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FLEXIBLE OBJECT BASED FILESYSTEMS FOR SCIENTIFIC

COMPUTING

Abstract

by

Christopher M. Moretti

Object storage has traditionally been seen only in low level interfaces, visible

only to kernels and filesystem code. However, if storage objects are made visible

across a distributed system, it dramatically simplifies the construction of large

storage systems that are flexible, expandable, and migrateable.

The FOBS filesystem, consisting of a simple metadata layer containing pointers

to storage objects on remote filesystems, demonstrates this concept. The layer of

indirection allows for filesystems larger than any single disk, permits multiple

filesystems to share common objects, and enables users to create and manage

private namespaces.

Experimentally, this work demonstrates that the overhead of indirection is low,

a single client can write faster than disk speed, and multiple clients can harness

aggregate disk throughput. FOBS scientific application is examined with case

study of the filesystem as employed by a high energy physics experiment on a

cluster of 32 nodes for over one year.
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CHAPTER 1

INTRODUCTION

Disks are getting larger and cheaper, and increasingly there are large quantities

of disk space unused on desktop workstations, computation cluster nodes, and

other storage resources. Inevitably, however, there is always a set of users ready

and willing to push their applications to the scale of the available resources and

beyond. Anecdotally, it even appears that the more these users are fed in terms

of capacity, the more ravenous their consumption becomes; offering terabytes of

available disk space only encourages them to find new and creative ways to fill

this space.

It is easy to see this expansion in maximum capacity of commodity large disks:

even recently (within the last ten years) a terabyte hard disk was unfathomable

to most users; today such a disk is available for under five hundred dollars. One

does not need a single mammoth terabyte disk to work on the terabyte scale,

however; though perhaps lacking in terms of awe factor, a small number of disks

can combine to provide a similarly large storage resource.

An example of this type of user is a manager of large scientific data sets.

Greater storage availability allows more variables to be tracked, more measure-

ments or data collection, or greater resolution of simulations (though storage is

only one consideration along with processing speed in this case). Even general

users can readily expand their disk usage to the scale of these resources; movies
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total several gigabytes, and high definition movies increase this by an order of

magnitude.

To manage these hardware resources efficiently, scientific users, and users in

general, need large filesystems, and these filesystems must take into account that

the resources may be spread across numerous physical devices. Further, com-

pared with filesystems intended for single devices, or even many parallel filesys-

tems, filesystems for sets of disks that are highly unreliable, heterogeneous, and

possibly widely-distributed require more in the way of flexibility. The general

concept of flexibility must include reconfiguring the system by adding or shedding

devices on-the-fly, changing authentication and access policies across the system

on-demand, and doing this without requiring administrative intervention, which

puts an element of latency into a system on a human timescale (minutes or longer),

instead of a systems timescale (ms or less).

1.1 Flexible Object Based Filesystems

With the Flexible Object Based Storage filesystem, or FOBS, users can build

filesystems that are larger than individual disk resources, reaping benefits for both

single users and large sets of simultaneous users. FOBS filesystems, built on top

of the Tactical Storage System infrastructure, can be set up at the whim of the

resource owners without having to broach interference from system administrators.

This remains true for reconfiguring the system to add new resources, which can

be done on-the-fly, unlike many distributed filesystems.

Given a set of remote filesystems, a user can “mount” many distinct FOBS

filesystems on top of common shared objects from the set of resources, which is

useful for separating out namespaces for different users (or different tasks by one
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user). In fact, entire FOBS filesystems can be created on-the-fly on top of a set

of query results or other interesting set of objects.

The FOBS filesystem is flexible to operating on working environments across

the distributed systems continuum, from closely coupled clusters (as low as a

small set of homogeneous high performance machines on a shared low latency

high bandwidth network within a single server room) to the broadest definition of

desktop grid (a very large, geographically diverse, heterogeneous set of machines).

1.2 Expectations and Evaluation Model

As data needs of computer users increase, disk capacity must increase to fill

those needs. In general, storage capacity has expanded to fill the emerging needs of

general users, however, as noted above, there are some users, such as those working

with large scientific data sets, generating large archives, or similar activities, for

which there is no such thing as “too much storage space”. Further, even with

the expanded capacity of single devices, to accommodate needs on the scale of

these data sets, they must use many individual disks, which can be unwieldy in

terms of management and usability. An obvious solution is for users to consolidate

their storage into a small number of large disks, however this is considerably more

expensive than an array of smaller disks, as there is a premium paid for the largest

disks available at any given time. Also, even after paying this premium, the few

large disks are unlikely to achieve the cumulative required storage space available

from the larger set of smaller disks.

Even ignoring capacity and economic issues, consolidating into several large

disks doesn’t solve the management and usability issues. Spreading data out over

several disks requires that the user know on which device each file is located. This
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can be difficult to keep track of, and even if a systematic method is developed to

determine where data is placed in order to facilitate recall, this limits the flexibility

of the filesystem to move data around (to balance usage in the presence of hot

spots, take advantage of hardware differences for performance or reliability, etc.).

There are several options to get a large filesystem within a single namespace.

AFS and NFS are heavyweight systems that may not be appropriate for smaller

workgroups, and often require dedicated storage servers; several commercial SANs

are available, but they also require dedicated storage servers, and are the most ex-

pensive option. Further, AFS, NFS, and SANs do not give the degree of flexibility

needed by many users; some users want to be able to swap in and out resources

quickly without downtime associated with reconfiguring the system, some are in a

corporate environment where they may not have administrator access to their ma-

chines, and some desire the ability to configure their own namespace but remain

within the larger scope of the storage resources in their environment.

To accommodate these needs, FOBS aims to allow large filesystems in which

resources can be joined together to form a storage system much larger than that

formed by a number of disks connected to a single machine. This filesystem

is flexible; it can be reconfigured to fit changing needs without having to be

taken offline for considerable durations to complete the reorganization. It can be

configured to many different individual users to give them their personally optimal

view of a set of resources. Taking this a step farther, an entire filesystem can be

constructed on-the-fly to display a pre-existing set of resources, then dismantled

just as quickly, leaving the underlying resources in place. Finally, with an eye on

the needs of the future, FOBS filesystems are completely expandable; once the
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system is informed of new disks, it will immediately start to take advantage of

them.

Simply having a large, accessible filesystem is important, but this system must

also be a viable option in terms of performance. Some performance can be given

away for greater capacity, flexibility, and ease of use, but a filesystem must still

maintain sufficient performance that users don’t refuse to use it due to the over-

head of doing so. The benchmark that FOBS must achieve to be sufficient in

performance is subjective based on user preferences, however for the purpose of

the design, FOBS must not, due to its architecture, levy more than an order of

magnitude performance penalty over its building blocks (namely, a Chirp server

alone). Further, the system must give some actual performance advantage, at

least in some use-cases. It is sufficient that this be obtainable using Chirp alone,

but not easily; for instance, some aggregate throughput advantages are obtain-

able over a local disk by using several unmodified Chirp servers, but to obtain

this benefit would require a finely tuned set of operations with file placements and

accesses planned in advance.

Having laid out the expectations for the system, both in terms of architecture

and actual implementation, it is necessary to determine an evaluation method for

these expectations.

1. Latency:

Evaluating the latency injected into operations by the system must be done

on several levels. First, microbenchmarks will be used to give a measure of

the system’s performance on the basic operations that make up real-world

usage. Additionally, higher level, “meso-benchmarks” will show whether any

differences detected in the small tests propagate or are mitigated in actual
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usage. Additional latency is acceptable if it is within reason; a factor of

2, for instance, since the namespace uses two underlying file operations to

complete one FOBS file operation. It is also necessary that for operations

in which the namespace lookup is a small- or non-factor, the benchmarks

should reflect this. Finally, for larger “meso-benchmarks”, either a small

constant overhead or a consistent percentage overhead would be acceptable.

2. Throughput:

Throughput, along with latency, is the other key raw performance metric

in this system. This is especially true considering that scientific computing

users are a likely end-user of this system, and for many of these users, com-

putation cycles are very valuable, making data throughput critical. This

is because time spent waiting for data is time not used for computing. In

this aspect, while FOBS is not specifically a high performance computing

environment, it must have measurable characteristics that indicate its fea-

sibility as a scientific computing environment. For large data sets, FOBS

must be able to deliver and sustain high throughput under load, and ideally,

do so with only a single replica of the data (this allows separation of claims

made about the filesystem design from the implementation details of how

replication, striping, and other performance optimizations are accomplished)

3. Single Users:

A single user must have something to gain in using the system, as well;

single users are the base case for any computing system. If this case is

not handled acceptably, it is unreasonable to expect that many will use the

system, and thus even good performance under load becomes moot. One

argument for single-user attractiveness is raw capacity compared with the
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underlying system, another is ease of use and flexibility as an artifact of the

implementation details. However, a case for FOBS must go beyond that to

show that there is a reason, notably a performance-based reason, due to the

design of the system as well as the implementation, to use this filesystem

instead of buying several large, state-of-the-art disks, and using those.

4. Production System:

This system must actually be able to be used in production. Tests and

measurements in controlled environments are useful for analysis, but if a

system is not used in the “real world” by “real users”, they fall hollow.

Most importantly, however, is that real users demonstrate real problems

with the system, and invariably bring about use-cases and sanity checks

that cannot be tested for in lab conditions. A prolonged use of FOBS as a

production system for real users is, then, the final requirement to evaluate

the filesystem against the expectations put forth above.

1.3 Object Storage

Object storage originated out of Carnegie Mellon University in the 1990’s. The

concept grew from the Network Attached Storage Device research project [10, 11,

25]. From there, commercial systems like Panasas, and open source filesystems

based on proprietary object storage technology such as Lustre [6] developed to ex-

pand the research profile out to developed systems. Standardization has followed,

and object storage principles are being explored by the Antara [3], zFS [26], and

ObjectStone [7] projects at IBM, continuation of Seagate’s OSD project [29], and

the Centera system for storing immutable reference data. A good history of object
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storage can be found in the position paper on object storage as the future building

block for storage systems, by Factor, et al. [7]

Object Storage is normally thought of as low level handling by kernels and

filesystem code of all logical access below the “object level”, in which the object

is set at the threshold most convenient for access to the end user. However,

object storage is not just adding layers to storage for more control, but rather

a fundamental change in philosophy and technology, in which previously higher-

level infrastructure activities are delegated to lower-level storage devices. From

the view of a system designer, object storage is a continuation of the process in

which the base-level storage object is pushed farther and farther up the scale; one

can see it as moving within a continuum from the older paradigm of user level

constructs holding the responsibility to manage physical aspects of disks, through

the step at which sectors are the lowest level requiring user-level intervention,

to logical blocks, and now to files being the only object with which a user must

interact [29]

Throughout this work, this is the concept that is meant by object storage,

and the specific instance of object storage is that of file-level access as the lowest

semantically meaningful level with which the system actively operates. Thus, it is

possible to address a FOBS file at two levels: the logical FOBS file that consists

of metadata, in the form of an underlying file, and the storage object, again in the

form of an underlying file on a file server. Limiting the interface to these levels

eliminates the complexity of operating at the block level, pushing that onus off

to underlying file servers, or even lower layers, and breaking the paradigm of an

object as a set of blocks unrelated to the actual view of that object.
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1.4 Tactical Storage

Separate from the direct goals of the FOBS filesystem are the artifacts of the

implementation environment. A brief overview of cooperative storage systems,

and specifically the Tactical Storage System, which serves as the implementa-

tion environment, is necessary, to fully understand the FOBS system. The main

ideas of a tactical storage system, including the Distributed Shared Filesystem

(DSFS) model of which FOBS is an implementation, are introduced in Separat-

ing Resources from Abstractions in a Tactical Storage System[32]; the goals of a

cooperative storage system can be stated from a separate paper dealing with this

research [33]:

A cooperative storage system is a large collection of storage devices
owned by multiple users, bound into a loosely coupled distributed sys-
tem. There are many reasons why cooperating users may bind together
multiple devices: they may backup data to mitigate the risk of fail-
ure; they may construct large repositories that cannot fit on any single
disk; they may improve performance by spreading data across multiple
devices; or they may wish to share data and storage space with ex-
ternal collaborators. We assume that users have some external reason
to cooperate and so we do not explore issues of fairness or compen-
sation. However, we do assume that resource owners wish to control
quite explicitly whom they cooperate with. One user may be willing
to share public data with the world at large, while another might only
share scratch space with one trusted colleague. Others might share
resources with an organization such as a university department or a
commercial operation.

Building upon the Chirp protocol and the basic interface, users may design

abstractions to harness more resources, bind resources together, or otherwise suit

their needs. The principal building-block abstraction is the central filesystem

(CFS), often referred to by the implementation name “Chirp file server”, which

facilitates sharing data as an online file server. FOBS is an implementation of
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the Distributed Shared Filesystem, another abstraction introduced along with the

CFS.

These abstractions are accessible through adapters; two of which are currently

available for FOBS: a FUSE module that allows users to see a tactical storage

namespace as though mounted locally, and parrot. Parrot is a process based

virtual machine that uses the ptrace interface to intercept system calls and em-

ulate them for access to local and remote filesystems. Parrot allows unmodified

applications to use the tactical storage abstractions described above.

The flexibility to create, destroy, and modify various abstraction instances is a

key characteristic required of the underlying file server for a FOBS filesystem. Ad-

ditional characteristics of the tactical storage system implementation that heavily

influence system design in FOBS include user-level access, in which no root per-

missions are necessary to build, deploy, or access a TSS, directory-level access

control list based authorization, the remote procedure call API, and the proper-

ties of the proposed DSFS abstraction, which have directly impacted several of

the key components of the FOBS filesystem, such as data/metadata duality.

The original TSS paper framed the discussion in terms of the object storage

concept, noting that “a block interface is not the appropriate low-level interface for

tactical storage”. Additionally, the paper realized a need for a database-like meta-

data server, similar to those used in GoogleFS [9], Lustre [6], and Amoeba [20],

and proposed a UNIX interface to allow basic tree directory structures that are

central to the DSFS abstraction and the corresponding FOBS filesystem.
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CHAPTER 2

RELATED WORK

Table 2.1 gives a summary of the FOBS design goals and characteristics ver-

sus several other distributed filesystems. The table was inspired by a similar one

in [35]. Working from the definitions in the Freeloader paper, General indicates

suitability for general use by giving general filesystem interfaces and functional-

ities, Cache indicates whether the system is designed as a front-end accessible

cache space, Striping indicates optimized data placement, Scavenging indicates

whether the system is designed to use empty disk space scavenged from available

nodes, and Wide-area indicates whether the system was designed to act as storage

over a WAN. FOBS does present UNIX-like filesystem interfaces and one purpose

of this work is to show its suitability for single users as a general purpose storage

system. It is not specifically designed as a data cache, though in the case study in

chapter 5, a FOBS filesystem is used in a similar manner to this. Striping of files

is not done at the block level, however sets of objects are striped across the FOBS

underlying resources to promote a similar purpose on a data set basis, rather than

a single-file basis. FOBS is not designed specifically for WAN storage, and most

applications of it have been on low latency, high bandwidth connections; however,

nothing in the architecture prevents deployment of FOBS over a WAN.
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TABLE 2.1

COMPARISON OF SEVERAL DISTRIBUTED FILESYSTEMS TO

FOBS

General Cache Striping Scavenging Wide-area

FOBS Yes No* Yes* Yes No*

Freeloader [35] No Yes Yes Yes No

GPFS [28], Lustre [6], PVFS [5] Yes No Yes No No

Frangipani [34]+Petal [17], Zebra [13] Yes No Yes No No

NFS [27], AFS [14], Coda [15] Yes No No No Yes

Google FS [9] Yes No No No No

FARSITE [1] Yes No No No No

IBP [22]+exNode [4] No No Yes No Yes

xFS [2] No Yes No No No
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2.1 Striping

Traditional block-level systems incorporating block striping (RAID 0 [21], Ze-

bra [13]) aim to maximize performance through parallelization. They work well

with large continuous reads and writes, which can be broken up and shipped off to

many resources, simultaneously making use of each disk’s disk bandwidth, buffers,

and caches, and if the disks are served by individual computers, each of their mem-

ories. These give limited benefit, however, over object storage for reads and writes

so large that they exceed the capacity of the disk buffers, or in extreme cases the

memory. Additionally, under multi-user load, each user may have to interact with

every disk for even a single file, making striping prone to functioning only at the

speed of the slowest resource. This reduces the ability of a striping system to

tolerate resource heterogeneity.

Hartman notes in his dissertation [12] that a disadvantage with block striping

is that it is inefficient for small files. These files gain minimal benefit due to

network and disk latency dominating the actual small write to each disk, but

incur the maximum overhead of any disk on every access. Additionally, small

files are prone to causing the expense and complication of writes that make up

only a portion of a stripe, which are problematic because they have differing

characteristics than the rest of the stripes [13].

Zebra fits in to the striping systems even though it keeps append-only logs

as the actual stripes. A system like this must be wary of space consumption by

partial stripes, as these fragment the available space, which then requires either

defragmenting or exceedingly complicated block tracking metadata. Zebra uti-

lizes a stripe cleaner to keep track of, reclaim, and reissue free space. This adds

considerable complication that can be broadly ignored by using the object storage
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concept, in which the filesystem does not care about the “shape” of free space

allocation on any given disk, nor the amount of free space in general, aside from

potential rebalancing of a system at the disk level.

2.2 PVFS

PVFS [5] is a hybrid system which exhibits characteristics of block striping

systems and object storage. The key underlying goal of the parallel filesystem

is to squeeze performance out of parallelization via striping, however, it also in-

corporates metadata that function as a list of underlying files, partial files, or

block sets. While this is a potentially different level of object than is used as

the base-level object in FOBS, there is clearly an object storage influence in the

PVFS architecture, especially considering the broad reach of the metadata to be

configured on a file-by-file basis as to how to make use of the resources for that

file (blocksizes, number of disks, etc.)

Because PVFS depends more closely on the block-device paradigm, it is still

limited somewhat to clusters or other reasonably homogeneous environments. In

this environment, PVFS will gain some performance advantage over a file-based

object system, especially for small reads and writes. Outside of the cluster en-

vironment, however, the presence of heterogeneous network connections or disk

speeds, a file striped across several devices can be accessed only as fast as the slow-

est resource. While this is true on a per-file basis with FOBS, having some fraction

of the files in a data set be slow does not render the system unusable while waiting

for the slow accesses so long as the target application is not a tightly parallel pro-

cessing job. In PVFS, however, having potentially every single file access occur at
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the slowest resource speed can degrade many types of performance beyond tightly

parallel workloads.

2.3 FARSITE

The architecture of FARSITE is quite similar to that of FOBS; a metadata

layer acts as a set of pointers to underlying files, which are distributed across a

set of resources. They aim to “provide ... the benefits of a central file server

(a shared namespace, location-transparent access, and reliable data storage)” [1]

in the context of a large distributed system. Each facet of this goal is shared

by FOBS. However, while FARSITE stresses the system is intended to act as a

general purpose filesystem, the designers are very up front about shying away from

association with tasks beyond that of desktop I/O workloads. FOBS, on the other

hand, actively encourages use as a filesystem for scientific computing, in addition

to desktop I/O workloads, and thus has a different set of evaluation expectations.

FARSITE takes heavily into account the security of the system and the risks

of malicious users, whereas this is not within the scope of the development goals of

FOBS (or its underlying filesystem, Chirp). FOBS design emphasizes the ability

to use external methods for authentication, and has relied on the assumption that

Byzantine rules could be enforced if malicious users with access to the system

became a concern. FARSITE, on the other hand, has natively implemented this

behavior and has given significant discussion to these implementations in their

publications.

FARSITE implements raw replication for redundancy and availability, but the

designers notes that the replication subsystem is “a readily separable component

of both the architecture and the implementation” [1]. This allows replacement
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with other options, such as erasure coding, or dismissal altogether in cases where

data availability via a single replica is not a concern. FOBS has taken a similar

angle: the system is designed to support redundancy and parity schemes injected

from higher levels, and not to interfere with schemes built in to lower levels,

however such schemes are neither natively built in to FOBS, nor precluded from

being built in to FOBS as a separate module.

Finally, FARSITE is quite concerned with the balance of advantages and down-

sides of high performance servers as resources; with higher reliability and perfor-

mance weighed against higher initial cost, higher cost for maintenance and admin-

istration, and that such resources are additional overhead beyond already sunk

costs associated with large workgroups. FOBS shares these concerns, but whereas

FARSITE avoids servers completely, choosing to replicate and distribute meta-

data in an aim for a serverless filesystem, FOBS is built on the assumption that

the metadata server is powerful and reliable enough to support operation of the

filesystem, and that the cost and overhead associated with this single server are

not significant when compared with the dozens or hundreds of underlying nodes.

This belief stems from the idea that the storage nodes are running on commodity

machines, often using scavenged space from desktop or cluster systems, in which

the addition of the FOBS load on the machine does not change the maintenance

or administration overhead associated with it.

2.4 Lustre

Lustre [6] is a parallel filesystem that uses object storage to combine several

resources into a single, flexible namespace. Like FOBS, Lustre stores data on

commodity disks, with metadata servers for filesystem metadata. Further, Lustre
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simply leverages existing authentication and authorization schemes, a departure

from FARSITE, as discussed above. Lustre also uses existing privacy controls,

which have been explored in the Tactical Storage System, but have not been

implemented into the FOBS prototype.

One key difference, however, between these two object storage file systems,

is the lack of data/metadata duality. Lustre stays true to the object concept by

defining an object as a coupling of the data and metadata, but maintaining a

clear distinction between them. Even though lookup semantics from OSTs to the

underlying object-based disks is similar to that from FOBS, the rigidity of the

distinction takes away one degree of flexibility that FOBS employs: the ease in

mounting or logically changing a filesystem based on already-existent underlying

data.

The similarity of the metadata architecture does, however, lead to several other

close parallels between the systems, such as: relying on the metadata for lookup

but not continual pass-through to access the underlying resources; and the ability

to recognized errors associated with file placement and avoid misbehaving targets

(very similar to the memoization technique in FOBS evaluated later in this work).

A touted advantage of Lustre is the ability to provide a global namespace that

is easily mountable into a stub of a Linux filesystem, and that the location of this

mount needn’t be either pre-defined, nor consistent among nodes concurrently

sharing the namespace. FOBS shares this ability through the FUSE adapter,

and gives an additional advantage of having this mount point able to be defined

without special privilege (aside from installing the original FUSE module). Fi-

nally, FOBS takes this even one step further by allowing underlying objects to be
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combined into any number of different personally customized namespaces, while

maintaining the ability to switch back to the unified namespace at any time.

2.5 Freeloader

Freeloader [35] has a similar architecture in terms of layers and the role of

metadata, using a smallest logical object called a “morsel” (a partial file) instead

of a full file, although they do not discuss the system in terms of the object

storage paradigm. More importantly, however, the system’s goal is to provide

high performance online read-dominant access to large datasets locally to the

user, similar to a cooperative cache. While there is overlap, especially with the

GRAND case study, this is a very different use-case from FOBS general-use aim.

Thus, although both systems aim to maximize scalability and connectivity while

taking into account desktop heterogeneity and the write-once/read-many property

of many scientific data sets, they are not directly comparable.
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CHAPTER 3

ARCHITECTURE

3.1 Abstract Architecture

The FOBS filesystem is a metadata layer that points to objects (files) on un-

derlying filesystems. The metadata layer consists of files stored on the underlying

filesystem in their own right. Thus a file in the FOBS filesystem is really two

separate files: one which contains a metadata pointer to the object, and the other

which is the target of that metadata on some local or remote filesystem. In this

work, “underlying file”, “underlying object”, and “target object” each refer to the

latter, whereas “metadata pointers”, “pointer files”, and the generalized “meta-

data file” refer to the former.

Figure 3.1 shows two FOBS filesystems, Apple@Foo and Cherry@Baz. Both

filesystems contain two files: datafile1 and datafile2. For Apple@Foo, the data

for datafile1 is located on the host Banana; datafile2 is located on the same host

as the metadata. In Cherry@Baz, both datafile1 and datafile2 reference the same

file on Apple, which is in the directory specified by the key metadata; note this

is not required, as seen in the first example, where the two underlying files were

in different directory paths. The file “hosts” includes a list of available hosts for

new file placement, and “key” contains the path in which those files would be

created. As seen in the figure, it is valid for multiple pointers within the same
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Figure 3.1. FOBS Architecture

FOBS namespace to reference the same object. Names from one FOBS filesystem

can overlap with each other without any relation – shared semantic names can,

but do not have to, refer to the same underlying file.

3.1.1 Metadata Layer

The FOBS metadata architecture requires two types of files: configuration files

and metadata pointer files. The FOBS configuration files list where to place newly

created objects onto the underlying resources, and what resources are available

to do so. Other configuration files that could be used are policy files, indicating

the preferred order of resource usage and settings for replication or other fault

tolerance techniques if included as a module. The majority of FOBS metadata

files, however, are pointers that contain two primary pieces of data: the hostname

and path of the underlying object to which it points.
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3.1.2 Possible Metadata Usage

The metadata pointer is not limited to only the target of the pointer. Other

items could be useful within the scope of the metadata, including multiple targets

for replicated data, targets and parameters for erasure encoded objects, flags for

whether this metadata file “owns” the target object, a count of the number of

metadata files currently pointing at the target (a reference count), or an actual

list of the other metadata files referencing the underlying object.

Viewed in terms of the implementation, these possible metadata additions

could be added to the system with minimal change to the fundamental functioning

of the filesystem. The added capabilities could shape policy, performance, or

reliability considerations, however, so while the system could be expanded to

include any of these, further analysis considers a system without these additions.

3.1.3 Data/Metadata Duality

Data/Metadata duality is the property of the system in which metadata files

are, in fact, actual files on the underlying filesystem no different from the data files

they reference. This duality in the metadata allows for flexibility in constructing

large filesystems.

On one extreme, because the pointers can reference remote filesystems, the

metadata can be completely isolated from the objects themselves. The advantage

of this is that different specifications may be given to the metadata and the un-

derlying data, explicitly differentiating these two types of underlying files based

on their FOBS usage.

On the other extreme, however, is the concept of a filesystem in which the

data stored is the metadata from other filesystems. Perhaps this could be used as
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a compilation of what underlying resources are being referenced by several FOBS

filesystems, for management or accounting purposes.

The complete separation of metadata files from the objects they reference al-

lows for metadata files from several different FOBS filesystems to point to the

same underlying object. This allows the same object to be part of multiple dif-

ferent filesystems without the underlying object’s replication across each of them.

The independence of these metadata files, which provide the name for the FOBS

file, from each other is a key component in allowing users to create and manage

their own namespaces, as names for the same object in different FOBS filesystems

needn’t be related, and names for distinct objects may collide between filesys-

tems without issue. A special case of multiple metadata files referencing the same

underlying object is that even multiple metadata files from the same FOBS filesys-

tem do so. This provides a characteristic similar to a hard link in which a file

can operate by multiple completely independent names within the same filesystem

namespace.

To give an example of these abilities, consider a dataset in which new data is

constantly being acquired, similar to the case study examined in Chapter 5. With

multiple pointers referencing the same file in the dataset, a scientist can target a

single observation’s data file for inclusion in a filesystem namespace of all observa-

tions from the same hour, a separate namespace of all observations from the same

day, and a third of all observations from the same year. Further, as needed, the

observation’s name in one group need not be related to its name in any other set.

Alternately, a single resource could appear under two different names in the same

namespace. This could include cases traditionally handled by symbolic links, such

as pointing the file newest at the same resource as the filename corresponding to
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the last hour’s observation. Finally, the complete separation allows for modifying

the metadata to change the object it references without changing the underlying

object. Thus, when the next hour’s observation is loaded, the metadata for newest

may be changed to reflect its new target without changing the former target in

any way.

All of these possibilities due to the characteristics of the architecture allow

for constructing a FOBS filesystem on-the-fly to sit on top of a set of resources.

That is, a FOBS metadata layer can be constructed to access resources listed by

a set of dynamic classifiers. A simple example would be to build a fully functional

filesystem of files starting with l by building metadata from the results of ls l*,

but this could be made more complicated by taking output from a complex query

system such as GEMS [37].

The flexibility to include any object as the target of a metadata pointer allows

for referencing singleton objects that are on a host not in the list of available

resources. That is, even without opening a host up for inclusion in a pool of

resources (to be written to), the files on that disk can be included in a FOBS

filesystem as needed. This ability presents several challenging characteristics not

seen in most systems. The first is keeping track of the resources used by the

filesystem. It is hard to know what physical resources are being used by (as

opposed to “are part of”) the filesystem, as singleton files’ hosts are not listed

in the configuration metadata. Thus, the system would have to scan every file’s

metadata in order to enumerate all underlying hosts. Alternately, a list of this

information could be kept as part of the configuration metadata, however it would

require a third actual file access for every FOBS file access to ensure that the list is

kept up to date, concurrent access would be a new issue, and the file would have to
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contain actual reference counts, rather than simply a list in order to allow correct

removal of a resource from the list. In light of these disadvantages, the prospect

of scanning every metadata file to determine a list of resources being used by the

filesystem isn’t unreasonable, especially since it isn’t a common operation.

One way such a scan could be done without making several passes through

a possibly changing directory is to create a FOBS filesystem for accounting in

which the underlying objects are the metadata files for the filesystem of interest,

as described above. This will give a snapshot of what metadata files were there

at the time of the scan (their contents may have changed, since the “accounting”

FOBS filesystem only references the underlying objects, it does not lock them).

A second bookkeeping issue is that of total space available on a FOBS filesys-

tem. Due to singleton files, a filesystem can use more space (as measured by du

for instance), than it has total space available (as measured by df). This requires

examination of applications working on a FOBS filesystem to ensure that the size

of the singleton files can be included in the total size of the filesystem, without

causing errors for a perceived impossibility of using more bytes than are available.

This is especially notable considering that many quota programs base warnings

or errors on percentage of resources used.

3.2 Implementation Architecture

In the implementation of FOBS, the underlying filesystem is a Tactical Storage

System [32]. This gives two important benefits to the FOBS filesystem: it is able

to be deployed and configured without administrative privileges, and it is possible

to to implement a variety of policies regarding access control within the filesystem

beyond traditional UNIX permissions. The adapters that allow access to the
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resources on the Tactical Storage System are parrot [31], and a FUSE module

that connects to Chirp servers.

3.2.1 File Access, Modification, and Creation

File access consists of two phases: the lookup and the actual access. Once the

filesystem is initialized, that is, once the list of hosts and the placement location

have been loaded from disk, the FOBS client requests the metadata pointer file

from a well-defined location. This metadata pointer file is then streamed to the

client using a single RPC. The client parses the metadata file to complete the

lookup phase, and then issues further RPC(s) on the underlying object to complete

the actual operations on the file.

Reads and writes to an underlying object can be done in two manners, through

individual read/write RPCs, or through putfile/getfile streams. The advantage of

the former is that the entire file need not be transferred to read/write a small bit

of data, and the infrastructure to set up buffers to store streamed data before and

after network transport on either end is not needed. The advantage of the file

streams include many fewer RPCs, and not having to wait for the complete round

trip of an RPC and acknowledgment before sending the next piece of data.

The ordering of the operations in creating a new file in a FOBS filesystem

is important, as discussed in Thain, et al [32], and it is recapped in this work

because it has several implications with regard to naming, file migration, and

error handling.

To codify the process for new file creation, a round-robin list of resources

available for new file placement is part of the configuration metadata. When the

filesystem is initialized, an initial choice for the next file placement is set. Thus,
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the first time that a file is to be created on the FOBS filesystem, that choice

is selected. The path into which it will be placed on the underlying resource

is determined by another piece of configuration metadata, the “placement key”,

which gives the directory hierarchy of the path. The filename of the object is

determined at placement time; it was suggested in the introduction of the DSFS

that “a unique data file name is generated from the client’s IP address, current

time, and a random number” [32], however, in implementation a random string is

used instead. The implications of this are discussed in the next subsection.

When a client requires a new file creation, the metadata pointer file is created

first, and filled with the name of the chosen host, along with the path in which

the object will be placed. Next, the underlying file corresponding to that path is

created on the chosen host. If not done in this order, a failure during writing to

the data file or between the two file creations would result in an object with no

references pointing to it. This is akin to a memory leak, whereas a failure at the

same point with the proper ordering of operations is akin to a broken/null pointer.

The advantage of the latter is that the location of the remnant of the failure is

well known (it is the name given to the file), and it is small. The “memory leak”

on the other hand, isn’t necessarily well-known (the underlying file’s name is just

a random text string), and could be very large.

3.2.2 Naming

Another way to mitigate the risks posed by a failure causing such a memory

leak is to change the naming scheme for underlying files created by the FOBS

filesystem. There is a simple alternative to random character filenames, but it

fails to solve all problems surrounding the issue. One possibility is to name the
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underlying file based on the namespace name, that is, with a name derived from the

metadata pointer file’s name. Two issues with this are multiple metadata pointer

files targeting the same underlying file, and the possibility of renaming the pointer

file. The former is an issue because, as discussed later, the underlying object or

another FOBS metadata file referencing the object have no way to know when the

metadata pointer file responsible for the object’s name is removed (in the absence

of removing the underlying file with it). Alternately, if there are multiple metadata

pointer files referencing the underlying file, to the metadata files that do not share

the name, this scheme has no advantage over the random character string version.

Finally, changing the name of the metadata file would then require changing the

name of the underlying file, an access which is not currently required, and one

that would require further synchronization and atomicity. Thus, maintaining a

random object name and mandating the ordering described above is at least as

sound an option as the alternatives.

3.2.3 File Migration

Unlike block devices, in which the configuration of the underlying hosts must

be especially well-known, object storage requires only a simple list of the resources.

This is not just parsimony, but rather has the advantage that it allows for flexibility

in expansion. Because adding a new host simply adds to a list, rather than

requiring a complex reconfiguration of resources, expansion can be done on-the-

fly. This has two benefits, first that the system can systematically grow in capacity

to meet demand without down-time at each upgrade, and second that in a time

of need, more resources can be hooked in to the filesystem quickly to increase

capacity and maximum aggregate throughput.
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Two challenges associated with this flexibility are metadata staleness and im-

balance in the system. If a resource is removed from the hosts file, the state of

the metadata doesn’t necessarily change with it until refreshed – for example, the

the “next host for placement” pointer mentioned above could point to a host no

longer in the hosts file. In this case, the next file placement either tries to open a

file on a host no longer designated for new file creation, or on one that no longer

exists at all. In order to take advantage of this flexibility, then, a FOBS client

must refresh the state of the configuration metadata (using the same process as

to initialize the FOBS filesystem on first access, not by taking the system down

completely as in many distributed filesystems) in order to realize such changes.

Thus, while the system can change on-the-fly without system downtime, there is

some overhead required to refresh the state of the FOBS clients periodically.

Another problem raised by the ability to add and remove hosts from the system

on-the-fly is that in a growing system, adding new hosts introduces imbalance into

the system. The new hosts have no data stored on them, so the parallelization is

not immediately realizable for reads as it is for writes. Thus, it must be possible

to reorganize files currently on a filesystem to distribute them evenly across the

underlying resources. Even with a perfect system of filesystem reorganization,

however, the system is at the whim of the user to connect new devices or remove

old devices, and some element of system balance must remain with the user instead

of being built to run autonomously inside the bowels of the filesystem.

Additionally, like with file creation, in practice, a specific ordering of operations

must take place for file migration. A temporary metadata pointer file must be

created, then a third-party transfer of the underlying object to its new location

can proceed. Once this is complete, and the new contents verified, the original

28



underlying file can be deleted, followed by changing the original metadata to reflect

the new location, and then removing the temporary metadata file. Failing to create

the temporary metadata file leaves the system vulnerable to a “memory leak” (in

which the new copy of the data is unacknowledged by metadata) if the system

fails before the old metadata is changed to reflect the new location. Similarly, the

old underlying object must be removed before changing the old metadata.

3.2.4 The Problem of Multiply Referenced Objects

Underlying reorganization and other elements of FOBS flexibility present prob-

lems when the object is referenced by multiple metadata pointers. Examining the

options for underlying object migration, there are several possibilities for deal-

ing with this. If none of them is sufficiently stable, however, the default “zero

knowledge” platform (in which an object knows nothing about what metadata is

viewing it, and metadata knows nothing about what other metadata is viewing an

object) is the most apt solution, as it maintains the simplicity of the architecture.

A first approach is to consider taking action when an action is performed on

the underlying object. FOBS could utilize something akin to operating systems’

callbacks. It can be known where to call back to if the other viewing FOBS

filesystems are listed in the metadata (this could be accomplished with a second

file for each underlying file on the same device, with a well known name, listing the

“viewers”). However, it would also require each FOBS filesystem to have a world-

writable configuration file to allow updated locations of files to be listed, and this

would then require a full-filesystem scan to find the metadata file that previously

referenced the now-moved file. Even this wouldn’t be sufficient, because not every

location is visible to every other location, based on access control. The viewers
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list (or even a reference count) file means that there is a factor of two overhead

in the number files stored on the system, but without such a list, it is impossible

to know who else sees it without adding such information at the top of the actual

underlying file.

Storing the information in the actual file is not a good solution because it

fundamentally changes the underlying object based on what filesystems are ref-

erencing it; this affects checksums for the data, and requires all accesses to the

file to exclude this built-in metadata (requiring changes to stat, seek, etc.). Ad-

ditionally, it destroys the duality of the object as both a regular Chirp file and a

FOBS object; with the added FOBS metadata, the object is no longer the same

semantic Chirp file as it was before.

Another option is a shadow file in the same location as the now-moved file,

which lists the new location. However, it is unclear as to when this would be

required to be noticed. Would it simply be on-access, or would a periodic scan be

necessary? If on-access, as the system could change on-the-fly to access the new

location, but there are two more issues: what if the FOBS doesn’t have access

to the new location, and how long does the shadow file have to stay? Similarly,

a shadow file that lists the new location does little good for moving files off of a

disk that will be put out of service. A periodic scan impacts performance, with no

guarantee to increase accessibility, as this does not handle the retiring disk case

either.

Finally, the last issue considered is with policy of permissions. As built into

the system, each object contains a set of access controls on a directory basis.

While FOBS could have “metadata abilities” associated with each object, this

has several problems. Consider, for instance “FOBS:ccl00.cse.nd.edu@MYFOBS
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ndm”, that is, the system controlling the FOBS filesystem MYFOBS hosted on

ccl00.cse.nd.edu has the ability to rename, delete, or move the underlying object.

First, this is a directory-level access control, which makes differentiating capabili-

ties to various underlying objects difficult, and more importantly, it assumes that

anyone with access to that particular FOBS filesystem has the same right to do

those actions as any other one. This is problematic due to the lack of a singular

identity of a FOBS filesystem user, as well as conflicting goals between different

FOBS filesystems using that underlying object.

Because no single FOBS filesystem “owns” an underlying object, and there is

no good way to differentiate between a user of a FOBS filesystem and the internal

processes of the system itself, this is currently handled in a passive manner: access

to underlying objects is controlled based solely on their access control as individual

objects on a Chirp server, rather than as data in a FOBS filesystem. Users retain

access to the underlying file that they have to it natively as a Chirp file, regardless

of which FOBS filesystem they are using to access the underlying data, and a

FOBS filesystem may never be sure that its referenced objects must remain in

place for the duration of the reference.

Hopefully, future work may establish further constructs for staking FOBS-

level claims to underlying objects. This would prevent references from being

broken by other FOBS servers modifying their (shared) referenced objects, or at

least formally codify the semantics for such operations. For this work, however,

the complete independence of the underlying file from its inclusion in a FOBS

filesystem is asserted: anything that a FOBS user could do to the Chirp file, he

can do to it through the FOBS interface, regardless of implications of that change

on other FOBS filesystems.
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3.3 Dynamism in Cooperative Storage

A cooperative storage system, in particular the dynamic nature of it, introduces

new opportunities and challenges in the design and implementation of personal

storage systems.

• Dynamic Systems.

Dynamic systems are marked by resources changing status frequently. This

could be any number of actions: joining the system for the first time, re-

joining after a disconnection, announcing new capabilities, disconnecting

temporarily for a planned outage (perhaps for maintenance or reboot), dis-

connecting due to failure, or disconnecting permanently (perhaps due to

a machine’s scheduled decommissioning, or an owner’s cessation of involve-

ment in a research project). Some of these can be planned for, others cannot,

however each has a different set of effects on the state of a system, and each is

important for harnessing cooperative storage infrastructure into a personal

mass storage system.

• Cooperative Storage Dynamism.

Cooperative storage systems are particularly dynamic. Unlike with cen-

tralized storage, the cardinality of the set of disks combined into a single

filesystem can grow beyond tens of file servers. Because of this, however,

there is a much larger demand on the system to handle dynamism within

the set of resources, such as those status changes described above. Without

scaling the number of component resources beyond the hundreds of disks,

one can already imagine a system in which at any given time there will

almost certainly be some resource changing status. This can be as simple

as a user sitting down at the terminal and running a job that consumes
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the system’s resources such that the machine cannot report to the central

resource server or cannot access the disk a shared file occupies, and is thus

dropped temporarily. Alternately, a brief burst of network traffic congests

the network, causing packets to be dropped, and yielding the same result.

Additionally, cooperative storage servers must ultimately serve the resource

owner, so they can be power cycled, have the file server software shut down,

or have components added or removed. Finally, cooperative storage sys-

tems are particularly dynamic when storage is culled from many owners or

administrative domains. For example, a resource owner can collect several

systems together, join them with existing cooperative resources, set up a

FOBS filesystem for use as a temporary storage dump, then, just as quickly,

end his experiment, disconnect his resources, and return the system to its

previous state.

• Reliability in Dynamic Systems.

Reliability in the face of such dynamism can be broken down into two sepa-

rate characteristics: maximization of available resources at any given time,

and sensibility in dealing with failure or unavailability. The first component

is important because if a cooperative storage system is to function as mass

storage, it will contain data that is likely not backed up on an alternate

device, or data that must be recomputed at great computational cost if un-

available. The second characteristic is related; maintaining system stability

in the face of suboptimal availability is hard, but selecting appropriate re-

sponses to errors is a key weapon in preventing a single localized failure from

crippling the system in its entirety.
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• Multi-level Failure Management.

It is impossible to build a system that maintains perfect reliability from

within. However, as stated above, reliability is a key consideration of a co-

operative storage environment. Because of this, it is necessary not only to

build some reliability assurance into a cooperative storage system’s internal

structure, but also to support such measures above and below the cooper-

ative storage system itself. Replication, parity, and erasure coding can be

built into the internal structure to aid in availability, but more importantly

the system must facilitate external measures, as these are more configurable

to a user’s needs. A cooperative storage system must support being run

on top of a RAID system, or being run under a top-level file management

system that implements those fault-tolerance measures. An example of this

multi-level approach would be an application that creates m-of-n recovery

files (for instance, Tornado-Code packets) and places these files onto a FOBS

filesystem. Taking it one level further, that FOBS system could consist of

underlying disks that are part of a mirrored RAID array.

• Unexpected Policy Coupling.

When multiple servers must participate in an activity, their policies may

interact in unexpected ways. An example below will illustrate that a user

that deploys a FOBS filesystem across several nodes may discover that his

permissions are different on each of these nodes, that the file placement

policy interacts with the possible access controls that may be placed upon

those files. This introduces interesting challenges for the user, as well as the

other users of the shared resources.
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3.3.1 Management in FOBS

Decentralization of storage allows users to harness many more resources than

would be available on a single centralized system; however, the unreliable nature

of a single resource is compounded due to reliance on a potentially large group

of diverse resources and a network backbone that is less reliable than a mother-

board or system bus. Some formerly straightforward management procedures are

made less clear, but new opportunities for dependability and performance become

possible. For each example, there are opportunities distribution affords a user,

unique problems that arise due to dynamicity, several potential solutions to these

problems, and continuing challenges dynamic distributed systems face relating to

the example.

FOBS has a more complex failure model than a single disk or even a single

Chirp file server. In order to access a file, a client must successfully communicate

with both the directory server and the relevant file server or servers. If a user’s

attempt to write out a file fails with a “permission denied” error, in a centralized

file server it is fairly obvious that the permissions on the file do not allow that

user to modify the file. On a FOBS filesystem, however, it could be any one of

several errors:

• no permission to write to the underlying data file

• no permission to write to the metadata pointer file (if it required any changes)

• no permission to create a new file

• no permission to delete a previously existing file, as required by some striping

or replication algorithm
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When viewed as a dynamic system, this complex failure model is magnified, and

it is clear that it plays a role in determining storage policy. In addition to policy,

this observation supports the file-level object storage approach used in FOBS. If

a file’s data is stored on several disks, the failure of any single one of them can

cause an operation to fail. Traditional RAID striping is not sufficient for use as

a personal mass storage system across a grid environment: the failure of a single

resource (a server or its connection) cripples the entire system.

Even though FOBS has restricted placement to single files in their entirety

on a single disk, that still doesn’t eliminate the concerns about performance in a

dynamic environment. Poorly planned failure response still can cripple a system,

and no single failure policy works across the board. Consider three possible failure

policies for writing a file: return with a failure message and let the writer determine

when to retry; return with a failure message and institute an exponential back-off

before retrying; and retrying immediately on a different host, while remembering

failed hosts so as not to try them again.

The first option seems reasonable in a dynamic system – after all, it is quite

possible for a resource to be unavailable now yet become available by the time the

next request comes in. Consider, however, trying to write a file to an extremely

popular host (perhaps one that, ignoring security, hosts a password file required

by many of a user’s applications, or stores a large configuration file that cannot

be cached) that resides on a server with an inadequate network connection. In a

large system with many users, or many applications and threads from one user,

trying to fetch this file, a failure returning as “busy – try again” will likely cause

an application to retry immediately. This in turn will continue to keep the server’s

network congested, delaying or precluding the host from serving its current job,

36



while stacking up new requests in the process. Thus, an inappropriate failure

policy can cause users’ normal actions to result in a sort of distributed denial-

of-service attack against their own storage systems. A better choice would be

exponential back-off. In this case, if the server is only temporarily busy, the quick

retry will likely succeed, and if the server remains busy, the exponential nature

will prevent the retry requests themselves from congesting the network.

The exponential back-off seems a good solution, but it isn’t ideal either. In [33]

it is noted that authentication ability and file access permissions change rarely,

and this is especially true for cooperative storage, where policy change is slow

due to multiple principals and administrative domains. Thus, it is not reasonable

to try an exponential back-off technique when the error returned is “permission

denied” or “access denied”. It is likely that even retrying several times (until the

point at which the “back-off” period between attempts longer than the timeout

of the operation) will not garner better results. Instead, an immediate retrial

on another node would be more advisable. Furthermore, figure 4.4 shows that

maintaining a memoization table adds little overhead, while reaping large benefits

for systems where a user may only access a very small portion of the resources.

Thus, even if only a single placement host in a FOBS filesystem is available to the

user, he can try every single host to find that one, and then repeatedly use only

that one (either relying on the memoization process, or setting a system variable

for placement choice). Memoization is discussed at greater length below.

The case presented in that work is particularly suited to a FOBS filesystem

built on a subset of a large cooperative storage environment, perhaps to work

within a different namespace or a smaller set of files. Another choice in such a

situation would be limiting file creation to a single disk. This way, many disks
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may be pointed to by a FOBS filesystem, however a user will only create files on

the disk specified. This seems to fail if that disk is unavailable. On one hand,

it is no worse than a single disk – if the user has no other permissible disks, he

must wait until that disk recovers (the same as using a single disk for personal

storage) – but it also ignores the aggregate write bandwidth advantage of a FOBS

filesystem, as well as the raw capacity advantage.

Memoization isn’t the catch-all solution, either, however. Not all errors ex-

hibit the characteristic that access denied errors do; some errors are completely

transient. Memoizing away nodes that fail with temporary errors would quickly

eliminate a large number of otherwise available hosts, and wouldn’t get the ben-

efit of avoiding retrial on hosts that “you know will fail again”, since that is not

known. An example of this is a failure with the returned error “too many file

descriptors open”. Clearly that host will not always have its maximum number

of file descriptors in use. This is an example of an error where trying again imme-

diately on the same host is a reasonable solution. Having all of its file descriptors

in use does not indicate the host’s resources are being overworked (CPU, net-

work saturated, etc.), rather that it has many files open. This means the system

is unlikely to run into the DDOS problem encountered in a previous case, and

doesn’t need to exponentially back off. Although a dated reference and tailored

towards individual systems, the oft-cited conventional wisdom [18] suggests that

files usually stay open for short periods of time; so an immediate retrial may be

the best solution to this problem.

Without belaboring the point, choosing how to respond to failure is critical in

a dynamic distributed system. There is no catch-all solution, and complex failure

models in dynamic systems further complicate error handling. Well-designed sys-
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tem policy for handling certain errors in certain situations can, however, prevent

overall system failure in the presence of individual failures. As indicated above via

example, I believe that the key components to consider in designing effective error

handling for mass storage systems such as FOBS are: determining permanence

or transience of failures (retry now, later, or never?), preventing compounding

failures (exponential backoffs, for instance), and maintaining some minimal level

of performance in the face of failures.

3.3.2 Load Balance Considerations

In a completely distributed system, the storage load of the system should be

spread evenly across the storage nodes. Even under the file-level object storage

model, this opens up the possibilities of striping data sets on a by-file basis for

aggregate performance, distributing evenly among resource owners for fairness, as

well as other considerations. In a dynamic system such as this, however, new disks

are added, old disks are retired, and disks cycle between available and unavailable

states for myriad reasons.

When a virgin disk is added to the system, it introduces imbalance to it. There

are two clear policy alternatives: rebalancing on entry into a system or rebalancing

through use. Rebalancing the system to incorporate the new disk immediately has

the advantage of immediately making use of increased aggregate read bandwidth

once the rebalancing has completed. On the other hand, it requires running a

potentially complicated rebalancing algorithm, which takes time and resources,

and may result in constant system flux in a dynamic system with a constantly

changing resource set.
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Imbalance in a FOBS filesystem results in decreased performance due to rel-

ative overtaxing of the resources of one disk, while under-utilizing the resources

of another. Additionally, in a scavenging environment, imbalance can also upset

resource owners, who may feel as though they are not being treated fairly if their

disks are filled disproportionately to the other disks.

The lesser abilities of unbalanced systems have similar negative effects on a

single user’s workload as they do on the aggregate workload of a large load of users

(ineffectiveness of parallelization, saturation of disk and/or network bandwidth,

no immediate benefit of adding extra disks, etc.).

The dynamic nature of cooperative storage and the ability for on-the-fly ex-

pansion of FOBS combine in an interesting manner in terms of usability of the

system. A system may fill up very quickly due to many users operating concur-

rently, or even one ravenous user. If space in a FOBS filesystem becomes scarce,

more disks can be added to increase its capacity without taking down the system

to change its configuration. This allows for swapping in and out disks on-the-fly

(either in one-for-one replacement of small disks with large ones by using file mi-

gration, or continually adding more space on new disks without removing the old

ones), however it also presents a balancing problem among the disks of the FOBS,

which can affect performance.

For example, consider a FOBS filesystem in operation with 10 disks, evenly

filled to 50% capacity. If an eleventh identical disk is added to the system, ca-

pacity is increased by 10%, but aggregate read performance does not immedi-

ately increase, as increasing capacity does not automatically rebalance the sys-

tem. Even as more files are placed in a round-robin or random method, the new

disk will remain under-loaded relative to the rest of the disks, though aggregate
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read throughput will increase assuming the newly written data is accessed. Other

possible causes of imbalance, and thus limited aggregable read throughput, could

be that a disk is disconnected from a balanced system, is offline during a flood of

file placements, then reconnects and is now under-loaded.

Imbalance can occur even in a static system, simply due to the non-omniscience

of future operations and demands. Consider a round-robin system, with an two

1TB-capacity disks, onto which a scientific computing program stores a small

(1KB) configuration file, then a large (1GB) data file. After one thousand file

placements are done, one disk will be nearly empty, having stored only 1MB,

while the other half of the system will be at absolute capacity, and realistically

will have already reached capacity by the time the last file is placed.

Various disk replacement and load rebalancing algorithms are well-studied [30],

and may be of use to increasing performance in FOBS, however the particular

algorithm is not as relevant to our discussion as is the recognition that in a FOBS

filesystem, balanced loads are not guaranteed, and can be unattainable in some

cases. The implementation of FOBS has several built-in RPCs that can facilitate

on-the-fly balancing by an external application, with the caveat that, as discussed

above, there are repercussions of moving underlying files in an environment with

multiple FOBS referring to the same underlying objects.

Likewise, when a disk is scheduled to be removed from a system, its data

must be preserved, and executing an application to do this can disrupt a system’s

balance and performance. One approach would be to designate a destination

disk for the files from the retiring disk. This is bad for several reasons – it is

not guaranteed that there exists a disk that can fully bear the weight of all the

files from the retiring disk, and even if there is, this disrupts the balance on the
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system severely. Additionally, it precludes parallelism in emptying the disk, which

slows down performance in general, and specifically leaves the system at a greater

chance for data loss if the retiring system fails or goes offline early [38]. This is

especially wasteful if the source disk has more bandwidth capacity to send than

the destination disk has to receive. A better choice is distributing the retiring

disk’s files among the rest of the available resources. This makes better use of

parallelism, naturally maintains better balance, and requires only that the system

have enough capacity to handle the retiring disk’s contents, rather than that

requirement from any single disk on the system. The downside to this is that

transferring files from a retiring disk takes up resources from every other disk in

the FOBS, rather than a single disk and network link.

3.3.3 Execution at Data Location

The fact that the principals of the filesystem are a set of metadata files that

point to multiple remote servers also allows for a top-down distribution of filesys-

tem tasks. Tools can be made, or RPCs included into the filesystem protocol, that

use the location of the object as the operator for tasks such as file checksums and

stats. Also, unlike normal distributed filesystems in which the user has little say

in the remote location of his objects, within FOBS, this can be specified before

placement, or modified after placement. Additionally, instead of a two-hop trans-

fer (up to the user’s host, then down to the new target) to change the underlying

location, third party transfers can accomplish this within the filesystem. Another

idea that is a more general extension of these, though still not fully explored, is

that of “active storage”, in which the host on which an underlying object is stored

is responsible for some computation on that object (at the command of the user of
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the filesystem, without having to directly access that host). A built-in example of

“active storage” would be the local MD5 calculation, which relies on the storing

resource to report back the MD5 checksum of the stored file, instead of having to

transfer the file to the machine requesting the checksum for local computation.
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CHAPTER 4

EVALUATION

4.1 Architecture-based Latency

4.1.1 Problem and Observation

The metadata layer in a FOBS filesystem introduces a second file access for

each actual data file access. This means that there are multiple RPCs for each

access that requires use of the metadata. For example, an open requires a getfile

of the metadata file, then the actual open of the data file. This additional access

injects a longer latency into each operation compared with operations on the data

files without the metadata download.

The additional latency becomes an issue for the overall performance of a FOBS

filesystem if it is of the same order as the base operations themselves. The latency

can be evaluated in two ways: first using microbenchmarks to measure the differ-

ence caused by additional latency, and more importantly on real applications and

larger common operations.

4.1.2 Hypothesis

This artifact of the architecture should make a difference in microbenchmarks

that utilize the metadata namespace, but there should not be a large difference

44



for microbenchmarks that isolate operations on the data files themselves, as no

file transfer is being measured, just another level of RPC layering.

Because the initial namespace resolution is dwarfed by the subsequent RPCs,

unrelated disk and network latencies, and actual service time, the hypothesis

is that for real applications the difference between a FOBS filesystem and the

underlying filesystem (a Chirp server) will be negligible for workloads that do not

strongly emphasize the namespace with many separate lookups required.

4.1.3 Results

A FOBS filesystem currently requires working within the Parrot interface or

FUSE interface in order to make use of regular system applications (cp, mv,

rm, stat, etc). This could be avoided by writing standalone FOBS versions of

each of these commands to be used in place of the regular applications. This

is especially feasible on a limited scale if the application is written as a general

purpose replacement, which will utilize Chirp RPCs, FOBS RPCs, or native UNIX

libraries as appropriate depending on the source and target files. However, as a

more general measure (not every application can be rewritten to service FOBS

natively), the two existing adapters are used to benchmark the FOBS filesystem.

Table 4.1 shows execution time, in microseconds, of several system benchmarks

on a local disk, a local disk through the parrot adapter, a remote chirp server

through the parrot adapter, and a FOBS filesystem with remote data servers and

a local metadata server through the parrot adapter, in which remote operations

are conducted over a gigabit Ethernet LAN. Overhead due to the FOBS architec-

ture is evident by comparing the stat and open benchmarks between the Chirp

system and the FOBS system. The overhead caused by the parrot tool is within
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TABLE 4.1

MICROBENCHMARK PERFORMANCE USING THE PARROT

ADAPTER

Disk Disk (Parrot) Chirp FOBS

write 1B 4.54 ± .02 47.58 ± .39 281.90 ± 39.57 267.47 ± 30.34

write 8KB 7.63 ± .03 53.67 ± .39 367.54 ± 54.72 373.11 ± 46.63

read 1B 1.08 ± .01 33.83 ± .33 31.96 ± .51 32.02 ± .30

read 8KB 2.72 ± .01 41.76 ± .41 39.72 ± .28 40.27 ± .59

stat 1.88 ± .01 45.42 ± .48 290.13 ± 12.32 612.63 ± 116.56

open 2.95 ± .01 72.36 ± .62 844.99 ± 130.61 1122.37 ± 50.31

expectations from the literature. Table 4.2 shows the same microbenchmarks on a

remote chirp server and a FOBS filesystem using the FUSE adapter for comparison

between the adapters.

As expected, in microbenchmark tests, those emphasizing the namespace lookup

and requiring multiple round trips to complete show a difference in performance

between a FOBS filesystem and the Chirp server without a metadata layer on

top. The overhead is not as evident in the read and write benchmarks, however,

especially the larger data sizes, which indicates the lesser effect of the latency on

these operations.

The microbenchmarks also serve to illustrate that the FUSE adapter is con-

siderably faster than parrot for reading data, and completing the stat and open

file operations. This is due to the FUSE module’s location below the buffer cache,

such that reads from cache do not trigger a remote access through FUSE, which
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TABLE 4.2

MICROBENCHMARK PERFORMANCE USING THE

FUSE ADAPTER

Disk Chirp FOBS

write 1B 4.54 ± .02 222.45 ± 61.98 258.43 ± 24.57

write 8KB 7.63 ± .03 379.89 ± 40.96 359.30 ± 46.79

read 1B 1.08 ± .01 0.88 ± .05 .94 ± .21

read 8KB 2.72 ± .01 2.33 ± .02 2.30 ± .02

stat 1.88 ± .01 3.41 ± .03 3.53 ± .15

open 2.95 ± .01 574.95 ± 186.46 798.92 ± 205.56

comes at the cost of potential consistency concerns. The difference between the

two was less apparent for writes, which could be an artifact of the higher variabil-

ity in the operations (as seen in the wider confidence interval) as well as due to

the FUSE requirement that data actually be written through to the storage.

On several common workloads, however, the difference was not as evident as

one might fear after seeing the benchmark results. Table 4.3 shows execution

time, in seconds, of several common UNIX file operations on a remote Chirp

server and a FOBS filesystem, both using the FUSE adapter. Operations in

which the time for the metadata lookup was dwarfed by data movement (tar) or

computation (gcc, make, bzip) yield results with less than 3 percent overhead,

and in some cases absolutely negligible differences. For unpacking a tarball, the

overhead is on the order of 10 percent, which is likely due to the large amount of

metadata interaction to create the files that were unpacked. From this, it seems
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TABLE 4.3

SAMPLE MESOBENCHMARK PERFORMANCE USING THE FUSE

ADAPTER

Chirp FOBS

mkdir .009 ± .005 .024 ± .011

rmdir .003 ± .005 .021 ± .063

tar .830 ± .155 .835 ± .052

untar .961 ± .205 1.062 ± .144

diff .020 ± .001 .022 ± .002

gcc .102 ± .016 .105 ± .021

make 2.321 ± .052 2.266 ± .102

bzip2 4.427 ± .032 4.451 ± .032

bunzip2 1.917 ± .060 1.932 ± .045

48



clear that the performance cost associated with the increased latency of the FOBS

filesystem’s additional metadata lookup is small enough that this alone does not

make the system unusable for most users, as either a general purpose or specifically

scientific computing filesystem.

It is notable, however, that some small operations that deal exclusively with

the FOBS metadata do show a similar performance cost to that seen in the mi-

crobenchmarks. In the implementation, making or deleting a directory does not

affect the actual data in the FOBS system, instead changing only the metadata;

these operations were also the ones that demonstrated the highest overhead, as

they represent a metadata operation with absolutely no data access, which isolates

the extra layer of RPCs to serve the FOBS architecture. Even in this worst case

isolation, however, the order of magnitude difference in performance is mitigated

by the fact that these are very fast operations even after the large overhead.

On a compute-heavy workload, in which the data access time is small relative

to the time to complete the computation, there is absolutely no evident difference.

Consider, for instance, a system that must serve a large set of configuration files

for a large scientific computing application such as the searching for Mersenne

Primes [36], XtremWeb [8], or Folding@Home [16], which transfer small amounts

of data to prime a simulation or computation engine and then wait for many CPU

hours. The requirements of these servers is availability to deliver under high load

factors, with less emphasis placed on raw turnaround time for requests so long

as they are served within reason; it is better to serve users at a slight delay than

to crash and forfeit any chance for those CPUs to do useful work. The FOBS

system’s high capacity and ability to service large load factors, combined with the

insignificance of the overhead seen for small writes when compared to hours or
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days of computation make FOBS a strong candidate for a deployment file server

for such an application, even though it is not the application for which FOBS was

specifically engineered.

4.2 Throughput Scalability Under Load

4.2.1 Problem and Observation

A single file server will struggle to expand performance under load beyond some

small threshold, simply due to finite resources of the machine. For large datasets, it

is unlikely that individual users will want to provide the storage resources required

to maintain their own copies, and thus, it is unsurprising that storage systems will

encounter heavy load.

Utilizing many underlying machines allows aggregation of their individual re-

sources (processors, memories, network links, buffer caches, etc.); however, this is

only true so far as the resources are arranged in a way conducive to working in

parallel. There are two workloads, then, that must be tested: one in which each

client accesses all of the files of a data set in random order, and one in which each

client accesses the data set in the same file order. For these tests, the data is dis-

tributed such that consecutive files in the sequential workload reside on different

servers, which is a common technique and one that fits the default file placement

algorithm for FOBS.

The random file ordering measures an ideal case for a storage system: ac-

cesses are targeted at various resources throughout the system, so from the first

access the entirety of the underlying resources may be used. The sequential case,

however, initially puts the strain on a single resource (a hotspot), and continues

to put the maximum load on each subsequent resource (hotspot migration) as
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the clients finish one access and move to their next target. The only way this

workload will make use of all available hardware simultaneously is if the load

causes stratification of clients throughout their workload – that is, the severity of

a hotspot is diminished due to failure in performance at a previous hot-spot, and

that will come at the cost of a high finishing time for those that are delayed on

the first several tasks. Thus, an effective way to measure this test is in worst-case

performance, which measures aggregate throughput in terms of the entire set of

clients as a single job, spanning the start time until the last client finishes. For

comparison, this metric is also used for the random access test.

Considering that the centralized metadata is a single point of failure, and

that this machine bears equivalent loads for both random and sequential on the

metadata server is another concern, but a server should be able to handle enough

small RPCs to serve even a large number of clients accessing a large metadata set

without unreasonable increases in latency.

As another approach to using the object storage concept to aggregate dis-

tributed resources, replication of objects across a storage cloud can be used instead

of distribution within a distributed filesystem. This should provide an interesting

comparison, although it comes at the expense of the overhead to add additional

replicas, in addition to ensuring their consistency and determining a sound distri-

bution of placements, which is considerably greater than the overhead to add a

metadata file in building a FOBS filesystem.

Finally, a distributed system must maintain tolerable performance when under-

lying nodes are unavailable. It is easy to see that time spent waiting for timeouts,

retrials, or rejection notices on unavailable resources detract from throughput

performance, as no goodput is achieved by the RPCs that fail, however repeated
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occurrences of this can be avoided. Thus, for the case of high unavailability in a

system, the performance of a memoization algorithm in FOBS is examined. In or-

der for this to be useful, it must not degrade performance significantly on systems

with high availability.

4.2.2 Hypothesis

The system will demonstrate this ability to harness aggregate resources, result-

ing in higher aggregate throughput under load – possibly even for quite small loads.

Additional aggregate throughput should be gained from using FOBS filesystems

with more underlying disks, especially for the random access order workload. This

should have an element of diminishing returns, however; that is, there is unlikely

to be a factor of N speedup for addition of a factor of N disks.

Between the two workloads, for high load factors, the random access will yield

higher aggregate throughput, as well as a more obvious delineation of FOBS se-

tups. Additional disks will provide more of a benefit to this workload, as the

system can continue to function at a high level until the capacity of the system

(which, in this case, means capacity of each underlying node) is reached. The

simultaneous sequential workload, however, gives a better picture of how resource

aggregation performs given imperfect balance and utilization, and motivates the

use of other techniques such as replication.

The metadata server should not be a limiting factor in a FOBS system up to

the limits of the Notre Dame Chirp pool testbed, as the metadata pointer files

are small and require only a single small file stream transfer, and the testbed is a

campus network, so most connections will be short-lived.
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In the alternate object storage approach: replication within a cluster environ-

ment, a similar aggregation curve shape will be apparent, and performance will

be sustainable to large load factors of at least dozens of nodes. This still would

indicate the validity of using a distributed object storage system to deal with

high load, even though it is a different approach than that taken by the system

described in this thesis, and comes at the expense of high consumption overhead.

Finally, a simple memoization approach should drastically improve turnaround

time for file placements in systems with large sets of unavailable resources, while

suffering minimal performance overhead on highly-available systems.

4.2.3 Results

Throughput tests showed that each system (an unmodified Chirp server and

FOBS of several numbers of underlying storage nodes) had similar throughput

capacity at the base of one or two clients connecting simultaneously for both

reads, in Figure 4.1 and writes, in Figure 4.2. By the fourth client connection,

however, the Chirp server alone can already be picked out as the worst performer.

By the eighth client, it is clear that the 2-node FOBS setup has reached its

peak, and for all four workloads either slow their total throughput gains signifi-

cantly or stagnate altogether. Beyond eight clients, the 4-node and 8-node FOBS

systems begin to flatten, especially for the synchronous workloads. This is not

surprising, especially for the 4-node setup since, at that point, it approaches and

surpasses the disk-multiple of the number of hosts at which a single Chirp server

plateaus.

For a load factor of 16, there is a clear difference among the setups, falling

in expected order based on number of resources available. The only exception
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Figure 4.1: Aggregate Filesystem Read Bandwidth Under Load
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Figure 4.2: Aggregate Filesystem Write Bandwidth Under Load
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to this is the 8-node FOBS for random writes, which suffered from a significant

outlier (which explains the large error bar, as well) due to one disk’s being picked

randomly far more often than the expected 12.5% over the course of one trial.

The aggregate bandwidth is the maximum time for a client to complete the

1.6 GB data set, divided by the total number of bytes transferred (which is 1.6

GB times the load factor). Thus, the 16-node FOBS served 383 MB/s throughput

for reads under a load factor of 16, and 159 MB/s for writes. Neither of these

had leveled off, which supports both the hypothesis that a large FOBS system can

deliver throughput much higher than single disk speed (it is within approximately

a factor of 2 of disk speed per client), and that this performance is sustainable to

many more users than could access a single server before hitting its throughput

ceiling.

The FOBS setups do not achieve speedup proportional to the number of disks

added, as suspected. However, the ordering of the throughputs for the heavi-

est load with the other factors controlled does indicate that the extra resources

do allow the increased aggregate bandwidth, even if they do not permit linear

bandwidth aggregation in terms of number of disks.

Comparing the workloads, it is apparent that the random access workload

is more readily parallelizable, and thus provides higher aggregate throughput,

confirming the hypothesis. The performance is close for writes, though the random

trends, especially the 16-node FOBS have leveled off less than for the synchronous

writes, suggesting that a larger load factor could show slightly more differentiation.

For the reads, even a 2-node FOBS system shows considerably better aggregate

throughput on the random workload (leveling off above 130 MB/s, compared with

less than 110 MB/s for the synchronous reads); and the difference is even greater
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TABLE 4.4

METADATA SERVER CAPACITY UNDER LOAD

1 Client 100 Clients

Total RPCs 31394 130048

RPCs/sec 3139 1300

RPCs/sec per client 3139 130

for the larger FOBS setups: 219 MB/s random versus 146 MB/s synchronous for

the 4-node FOBS, 322 MB/s random versus 155 MB/s synchronous for the 8-

node FOBS, and 382 MB/s random versus 175 MB/s synchronous for the 16-node

FOBS.

From a single client, the metadata server can serve enough metadata pointer

files to exceed even the most ambitious file loads. Under load, the metadata

lookup is still not taxing enough to cause the server to become overloaded, as

demonstrated by the ability to serve dozens to hundreds of metadata lookups per

client per second even under a load factor of 100. This result is shown in full

in Table 4.4, where each RPC is a getfile of a file of size similar to a metadata

pointer file, and the clients continually requested the files for ten seconds. This

performance confirms that crippling a commodity personal computer server with

lookups is not a concern until the FOBS system is supporting thousands of users or

users requiring hundreds of thousands of lookups per second (which seems beyond

the scope of reasonable workloads in this environment).

For the alternative object storage situation; the version just using a TSS in-

stead of a FOBS FS, the results in Figure 4.3 show that this system has a similar
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Figure 4.3. Aggregate Throughput using Replication

ability for harnessing aggregate read throughput that is greater than what is avail-

able on a single computer as the FOBS filesystem. In the figure, A is a set of 5

replica servers distributing 50 MB files with each client requesting the replica

within its own cluster, B is a set of 5 replica servers distributing 50 MB files with

each client making a random replica choice. C is a set of 5 replica servers dis-

tributing larger, 500 MB files using the random replica choice, and D is a single

server distributing the larger files.

First, the inherent limitation of a single data server is evident: any single data

server has limited resources, whether the limiting factor is storage, memory, or

network link bandwidth. Further, multiple small servers are more cost effective,

and prevent a single point of failure. The peak throughput for configuration D, in

which a single server distributes 500 MB files, is lower than the otherwise identical
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multiple server version (C), at just under 100 MB/s, and it can maintain this only

up to approximately a load factor of 25, after which it drops off to less than 5

MB/s, compared with C’s peak peak throughput of over 120MB/s around a load

factor of 35 and sustained throughput of 80MB/s beyond a load factor of 80.

The distribution of smaller files, B, reaches a peak throughput above 190 MB/s,

which doesn’t occur until a load factor between 75 and 80. Utilizing cluster

locality, A, the throughput of the 50 MB file transfers can peak beyond 230 MB/s.

The graph reaches the point at which the curves of both replica choice algorithms

have leveled off, but despite load factors of over 80, and over 90 in the case cluster

locality, pushing the resources of the Notre Dame Chirp pool towards its limit,

the data does not yet show the beginning of the falloff.

Although replication isn’t necessary, as distribution of data among resources

as in FOBS can deliver good performance, this alternate data delivery system does

show the benefits that replication can give, at the cost of overhead for multiple

copies, and complexity to keep them consistent. For popular data, especially

scientific data sets, which are likely to be write-once/read-many, this is a good

application of an alternate file-level object storage technique.

A full description of the problem and the solution architecture for this work

can be found in previous work [19].

Note, however, that additional disks means additional risk of failure; memo-

ization in writing can be used to get around this – it is harder for reads, since the

objects are in a certain place, and can’t be moved to a functioning host on-demand,

since their host is, by definition of the problem, unavailable.

Additional disks added to a FOBS filesystem allow for greater aggregate band-

width and larger storage capacity, but come at the cost of reliability. No re-
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source can be accessible 100% of the time, and thus, a FOBS system with any

significant number of nodes will often have one unreachable. Further, because

multiple namespaces can be interwoven, and data can be linked into a FOBS

filesystem without taking ownership, it is very possible for security policies to col-

lide and result in unavailable resources. Thus, FOBS must facilitate working in

low-availability environments, which it does successfully; the results in Figure 4.4

indicate that memoization can give significant performance benefits. In a con-

trolled test, memoizing away inaccessible disks cut the average time to place a

file on the pathological case by more than half. On the other extreme, where all

but one of the disks are accessible, the memoized algorithm achieved performance

measures similar to the non-memoized algorithm (less than 5% overhead).
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4.3 Single Client Sustainability

4.3.1 Problem and Observation

Another target user of a FOBS filesystem with something to gain is the single

user who needs a transparent way to harness aggregate resources greater than

those available on a local system. This would encourage power users to use FOBS

to harness existing hardware resources instead of continually purchasing newer

and better individual system hardware.

If a system has multiple disks, it can push data out (or pull data in) from

multiple sources, thus allowing aggregation of “buffers” (disk caches, controller

buffers, memories, etc.) beyond the limits of individual disks.

4.3.2 Hypothesis

Utilizing the several disks and associated hardware of underlying resources,

FOBS users should be able to read and write at aggregate speeds greater than

that of the local disk, potentially approaching the limit of the underlying network.

This is particularly true for writes if generating data too fast for a local disk to keep

up is a concern. Reading from or writing to several slower disks, a single user’s

sustainable performance over a large amount of data should exceed the sustainable

throughput to a local disk, and should be more immune to drastic slowdowns or

otherwise inconsistent transfer speeds due to filling buffers (at whichever level)

and having to wait for the data in them to be consumed.

4.3.3 Results

A single user reading a large amount of data from a Chirp server, or writing

a large amount of data to one, will naturally have a hard time doing so faster
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Figure 4.5. Single User Write Performance

than disk speed at the target disk. Additionally, large transfers overflow disk

caches, and potentially even memories, and thus performance over time on these

operations is not a smooth curve.

Even with multiple underlying resources, the baseline FOBS implementation

does not solve this problem, as seen for reads in Figure 4.6 and for writes in

Figure 4.5, in large part because for large transfers, many small read/write RPCs

are required, and each one must acknowledge its completion before another can

start.

However, with a modification to the implementation to use the getfile and

putfile file stream interface, single client aggregate performance can improve be-

yond disk speed for both reads and writes. The read and write implementations

used are slightly different, giving two extremes of moving towards the all-stream
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transfer policy. The reads were generated in a script with a series of separate

invocations of a standalone application that conducted the getfile RPCs from the

4-node configuration. The writes were optimized further, with the standalone

application being run once to complete the series of RPCs to the 7-node config-

uration. While both exceed the base disk speed available, the write performance

indeed approaches the network limit, as hypothesized.

It should be noted that an all-stream transfer policy can optimize performance

in certain cases, but requires more resources of both the server and client, and

thus may overload a system under a high load factor.
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CHAPTER 5

FOBS EXPERIENCE IN HIGH ENERGY PHYSICS

5.1 Problem

5.1.1 Project GRAND

Cosmic ray astrophysics is the study of particles entering earth from beyond

the extent of our solar system. Project GRAND (Gamma Ray Astrophysics at

Notre Dame) maintains an extensive air shower array, studying two energy bands,

one between 30 and 300 GeV, the other between 100 and 100,000 TeV. Project

GRAND uses proportional wire chambers in cosmic ray research to observe particle

showers for long-term charting and measuring atomic composition [23, 24]. In

the detector array, each computer stores approximately 1000 records of particle

charting in memory, which is eventually written out to an 8mm tape drive. The

scientists note that “single muon data are stored at a rate of 2400 muons per sec;

one 8mm tape holds 28 hours of data”.

These tape drives are then transferred onto a commodity disk, which, once

full, is placed into storage. Older archived data in the system was initially stored

on tapes of varying specifications – each was a commercially available tape at the

time of archiving – and a large tape archive still exists.
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5.1.2 Latency

This system works well for data acquisition and archiving, however it makes

analysis difficult, as trends may be significant anywhere from on an hourly basis

to a decade-long basis. This requires a large number of resources to be accessible

concurrently, which is difficult with limited hardware resources to serve the large

numbers of tapes and disks.

Even if the hardware is available to have a multitude of media plugged in at

once, the entirety of the archive cannot be accessible, and there is a high latency

for getting access to other resources. The current system has this same limitation

for both the newer (disk-stored) data and the older (tape-stored) data. Sending

one’s graduate student to find the disk or tape, mount it, and read the data from

the it into the analysis tool is clearly inefficient.

5.1.3 Throughput and Aggregation of Resources

Latency is not the only issue, however. Another concern is throughput, espe-

cially as it relates to analyzing a data set in parallel. Even for smaller data sets,

where a set of resources is sufficient to have access to all of the storage media

concurrently, the data is stored on a small set of disks or tapes. Furthermore,

data is stored chronologically – it was archived over time, changing disks or tapes

only when they filled up. Thus, parallel access to a set of data with chronological

locality stresses the same resource, which eventually hits its capacity for outbound

throughput.
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5.1.4 System Requirements

The scientists need a system to act as this front-end accessible storage that

allows for storage of a large amount of data, for that data to be readily accessible

under one namespace, for data distribution across multiple resources to be feasible,

and for the system to have transparency of medium and location. The system

should protect the actual back-end archives from overuse by allowing access to

an online, front-end copy of the data instead. Most importantly, however, the

system must be expandable to ever-increasing sizes as more historical data and

newly acquired data are added to the system.

5.2 Solution Architecture

To satisfy these requirements without purchasing a large SAN or like-type

system for the project, Project GRAND has used a FOBS filesystem served on

commodity research PCs to store their scientific data and have it accessible close

at hand over a campus network. For more than one year, GRAND has used their

FOBS filesystem to give online access to newly acquired data, as well as older

archived data of interest.

5.2.1 Data Management

Project GRAND collects data continuously, storing it in temporary storage

within their scientific observation chambers (“huts”), and moving it onto a com-

modity PC’s external USB hard drive. Once an hour, the machine packages the

hour’s data and makes it available on a FTP server.

A periodic job on a research machine (GRAND UPLOAD) then copies all

new files from the FTP server onto the research machine, then from the research
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machine onto the FOBS system. This series of transfers averages between 250 and

500 kB/s throughput end-to-end.

This end-to-end throughput could be improved by running GRAND UPLOAD

on a storage cluster machine instead of a separate workstation, as this would

take advantage of the gigabit switch of the cluster for the second transfer. An-

other option to improve system throughput is to utilize active storage. To do

so, GRAND UPLOAD would send a RPC to the destination underlying host to

download the file from the FTP server, cutting the number of full-file transfers to

one. These options have not been used with GRAND due to the sufficiency of the

system in place, however if data transfer needs were to be increased (making the

overhead of copying each file twice significant), implementing these options would

be necessary.

Once uploaded into the FOBS filesystem, the data is immediately available for

access through FOBS. Not only does this allow immediate access, it also allows

the scientists to have accounting as to what files are available at any time. This

is important for purposes of deciding when to retire the disks on their end to the

archives, as they can ensure that all files on that disk are already in the online

storage on FOBS.

5.2.2 Correction after Failure

If the research machine or its the network link fails, the uncopied data on the

FTP server will accumulate. Because of this, the system is engineered so that

only one instance of the GRAND UPLOAD tool may run at once. This prevents

the risk of data inconsistency due to multiple copies of the tool competing for files

to upload onto the system.
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The other concern is that, in this case, the system must be able to consume

data (that is, upload it to the FOBS filesystem) faster than data is produced (data

is posted on the FTP server by the scientists).

Consider, for instance, a power outage that occurs at 1700 on a Friday; it is

quite possible that the data gathering system could be down until 0900 on Monday.

This outage of 64 hours must be able to be overcome in the normal course of data

collection, as human intervention must be minimized.

Table 5.1 shows the amount of data generated that must be added to the

GRAND FOBS each hour, and the rate at which the research machine can com-

plete this task. The consumption rate is based on a conservative estimate (below

the mean transfer throughput of the Shower data over a one-month period, which

is likely lower than what would be realized in a catch-up job due to amortized

overhead) of the end-to-end throughput available from the GRAND machine into

the FOBS system.

The time required to complete the files missed while the system was turned

off is less than six hours. However, while the process of making up for lost time is

doing this, more data is being added to the system which is not collected because

it was not in the set of files to collect. Thus, after the bulk of the catch-up

collection has completed, there remains what was missed during that interval. In

this example, there are six hours missed, and thus the next automatic collection

must collect seven files. This can be done in less than one hour, which then

completes the job of making up for the downtime. Given this outage and these

(reasonable) system parameters, the GRAND FOBS will have all of the recently

collected data by 1600 on Monday, 71 hours after the outage began, and 7 hours

after the outage ended.
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TABLE 5.1

GRAND CATCHUP PERFORMANCE

Muon Shower

Average File Size 62.9 MB 18.8 MB

Production 62.9 MB/hr 18.8 MB/hr

Catch-up Consumption 250 kB/s combined

64 hour Catch-up Time < 7 hours

For reasonable expectations that put an upper bound on the catch-up time to

be the duration of the downtime, it is clear that the catch-up throughput after a

system outage is sufficient to restore normal operations within that buffer. More

constraining requirements could be met with this system (the example shows only

about 10% of the original duration is taken for catch-up), however, eventually,

the performance tweaks described above would have to be implemented to realize

near-optimal recovery time.

5.3 Usage and Analysis

In this section there is a comparison between the status quo before FOBS

was introduced to GRAND and the FOBS arrangement. These comparisons are

made in reference to several target characteristics of the GRAND system, and

lead to conclusions based on significant use of the filesystem in the context of a

real scientific computing problem that it solves.
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5.3.1 Latency

The typical use-case for the scientists is to examine several data files at once by

feeding them through an analysis tool, which compiles summary data and event

searching. Because the analysis runs online, a key system variable is the latency

to receiving the first piece of data. Latency can be examined in two cases: one

for already accessible data, one for archived data.

Status Quo

If the disk on which the pertinent data is stored is no longer hooked up to the

GRAND machine, it must be found, connected, and mounted before data access

can begin. For a tape, the process is similar. Conservatively, the “human interac-

tion” required to do this requires a matter of minutes before even getting to the

actual medium’s latency.

If the pertinent data is recent, or otherwise available on the GRAND machine,

the human aspect is minimized. There is still a latency consideration to make

due to the different network connection downstream from the GRAND machine,

as seen below, but it is not nearly to the scale of the human latency required for

accessing archived data. The inferior connection will become more apparent in

the next section, examining throughput.

FOBS

With FOBS, however, all the data files are stored online, so there is no considera-

tion as to whether the data has been gathered or analyzed recently enough to be

connected. Thus, the latency is cut from an expected case scenario of minutes for

archived data down to a matter of tenths of a second when considering network

and disk latency in both cases, a factor of two orders of magnitude. For data that
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would still be available on the GRAND PC, the difference is not as drastic, but

still as much as an order of magnitude when considering only the network latency.

Comparison

From a cluster in which the scientists often work, latency to the Project GRAND

computer hosting the FTP server averages 2.6 ms; latency to the metadata root

server for the GRAND FOBS averages .3 ms and was more reliable (less packet

loss) than the GRAND host. Latency to an attached disk is another order of

magnitude faster than that, averaging .04 ms, however accessing data only on a

local device does not scale to large numbers of clients.

5.3.2 Throughput

While latency is an important consideration, especially when including the

latency of human action, once the connection is established, throughput is another

consideration. Computing resources, cycles, are wasted if they cannot be utilized

due to unavailable data. Thus the scientists need a data delivery system that can

maximize their ability to make use of their computing resources. This includes

more than just simple bandwidth; scalability, efficiency, and flexibility are also

factors.

Status Quo

There are two options for accessing data in a local environment: use the machine

the disk is hooked up to, or transfer the data to the machine the user is working

on. The first option does not scale to multiple users/clients, which means that

parallelization of tasks is difficult (either for chopping one job up into smaller bits,

or doing different tasks on the same data). Another limiting factor is that while

72



a data source is attached to a client machine, access is restricted to that data, as

the user has physical control of the medium.

The alternative is transferring the data, which for newly acquired data means

pulling downstream from the slower connection. For older data, it means pulling

off whatever machine the disk is hooked up to, which could be acceptable if a

powerful server with a good network connection hosts the archived data. This

allows for some parallelism (because multiple people can access it), but all of

those files are served by the same set of resources: disk, memory, network card,

network link, and thus there is a limit in scalability for multiple users.

FOBS

With FOBS, however, the data are not physically stored in logical (chronological)

order. Thus, two consecutive files of interest are likely to be on different servers,

and thus several data files can be transferred in parallel up until the maximum of

the incoming network link (as opposed to the maximum of the server’s network

link, on which there are no guarantees). Figures 4.1 and 4.3 shows the network

scalability for multiple resources to be stronger than that of a single server. The

multiple server design also allows for parallelization, for the same reason; multiple

servers mean that multiple requests are less likely to collide, and thus can be

served “full speed” for each of them, rather than rationing between them.

Finally, FOBS maintains the ability of the status quo to “use the data where

it is”. The Tactical Storage system allows for active storage, which is invoked

as an RPC to a client (in this case, the storage server) to do a computation.

An advantage this gives over the status quo version of local computation is that

the storage medium needn’t actually be physically possessed by the caller, which

allows for continued use by other users.
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Comparison

For newly acquired data, the scientists can download the file from the FTP server

at between 250 and 500 kB/s. From the same workstation, they can download

the file from the FOBS filesystem at greater than 10 MB/s. This approaches the

best that can be expected for the network, which is 100 Mbit Ethernet.

For older data, in which the scientists have already connected a USB hard drive

containing the data to their PC, they can sustain a maximum of 60 MB/s, which is

considerably faster than the same 10 MB/s. However, with the right application

driving the downloads, as shown in Section 4.3, they could get data from the

FOBS filesystem at faster than disk speed if the network bandwidth could handle

that. Even without this, however, the FOBS is only a single order of magnitude

slower, and is sufficient for all but the most data-intensive applications. Further,

the FOBS filesystem allows access to this data from several clients at once, which

could result in effective throughput of greater than the single disk’s speed, since

the network bottleneck is on the scientist’s end, not the FOBS servers’.

5.3.3 Capacity and Expansion

Status Quo

The GRAND system is limited in capacity only by the the availability of the media

on which to store data. Disks are plentiful and cheap, so this is not a dominating

concern. As discussed above, there is a capacity limit in terms of number of devices

attached to any single machine, but this relates more to performance of access than

to raw capacity. Another possibility to increase capacity is to compress the data

on the media, however this comes at the expense of performance, especially for
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often-read data. Expansion in the system is only a matter of obtaining additional

disks or tapes for archival storage.

FOBS

FOBS does not act as a replacement for archival storage within this particular ap-

plication. Thus, simply using FOBS does not expand the capacity of the GRAND

system. FOBS can increase the effective capacity of the GRAND archival storage

by allowing the data to be compressed after it has been copied into the FOBS

system. Doing this gets the advantage of uncompressed data for access, as well as

compressed data for efficiently utilizing archival storage resources.

In this system, the additional disks used for online storage come at no addi-

tional cost, as the disks used are those from a computation cluster. While this is

not always the case, the GRAND solution does give an example of the flexibility

of FOBS to operate on dedicated storage servers or disk space scavenged from a

pool of resources.

The cluster on which the GRAND FOBS filesystem resides has capacity for ap-

proximately 9700GB, which at the 2GB per day average consumption by GRAND,

would allow storage of GRAND data spanning more than 13 years. However, the

FOBS filesystem can be expanded to include more disks as necessary. A critical

factor in this flexibility is that the new resources can be added from any resource

pool (a new cluster, other scavenging resources, etc.) without requiring the current

data to be migrated to the new location. This is necessary because it allows for

aggregation of several available storage pools into one GRAND namespace, and

thus a single cluster or pool needn’t be able to serve the entirety of the GRAND

FOBS filesystem data.
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Figure 5.1: GRAND FOBS Usage for Muon Files
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Figure 5.2: GRAND FOBS Usage for Shower Files
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CHAPTER 6

CONCLUSIONS

In Chapter 1 of this work, a set of expectations and an evaluation methodology

were set for the FOBS filesystem. Some things were clear by observation: FOBS

can be used to build large filesystems, connecting several disks into one namespace;

FOBS is deployable without administrator interaction due to its building-blocks

in the Tactical Storage System; FOBS is expandable, with only a small metadata

change facilitating addition of new storage resources. However, it is by taking

a more thorough look at the characteristics of the filesystem that FOBS can be

proved worthwhile as a general purpose filesystem, a scientific computing storage

platform, and an application of object storage.

Flexibility for on-the-fly reconfiguration, to the extreme of building an ad-hoc

filesystem out of a set of metadata pointing at already in-place files is an extension

of the expandability.

Microbenchmarks indicated a possible concern that the cost of this flexibility

was significant in terms of added latency in the system; it is for operations in

which the dominant (or only) component is the metadata lookup, however, in

the scope of common operations on real systems, FOBS performs within a small

overhead (negligible to five percent) for most.

The major performance benefit from FOBS comes in the form of aggregable

bandwidth for both single clients and multiple clients. By utilizing the back-end
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resources that it contains, FOBS allows single users to sustain performance beyond

the point at which a single disk cannot continue to increase, or even maintain,

its total system throughput. These same back-end resources can be aggregated

under high system-wide load; users may not better individual disk performance

in this case, but the system sustains adequate per-client performance in the face

of loads that would cause single-resource systems to overload, as seen in plot A in

Figure 4.3.

The single-client sustainability using improved FOBS transfer strategy fits the

case where Chirp alone could have achieved this result, but not with the simplicity

that the FOBS system allows. A Chirp user would have to individually plan

out the location of each file in order to get similar stream performance, whereas

FOBS configured it autonomously by choosing round-robin after a random initial

placement.

FOBS has been implemented as an online storage system for a group of physics

researchers. They have been excited about the new-found accessibility, and have

continued to use the system for both newly-collected and long-ago archived data.

The management portion of this case study has shaped the development of the

filesystem, and has spurred implementation of additional tools and features as

well as a set of user-friendly guides, policy lists, and suggestions that will prove

invaluable to future users. Finally, there is no better test to a system than non-

developers using it for real work. The case study is the proof that there is a user-set

for this system, and thus a case for continued development and expansion.
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