downside of costly

preemption. Instead, it is often advantageous to use Work Queue as a mechanism for

holding onto a resource for many successive tasks while still allowing tasks to complete

and be archived (avoiding large costs of preemption). In this way, even problems that

require no collective communication can benefit from the master/worker paradigm.

The driving force behind this work has been the last and most important of the

campus grid computing challenges, the usability of a computing system. Many times

during discussions of this work, colleagues have initiallyscoffed (or even objected)

to the characterizations of naı̈ve users. However, the moreexperience that colleagues

get with designing and computational science tools intended to be used by domain

scientists, the less often that they claim the descriptionsare strawmen. Using only one

distributed system there are plenty of users who, through confusion or rather simple

misunderstanding much more so than lack of intellect, continually make many similar

critical errors. Of course using multiple systems compounds this. Abstractions take

away some of a user’s power, but also the user’s power to make many of the disastrous

mistakes. The ability for abstractions built atop Work Queue to operate seamlessly

with several rather different underlying systems is a further step in the right direction to

abstract away things that users easily get wrong.

The most difficult challenge of this work has not been sciencenor engineering, but

communication. It is still at times jarring to note the complete disconnect amongst

very intelligent people from different disciplines or evendifferent areas of computer

science, especially in that the disconnects often don’t pertain to technical details but

rather definition of what the general problems are. Communication is critical, and in

this work it has not been rare, by any means, for many, many early discussions to be

spent talking past each other. Collaborative research depends on experts from disparate
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fields working together to attack a joint problem. However, when experts from opposite

sides of the table fundamentally misunderstand the problems of the other side – or

perhaps the two sides can’t agree on a joint set of problems! –collaborative progress

cannot proceed. Because distributed systems research generally stems from new and

innovative uses of the system by non-distributed computingexperts, a fundamental

challenge will always be breaking a collaboration down to its smallest pieces in order

to find initial agreements in order to begin communication and true collaboration.

7.4 Impact

Software developed as part of this work remains in use by researchers from several

groups that have scientific computing needs. Additionally,further research continues

on broadening the abstractions “toolbox” to attack new patterns of computation.

The user group that has benefited the most from the All-Pairs abstraction is the

Notre Dame Computer Vision Research Laboratory (CVRL). Advances in the field of

biometrics advance the state of the art several real-world applications, including per-

sonal security (such as biometric locks on laptops or doors)and national security (such

as face recognition at airports).

An initial prototype for All-Pairs was used to evaluate new algorithms for 3D face

image identification and feature detection [45]. This initial comparison served to create

a single set of results on a completed algorithm, which was the normal mode of opera-

tion. However later work using the complete All-Pairs abstraction engine integrated the

same large-scale comparison as a core evaluation within thedevelopment and enhance-

ment of new algorithms [81]. Thus, access to this computing abstraction fundamentally

changed the pattern of research. Instead of being constrained to testing experimental

versions of algorithms on small subsets of the intended target data (waiting to run a
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lengthy full workload with the final version), the biometrics researcher could complete

the more informative full workload on each successive iteration along the way. This

developmental process, akin to a parameter sweep, consumedmore than 2 million CPU

hours on the Notre Dame campus grid over more than two years – becoming the largest

user of the campus grid resources (and in one year consuming over 50% of the cycles

individually).

All-Pairs has also been used by the CVRL to study iris comparisons, as discussed

in Section 4.5. The All-Pairs comparison of 58,639 irises presented here is believed to

be the largest complete comparison on a publicly-availabledataset, and the final result

yielded knowledge of ranges of Hamming distances that contained both matching and

non-matching pairs. This knowledge, which has repercussions on the efficacy of setting

a particular cutoff for judging a match, would not have been possible on a less-than-

complete set of comparisons.

Work Queue is a core tool for the BioCompute [19] project at Notre Dame, which is

a web-portal-based tool that uses campus grid resources forsolving large bioinformatics

problems. Work Queue is also an underlying infrastructure for Makeflow [133], which

is used in BioCompute and other workflow applications.

All-Pairs is an example of an abstraction that can be used with Weaver [23], a

Python-based high-level framework for data processing workflows in Makeflow. Emerg-

ing work such as Weaver may further increase campus grid usability by providing an

interface to use several optimized abstractions working together within a single work-

flow. All-Pairs is also used by BXGrid [22], which is a very large online repository

for biometrics data that can also facilitate computation onthat data through web portals

and command line tools.

The Sparse-Pairs abstraction has been used as part of work onassembly and valida-
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tion of large genomes [92], and currently bioinformatics researchers at Notre Dame are

applying the SAND tools to complete comparisons of mosquitogenomes.

7.4.1 Publications and Software

A precursor to the All-Pairs work was published at PCGRID07 [83]. The All-

Pairs abstraction was introduced in a poster at GRID 2007 [82], published at the 2008

IEEE/ACM International Parallel and Distributed Processing Symposium [84], and ex-

panded for theIEEE Transactions on Parallel and Distributed Systems[87]. Sparse-

Pairs was first published in the 2009 Workshop on Many-Task Computing on Grids and

Supercomputers [86]. The implementation of Sparse-Pairs is now released as an open-

source package as part of the SAND project. Data-Split-Joinwas originally presented

at the IEEE International Conference on Data Mining [85].

7.5 Conclusion

The opening chapter observes that scientists who are not experts in distributed com-

puting are often faced with the dilemma of completely redesigning their applications to

fit the often complicated and system-specific requirements of large parallel resources or

giving up on scaling their applications to larger and more interesting problems. Finding

the former too difficult or too time-consuming, some opt for the latter option – limiting

themselves to problems within their current grasp. Others enlist the help of a distributed

computing expert who can complete the redesign, but are thenbeholden to repeating

this process every time they need to adapt to a new or different set of resources. Ab-

stractions are a guide away from this inefficient cycle.

Abstractions are manageable for scientists to use, and often work with their un-

modified serial applications. Abstractions can use serial UNIX processes and can run
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on commodity hardware generally found in campus grids. General middleware APIs

that abstract away the messy details of campus grid systems provide a set of tools that

allow capable users to program their own abstractions (withthe experts still there for

guidance in design).

This more equitable cycle can also be more sustainable, because the user who is

most interested in these problems has more resources at handto develop improved

solutions to them. And these implementations can last for generations of systems up-

grades seamlessly hidden by the middleware (which is much easier for the expert to

update than many separate implementations).

With the ability for countless users to add useful contributions to the campus grid

computing “toolbox”, the number of such tools will grow. This leaves a real opportunity

for researchers to repeat the process at the next level of abstraction: identifying common

patterns that connect these building-blocks together to enable new forms of discovery.
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