
Scheduling Grid Workloads on Multicore Clusters
to Minimize Energy and Maximize Performance

Michael Lammie, Paul Brenner, and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame

Abstract

Energy is a significant and growing component of the
cost of running a large computing facility. A grid workload
consisting of millions of jobs running on thousands of pro-
cessors may consume millions of kilowatt hours of electric-
ity. However, because a grid workload generally consists
of many independent sequential processes, we may shape
its execution to satisfy energy constraints. By varying the
number and frequency of processors available, a scheduler
may trade off energy against performance. In this paper, we
explore energy and performance tradeoffs in the scheduling
of grid workloads on large clusters. We build upon previous
work by showing the interaction of intelligent job assign-
ment, automated node scaling, and frequency scaling on
multicore clusters. An unexpected result is that, even though
low frequency is the most efficient mode of operating a sin-
gle node, the careful application of frequency scaling can
actually reduce overall energy consumption even further by
reducing the number of nodes powered on.

1 Introduction

Energy is a significant and growing component of the
cost of running a computational infrastructure. A grid work-
load consisting of millions of jobs running on thousands of
processors may consume millions of kilowatt hours of elec-
tricity. Because a grid workload generally consists of many
independent sequential processes, we may shape its exe-
cution to satisfy energy constraints. By varying the num-
ber and frequency of processors available, a scheduler may
trade off energy against performance. In this paper, we ex-
plore energy and performance tradeoffs in the scheduling
of grid workloads on large clusters. We build upon previ-
ous work by showing the interaction of intelligent job as-
signment, automated node scaling, and frequency scaling
on multicore clusters.

More specifically, we find that utilizing frequency scal-
ing can reduce the overhead energy cost asscoated with au-

tomated node scaling while assigning jobs to machines in-
telligently can reduce the total number of active machines.

We begin with a summary of the primary grid tools uti-
lized and related work. Our model is then introduced to
include grid workloads, baseline power measurements, and
management policies. Performance and energy measures-
ments are then reported based on grid tool execution to meet
policy objectives. We conclude with a short discussion of
results and recommended policy implementations.

CPU Frequency Scaling (FS), also known as CPU
throttling, is a technique for reducing the speed of the CPU
in order to reduce the energy it consumes and the heat
that it dissipates. FS and more broadly dynamic voltage
and frequency scaling (DVFS) has been widely researched
[11, 13, 16, 7, 17] most often in the context of power man-
agement in mobile systems where long battery life, reduced
fan noise, and limited heat dissipation are high priority. A
majority of modern chipsets will support some version of
CPU frequency scaling. Intel chipsets utilize SpeedStep
technology and AMD utilizes Cool’n’Quiet or PowerNow.
With kernel support, the frequency of a CPU, and in some
instances specific cores within the CPU, can be modified
through software. This makes dynamic CPU frequency
scaling simple to implement in a number of applications.
In this work we examine dynamic FS in our grid manage-
ment algorithms to balance energy efficiency and perfor-
mance (throughput). Optimization decisions (intelligentjob
assignments) are then evaluated in coordination with auto-
mated node scaling.

Automated Node Scaling (ANS) is an effort to reduce
energy consumed by under utilized machines [10, 2, 19, 6].
A mechanism is employed to dynamically calculate cluster
capacity requirements based on the current state of the clus-
ter, including the size of the queue, characteristics of cur-
rently running jobs, and historical usage information. As
the name suggests, the mechanism automatically turns ma-
chines on or off in order to match these requirements and
thus only active resources are consuming energy. Machines
are turned on when it is deemed that the cluster cannot sup-
port the current load. Machines are powered down after

1

remaining idle for a specific period of time. In this work we
evaluate automated node scaling in conjunction with fre-
quency scaling to determine intelligent job assignment un-
der multiple published grid workloads.

Intelligent Job Assignment (IJA) is the third layer
of optimization implemented in our set of cluster man-
agement algorithms. Numerous tools and publications
have been developed to evaluate and optimize assignments
[4, 20, 8, 1, 5, 18]. The focus of this work is to specifically
identify energy saving assignments at target performance
levels given availability of FS and ANS. An example ap-
plication for such dynamic assignment: 1) Jobs which re-
quire a significant amount of time to process are submitted
in bursts amidst other, less demanding jobs. 2) The burst of
jobs are processed and the load on the cluster subsides. 3)
The jobs which require additional time still remain on their
respective machines. 4) Even though only a few jobs are
being processed by the cluster, a relatively high number of
machines remain turned on due to poor assignment. In this
work we examine the peformance and energy metrics for
policies that address assignment for similar applications.

2 System Model

This study was conducted in order to identify potential
uses for CPU frequency scaling and automated node scaling
in multicore clusters. The simulations described in this doc-
ument were conducted within a framework which assumes
that the configuration of a cluster abides by certain condi-
tions. First, each node within the cluster is of an identical
specification. As a result, each node within the cluster uti-
lizes a CPU capable of scaling its CPU frequency to iden-
tical levels. Therefore, the maximum and minimum CPU
frequencies of nodes as used in each cluster management
algorithm are identical for all nodes in the cluster. Second,
the energy consumed by each node under the same load is
also identical. Lastly, it is assumed that all jobs submitted
to the cluster are strictly CPU intensive and use 100% of the
CPU cycles assigned to them. As a result, latencies related
to memory, disk, and network access are ignored.

Each simulation is conducted using a specific cluster
configuration which consists of the number of nodes, the
number of cores per node, the maximum and minimum
CPU frequencies of a node, energy consumption data for
a single node, and the cluster management algorithm. In
addition to the cluster configuration information, the sim-
ulator uses an actual grid workload archive as a basis for
job submission, which determines job submission rate, dis-
tribution of jobs over time, and the amount of work to be
completed for each job.

To drive the simulations, we employ trace data from
the Grid Workloads Archive (GWA) [12]. We selected the
four largest and most complete traces from the archive,

Grid5000 [3], NorduGrid [9], DAS-2 [15], and LCG [14].
Each trace records details about every job submitted to the
system over a fixed period of time. For this work, we only
require the following fields:Submit timeis used to deter-
mine when a job is to be submitted to the job queue.ID
numberis used to identify a specific job.Run timeis used to
determine the amount of work to be completed, where work
is equal to the number of CPU cycles required for comple-
tion. For simplicity, it is assumed that this number is equal
to the run time of a job on a processor running at the highest
possible frequency for the cluster configuration. For exam-
ple, assuming that the highest frequency is 2.4 Ghz, a job
with a grid workload archive run time of 300 will take 300
seconds to execute on a 2.4 Ghz processor. If the frequency
of the processor is reduced to 1.6 Ghz, the run time of the
job will increase by a factor of 1.5 to 450 seconds.

 0

 1000

 2000

 3000

 4000

 5000

 6000

01
/0

9/
05

01
/1

0/
05

01
/1

1/
05

01
/1

2/
05

01
/0

1/
06

01
/0

2/
06

01
/0

3/
06

01
/0

4/
06

01
/0

5/
06

N
um

be
r

of
 J

ob
s

Time

Jobs Running
Jobs Queued

Figure 1. Burstiness of Trace Data

Grid workloads have been observed to be very bursty,
and these traces are no exception. Figure 1 shows the num-
ber of jobs running and queued in a simulated cluster of 500
4-core nodes running the NorduGrid workload. It is not un-
common for hundreds or thousands of jobs to be submitted
simultaneously. All cores will be busy for some time, but
eventually become idle as the queue drains, until the next
burst arrives. This property provides the opportunity for
several energy optimizations.

Number of Cycles/Joule Cycles/Joule

Busy Cores at 1.60 GHz at 2.40 GHz

0 0 0
1 33.3 37.5
2 59.3 61.5
3 77.4 78.3
4 94.1 90.5

Table 1. Single Node Power Efficiency

2

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4

P
ow

er
 (

W
)

Busy Cores

1.6 GHz

2.4 GHz

Figure 2. Single Node Power Consumption

3 Single Node Measurements

The CPU speed of a computing node is generally set to a
default value equal to the maximum frequency as supported
by the hardware vender. However, a majority of systems
are capable of modifying the speed of its CPU on-demand
while a system is still functioning. Our study utilized a sam-
ple node with an Intel Core 2 Quad processor equiped with
Intel’s Enhanced SpeedStep DVFS technology. The single
CPU motherboard also included 4GB of RAM and a solid
state flash disk. We collected the maximum and minimum
supported frequency values and total energy consumption
measurements (at the power plug) for this node.

To simplify exposition, we assume all cores in the CPU
of a single machine are scaled to the same frequency, either
the highest supported frequency or the lowest supported fre-
quency. Therefore, power dissipation measurements were
taken for each sample node at each of these frequencies. In-
dividual cores were stressed to 100% CPU utilization one at
a time until all cores were busy. Figure 2 represents the en-
ergy consumption measurements for the sample node under
varying levels of stress.

Since our system model assumes that all jobs submitted
to the cluster are CPU intensive, it is easy to calcuate the
energy efficiency of a specific node under ideal conditions.
After analyzing the energy consumption data for the sample
node, we see that there is some overhead energy associated
with running a node no matter the frequency or the number
of busy cores. We can extrapolate from this that the node is
most energy efficient when it is running jobs on all available
cores at the same time, thus reducing the significance of
the overhead and distributing its cost across multiple jobs.
Furthermore, a node will be running jobs on all available
cores quite frequently during the course of the simulation
due to the characteristics of a grid workload as described in
Section 2. Jobs tend to be submitted in bursts larger than
the number of cores in a single node or even in the entire
cluster. Therefore, it is common that the cluster will be at

capacity and the nodes within the cluster will be running
jobs on all available cores.

By multiplying the frequency by the number of busy
cores, and dividing by the power dissipation of the node at
the designated load, we acheive a ratio equal to the amount
of work completed per second divided by the amount of en-
ergy consumed per second. The result being work per joule,
or cycles per joule. For example, the sample node at a high
frequency and running at maxmimum capacity has an effi-
ciency metric value equal to 90.5 million cycles per joule. A
low frequency configuration running at maximum capacity
produces an efficiency metric equal to 94.1 million cycles
per joule. Table 1 lists energy efficiency metric values for
the sample node under varying levels of stress.

The key property of this machine is the efficiency benefit
gained by running the processor at a lower frequency when
all cores are in use. Although our simulations are seeded
with the properties of this particular machine, substituting
for a machine with the same property will yield similar re-
sults.

4 Cluster Management Policies

Baseline Cluster Management Policies. The study be-
gan by constructing several baseline cluster management
policies. These policies were meant as a control to iden-
tify primitive uses for frequency scaling techniques. Each
policy is based on the following job submission scheme.

All machines are always powered on. One job is as-
signed to a single core on a single node. Machines are ar-
bitrarily ordered from 0 to N-1, where N is the total num-
ber of nodes in the cluster. As jobs are submitted, they are
pushed onto the job queue. Jobs waiting in the queue are
submitted to a core in the cluster using First In First Out
priority ordering. They are submitted to the lowest ordered
machine (0...N-1) with an idle core. All cores in a single
node are to be scaled to the same frequency, either the high-
est supported frequency or the lowest supported frequency
depending upon which cluster management policy is in use.

HF The first policy is the high frequency policy. In this
policy, the frequency of CPUs is always set to the high-
est supported frequency. All machines remain in this state
throughout the duration of the simulation.

LF The second policy is the low frequency policy. In
this policy, the frequency of CPUs is always set to the low-
est supported frequency. All machines remain in this state
throughout the duration of the simulation.

Scaled Cluster Management Policies. First, it is im-
portant to defineautomated node scalingas it is utilized in
our cluster management policies. In our implementation,
automated node scalingis powering machines on and off
based on the number of jobs currently running in the clus-
ter and waiting in the queue. More specifically,automated

3

node scalingis implemented in the following manner.
Initially, all machines are powered down. Those poli-

cies which do not utilize frequency scaling turn additional
machines on when the current cluster of active nodes is at
capacity and additional jobs remain in the queue. Policies
which utilize frequency scaling will first increase the fre-
quency of active machines in order to increase the through-
put of the cluster prior to turning additional machines on.
Machines are turned off after remaining in an idle state be-
yond a specific threshold. For example, a threshold value
of 300 seconds (5 minutes) was commonly used in our sim-
ulations. Turning a node on or off takes time. Nodes in
the process of booting up are considered ”on” by the cluster
manament policies. However, jobs cannot be assigned to
them until they have completed the boot process.

SHF All CPUs are scaled to the highest supported fre-
quency. As jobs are submitted, they are assigned to idle
cores in the cluster. If there are no idle cores, machines are
turned on such that the number of additional cores is equal
to the number of jobs waiting in the queue.

SLF All CPUs are scaled to the lowest supported fre-
quency. As jobs are submitted, they are assigned to idle
cores in the cluster. If there are no idle cores, machines are
turned on such that the number of additional cores is equal
to the number of jobs waiting in the queue.

SSQ All CPUs are initially scaled to the lowest sup-
ported frequency. If there are jobs waiting in the queue, fre-
quencies of machines currently turned on in the cluster are
increased such that the frequency of one core is increased
for each job waiting in the queue. If simply increasing the
frequency of all machines powered on in the cluster cannot
satisfy all jobs waiting in the queue, additional machines are
turned on in order to fully satisfy the remainder of the jobs
in the queue which were not accounted for by increasing the
frequency of all previously turned on machines.

SWQ All CPUs are initially scaled to the lowest sup-
ported frequency. All CPUs remain at this frequency while
there are idle cores in the cluster. Once the cluster of ac-
tive nodes is at capacity, frequencies of CPUs are increased
such that the throughput of the cluster is increased by the
equivalent of an additional core (at low frequency) for each
job waiting in the queue. If increasing the frequencies of
all nodes in the cluster cannot satisfy all jobs waiting in the
queue, additional machines are powered on. Machines are
powered on such that one core is being activated for each
job in the queue which went unaccounted for while increas-
ing the frequencies of CPUs in the cluster.

Scaled Cluster Management Policies with Intelligent
Job Assignment. In the previous cluster management poli-
cies, the next job in the queue was submitted to an idle
core on the lowest ordered available machine. The follow-
ing policies attempt to improve the job assignment algo-
rithm for each of these policies. While there are a num-

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 25 30 35 40 45 50 55 60 65 70 75

E
ne

rg
y

C
on

su
m

ed
 (

kW
h)

Total Cluster Size (Nodes)

HF
LF

SHF
SLF

Figure 3. Grid5000: Node Scaling
The energy consumption of the Grid5000 workload with
four basic policies, demonstrating that the most important
policy is to turn off idle nodes.

 6150
 6200
 6250
 6300
 6350
 6400
 6450
 6500
 6550

 25 30 35 40 45 50 55 60 65 70 75

E
ne

rg
y

C
on

su
m

ed
 (

K
W

h)

Total Cluster Size (Nodes)

SHF
SLF
SSQ

SWQ
SWQI

SWQN

SWQO

Figure 4. Grid5000: All Scaling Policies
The total energy consumed by all policies on the Grid5000
workload. For clarity, we omit SSQ, SWQ, and SWQN from
the remaining results.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 25 30 35 40 45 50 55 60 65 70 75

N
um

be
r

of
 P

ow
er

 T
ra

ns
iti

on
s

Nodes

SHF
SLF

SWQI
SWQO

Figure 5. Grid5000: Power Transitions
Number of power transitions in Grid5000. SWQI and
SWQO balance power transitions against CPU frequency.

4

ber of methods for optimizing assignment, we decided that
the next job in the queue should be submitted to the ma-
chine scheduled to be powered on for the longest duration
of time. SWQIassumes that the amount of work associated
with each job is known at the time of submission. Using
this information, we can determine which machines are to
be powered on the longest at that point in time.

However, it is not realistic to assume that we know the
amount of work required by a job prior to job submission.
SWQNandSWQOattempt to replicate the ideal scenario by
estimatingwhich machine is scheduled to be turned on the
longest. We decided to use the submit time of each job in
the cluster as a basis for our estimation. There were ini-
tially two hypotheses for estimating which node is sched-
uled to be turned on the longest. The first is that the node
with the most recent job submission is likely to be on the
longest based on the presumption that all other jobs in the
cluster were already partially completed. Therefore, it is
likely that the latest job submission to the cluster will be
running longer than the remaining jobs. The second hy-
pothesis is that the machine with the oldest running job is
likely to be turned on the longest. This theory was based on
analysis of grid workload characteristics which show that it
is not uncommon to find jobs in the queue which require
substantially more work than most other jobs submitted to
the cluster. Therefore, the machine with the oldest running
job is likely to be turned on the longest.

SWQI This policy improves upon the job assignment
mechanism ofSWQ. We assume that the amount of work
required by a job is known at the time of submission. With
this information, we know how much work still needs to
be completed for each job in the cluster. This allows us to
identify which machine with an available core is scheduled
to be on the longest. The next job in the queue is then as-
signed to a core on this machine. This policy is, in general,
unrealistic since it is nearly impossible to specifically know
the run time of a job at the time of submission.

SWQN This policy attempts to improve upon the job as-
signment ofSWQ. Rather than submitting a job to an idle
core on the lowest ordered machine, a job is assigned to the
machine running the most recently submitted job.

SWQO This policy attempts to improve upon the job
assignment mechanism ofSWQ. Rather than submitting a
job to an idle core on the lowest ordered machine, a job is
assigned to the machine with the oldest running job.

5 Simulation Results

We begin by examining one workload – Grid5000 – in
some detail. After establishing some basic properties, we
consider the energy and performance of all four workloads.

Figure 3 illustrates the difference in total energy con-
sumed between the baseline (HF and LF) and scaled poli-

cies (SHF and SLF) on the Grid5000 workload. The figure
demonstrates that HF consistently consumes more energy
than LF. This can be explained by examining the efficiency
metrics for the sample node from Section 3, where we de-
termined that a node is more efficient at a low frequency. In
addition, the amount of energy being consumed increases
according to the number of nodes in the cluster. Since these
policies do not utilize automated node scaling, this is to be
expected. There is a significant amount of energy being
consumed by idle machines, and as the number of nodes in
the cluster grows, so does the amount of wasted energy. By
utilizing automated node scaling in the enhanced manage-
ment policies, we eliminate most of this overhead energy.

We studied the behavior of all policies across all work-
loads, but determined thatSWQIandSWQOachieved the
best efficiency and performance overall. For complete-
ness, we show the energy consumption of all policies on
Grid5000 in Figure 4. For clarity, the remaining figures only
showSHF, SLF, SWQI, andSWQO.

Figure 4 shows that SHF consumes more energy than
any other policy. This can be explained in part by referenc-
ing the efficiency metric calculated for the sample node in
Section 3. We determined that the sample node was less
efficient at a frequency of 2.4 GHz than at 1.6 Ghz. As a re-
sult, the SHF policy consumes more energy throughout the
duration of each simulation, and the SLF policy consumes
approximately 3.3% less energy than the SHF policy across
all grid workload archives.

More interstingly, however, we see an additional de-
crease in energy consumption by each of the frequency scal-
ing policies in all but extremely over-burdened cluster con-
figurations. Figure 5 explains this by showing the number
of power transitions. In order to power a node on or off,
energy is required during boot and shutdown. This energy
is considered overhead energy, since it is not directly used
to process a job submitted to a cluster. Therefore, as the
number of transitions of nodes on and off increases, the
amount of wasted energy in the form of overhead increases.
The SHF and SLF policies require a relatively large num-
ber of transitions compared to the number of transitions re-
quired by the frequency scaling policies. Frequency scaling
policies (SWQIandSWQO) increase throughput by increas-
ing the frequencies of CPUs in the cluster before powering
additional nodes on. Additional machines are only turned
on when all active machines have already been scaled to a
higher frequency. As a result, less energy is consumed by
turning nodes on and off less frequently.

Figure 6 shows the energy consumption for four poli-
cies on all four workloads. Across all workloads,SWQIand
SWQOprovide less energy consumption, except in the case
of a very small number of nodes, whereSLFperforms bet-
ter, because nodes run continuously. In addition, we can
see that the practicalSWQOclosely approximates the ideal

5

(a) Grid5000 (b) NorduGrid

 6150

 6200

 6250

 6300

 6350

 6400

 6450

 6500

 6550

 25 30 35 40 45 50 55 60 65 70 75

E
ne

rg
y

C
on

su
m

ed
 (

kW
h)

Total Cluster Size (Nodes)

 88500
 89000
 89500
 90000
 90500
 91000
 91500
 92000
 92500
 93000

 400 450 500 550 600 650 700

E
ne

rg
y

C
on

su
m

ed
 (

kW
h)

Total Cluster Size (Nodes)
(c) DAS-2 (d) LCG

 850
 860
 870
 880
 890
 900
 910
 920
 930
 940

 5 10 15 20 25 30 35

E
ne

rg
y

C
on

su
m

ed
 (

kW
h)

Total Cluster Size (Nodes)

SHF
SLF

SWQI
SWQO

 5350

 5400

 5450

 5500

 5550

 5600

 5650

 60 70 80 90 100 110 120 130 140
E

ne
rg

y
C

on
su

m
ed

 (
kW

h)
Total Cluster Size (Nodes)

SHF
SLF

SWQI
SWQO

Figure 6. Energy Consumed by Grid Workloads on Clusters
The energy consumed for each workload on clusters of varyingsizes using four policies. (Lower numbers are better.) As
expected, scaled high frequency (SHF) consumes more energythan scaled low frequency (SLF). However, the adaptive
policies (SWQI and SWQO) consume even less than SLF, becausethey minimize the number of idle cores and use high
frequency selectively to avoid the cost of powering on additional machines.

SWQIby choosing to submit the next job in the queue to the
available machine with the longest running job.

An individual user is most interested in how quickly their
own jobs will be processed by the cluster. From this per-
spective, turnaround time is the primary metric for deter-
mining performance and is defined as both the time spent
idling in the queue and the total run time of individual jobs.
From the simulation results in Figure 7, SHF provides the
best overall turnaround time.

This is to be expected considering that machines are al-
ways running at the maximum frequency supported by the
machine. Additional machines are instantly powered on
when jobs begin to accumulate in the queue, providing rel-
atively instant relief for those jobs waiting in the queue.
On the other hand, SLF consistently provides the worst
turnaround time of all frequency scaling policies. This is
primarily due to running all nodes at the minimum fre-
quency supported by the machine.

The remaining policies, those which utilize frequency
scaling, provide turnaround times within the band between
SHF and SLF. In highly over-burdened cluster configura-

tions, turnaround time approaches that of the SHF policy.
This occurs when the cluster cannot effectively process the
bursts of jobs being submitted. Jobs are consistently wait-
ing in the queue, raising the frequencies of machines in the
cluster according to the specific frequency scaling policy in
use. The run times of jobs decrease due to the increase in
frequency of machines in the cluster, resulting in decreased
average total turnaround time.

When the cluster is under-burdened at cluster configura-
tions containing a larger number of nodes, a higher number
of cores are available to process the bursts of job submis-
sions. Fewer jobs spend time waiting in the queue, and as
a result, a fewer number of machines increase in frequency.
Therefore, the run time and total turnaround time of these
jobs approach levels similar to that of the LF policy.

Baseline policies will provide comparable performance.
However, the size of the cluster never changes, because all
machines are always powered on. As a result, jobs submit-
ted to clusters using a baseline policy never need to spend
time in the queue waiting for additional machines to be
powered on. In addition, jobs will have a longer average

6

(a) Grid5000 (b) NorduGrid

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 25 30 35 40 45 50 55 60 65 70 75

T
ur

na
ro

un
d

T
im

e
(s

)

Total Cluster Size (Nodes)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400 450 500 550 600 650 700

T
ur

na
ro

un
d

T
im

e
(s

)

Total Cluster Size (Nodes)
(c) DAS-2 (d) LCG

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35

T
ur

na
ro

un
d

T
im

e
(s

)

Total Cluster Size (Nodes)

SHF
SLF

SWQI
SWQO

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 60 70 80 90 100 110 120 130 140
T

ur
na

ro
un

d
T

im
e

(s
)

Total Cluster Size (Nodes)

SHF
SLF

SWQI
SWQO

Figure 7. Turnaround Time of Grid Workloads on Clusters
The total time to run an entire workload to completion, for clusters of varying sizes using four policies. (Lower numbersare
better.) As expected, scaled high frequency (SHF) providesmuch better performance than scaled low frequency (SLF). The
adaptive policies (SWQI and SWQO) provide intermediate performance at improved energy efficiency, as shown in Figure 6.

run time, because all nodes in the cluster are running at a
low frequency while the cluster is under capacity. Any vari-
ation in the performance between baseline and scaled clus-
ter management algorithms is insignificant compared to the
energy gain acheived by the scaled policies. Therefore, the
scaled cluster management policies provide a much greater
energy efficiency than the baseline policies when consider-
ing energy-performance tradeoffs.

If the jobs contained within a grid workload archive vary
greatly in work required and distibution, we may see a saw
tooth effect on the trend lines in the simulation results. Un-
der these circumstances, jobs which require a significant
amount of work are submitted along with jobs requiring
a relatively insignificant amount of work. When the jobs
requiring an insignificant amount of work are completed,
other jobs waiting in the queue are submitted to the idle
cores. Once the cluster processes a large portion of a spe-
cific burst of job submissions, the jobs which required a sig-
nificant amount of work may still be running. The amount
of overhead energy required to complete these jobs depends
upon the way in which these jobs are submitted to individ-
ual nodes. Increasing the number of available nodes in the

cluster may result in a better assignment of jobs, where large
jobs are pseudo-randomly co-located on the same machine,
thus reducing overhead energy.

Discussion of Assumptions. In order to produce these
results, we assumed that jobs were CPU intensive. We then
correlated CPU cycles with the amount of work required by
each job. In actuality, other factors such as latencies related
to memory, disk, and network accesses will affect perfor-
mance. As a result, performance does not scale perfectly
with frequency as we assumed in this study.

Considering only a single job on a single machine, the
latencies (in terms of real time) incurred while processing
the job are not likely to significantly change if the CPU fre-
quency changes. Therefore, only the CPU-bound compo-
nent of a job is effected when the CPU frequency is scaled
resulting in a less significant performance difference be-
tween jobs on high and low frequency machines.

In addition, contention for resources also affects the per-
formance of multiple jobs running on the same machine.
However, our policies dictate that a machine is only at a
high frequency when every core of the cluster is in use.
Therefore, a machine at a high frequency will see a greater

7

contention for resources, and as a result, the machine will
not be as efficienct as a low frequency machine. Since we
classified all machines running in the cluster as most effi-
cient at lower frequencies and maximum capacity, based on
the power curve of a single machine in Figure 2, inclusion of
resource contention will not significantly affect the results.

Lastly, it should be noted that Section 3 described effi-
ciency as Cycles per Joule. In reality, wasted cycles should
also be considered when calculating machine efficiency.
However, we did not include latencies and resource con-
tention in this metric. If we had, low frequency machines at
maximum capacity would again be more efficient than high
frequency machines at maximum capacity since fewer CPU
cycles are wasted in the process, thus reinforcing the key
characteristic of machines in the cluster.

While adding a bit of realism to our model may affect
the precise numbers, it is unlikely to change the character
of the results.

6 Conclusions

In this paper, we have shown the effect of three tech-
niques on the power consumption and performance of large
grid workloads. Automated node scaling powers off idle
nodes, at the cost of some latency to power them back on.
Intelligent job placement seeks to minimize the number of
machines in use by co-locating long running jobs. Dynamic
frequency scaling is employed to increase system through-
put instead of activating nodes that will be underutilized.
Together, these techniques can be used to reduce the energy
consumption of grid workloads on large clusters.

7 Acknowledgements

This work was partially supported by a Federal NWICG
grant. Computational resources were made available by
the Center for Research Computing and the Department
of Computer Science and Engineering at the University of
Notre Dame. We thank the Grid5000, DAS-2, NorduGrid,
and LCG teams for the availability of their archives.

References

[1] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini. Optorsim: A grid simulator for studying dynamicdata
replication strategies.International Journal of High Performance
Computing Applications, 17:403–416, 2003.

[2] R. Bianchini and R. Rajamony. Power and energy managmentfor
server systems.Computer, 37, 2004.

[3] R. Bolze, F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot,
Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche.
Grid’5000: A large scale and highly reconfigurable experimental grid
testbed.International Journal of High Performance Computing Ap-
plications, 20, 2006.

[4] R. Buyya and M. M. Murshed. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling
for grid computing.CoRR, cs.DC/0203019, 2002.

[5] H. Casanova. Simgrid: a toolkit for the simulation of application
scheduling. InCluster Computing and the Grid, 2001.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, andR. P.
Doyle. Managing energy and server resources in hosting centers. In
SOSP ’01: Proceedings of the eighteenth ACM symposium on Oper-
ating systems principles, pages 103–116, New York, NY, USA, 2001.
ACM.

[7] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and frequency
scaling based on workload decomposition. InInt. Symp on Low
Power Electronics and Design, 2004.

[8] C. Dumitrescu and I. Foster. Gangsim:a simulator for grid scheduling
studies. InCluster Computing and the Grid, volume 2, May 2005.

[9] P. Eerola, B. Kónya, O. Smirnova, T. Ekelöf, M. Ellert,J. R. Hansen,
J. L. Nielsen, A. Wäänänen, A. Konstantinov, J. Herrala,M. Tuisku,
T. Myklebust, F. Ould-Saada, and B. Vinter. The nordugrid produc-
tion grid infrastructure, status and plans. InGRID ’03: Proceedings
of the 4th International Workshop on Grid Computing, page 158,
Washington, DC, USA, 2003. IEEE Computer Society.

[10] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Energy
conservation in heterogeneous server clusters. InPPoPP ’05: Pro-
ceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 186–195, New York, NY,
USA, 2005. ACM.

[11] S. Herbert and D. Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. InISLPED, August
2007.

[12] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. Epema. The Grid Workload Archive.Future Generation Com-
puting Systems, 24, July 2008.

[13] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi.
An analysis of efficient multi-core global power managment policies:
Maximizing performance for a given power budget. InMICRO -
International Symposium on Microarchitecture, 2006.

[14] M. Lamanna. The lhc computing grid project at cern.Nuclear In-
struments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 534(1-2):1 – 6,
2004. Proceedings of the IXth International Workshop on Advanced
Computing and Analysis Techniques in Physics Research.

[15] H. Li, D. Groep, and L. Walters. Workload characteristics of
a multi-cluster supercomputer.In Job Scheduling Strategies for
Parallel Processing, Dror G. Feitelson, Larry Rudolph, andUwe
Schwiegelshohn, (ed.), Springer-Verlag, Lect. Notes Comput. Sci,
3277, 2004.

[16] A. Mallik, J. Cosgrove, R. P. Dick, G. Memik, and P. Dinda. Picsel:
Measuring user-perceived performance to control dynamic frequency
scaling. InASPLOS, 2008.

[17] A. Mallik, B. Lin, G. Memik, P. Dinda, and R. Dick. User-driven
frequency scaling.IEEE Computer Architecture Letters, 5, 2006.

[18] J. Moore, J. Chase, and P. Ranganathan. Making scheduling cool:
Temperature-aware workload placement in data centers. InUSENIX,
2005.

[19] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Dynamic
cluster reconfiguration for power and performance.Compilers and
Operating Systems for Low Power, 5, 2003.

[20] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima.
Overview of a performance evaluation system for global computing
scheduling algorithms. InHigh Performance Distributed Computing,
1999.

8

