
Opportunistic Computing with Lobster: Lessons
Learned from Scaling up to 25k Non-Dedicated
Cores

Matthias Wolf, Anna Woodard, Wenzhao Li, Kenyi Hurtado
Anampa, Anna Yannakopoulos, Benjamin Tovar, Patrick Donnelly,
Paul Brenner, Kevin Lannon, Mike Hildreth, Douglas Thain
University of Notre Dame, Notre Dame, IN 46556, USA

E-mail: {mwolf3|awoodard}@nd.edu

Abstract. We previously described Lobster, a workflow management tool for exploiting
volatile opportunistic computing resources for computation in HEP. We will discuss the various
challenges that have been encountered while scaling up the simultaneous CPU core utilization
and the software improvements required to overcome these challenges.

Categories: Workflows can now be divided into categories based on their required system
resources. This allows the batch queueing system to optimize assignment of tasks to nodes with
the appropriate capabilities. Within each category, limits can be specified for the number
of running jobs to regulate the utilization of communication bandwidth. System resource
specifications for a task category can now be modified while a project is running, avoiding
the need to restart the project if resource requirements differ from the initial estimates. Lobster
now implements time limits on each task category to voluntarily terminate tasks. This allows
partially completed work to be recovered.

Workflow dependency specification: One workflow often requires data from other workflows
as input. Rather than waiting for earlier workflows to be completed before beginning later ones,
Lobster now allows dependent tasks to begin as soon as sufficient input data has accumulated.

Resource monitoring: Lobster utilizes a new capability in Work Queue to monitor the system
resources each task requires in order to identify bottlenecks and optimally assign tasks.

The capability of the Lobster opportunistic workflow management system for HEP
computation has been significantly increased. We have demonstrated efficient utilization of
25 000 non-dedicated cores and achieved a data input rate of 30 Gb/s and an output rate of
500 GB/h. This has required new capabilities in task categorization, workflow dependency
specification, and resource monitoring.

1. Introduction
High Energy Physics (HEP) datasets are commonly divided into chunks for processing. Each
chunk is then sent to a local cluster or the WLCG [4] for processing. The Compact Muon Solenoid
(CMS) experiment [2] follows this strategy for processing on dedicated resources. However this
approach proved problematic when used on opportunistic resources, as it required administrator
privileges and favored long-running jobs that were likely to be evicted by other users with higher
priority.

Lobster was developed to overcome these problems by providing a HEP workflow management
environment optimized for use on opportunistic resources [9, 8]. A Lobster project begins with



Database

Work Queue

up
da

te
s tasks

DBS

Lobster Master

metadata
Task

Task

Worker

tasks

task results

Factory

Storage

output

WLCG
Frontier
CVMFS

input

Figure 1. Overview of the Lobster service and task processing.

a configuration file prepared by the user, which defines one or more workflows, each specifying
input data, working environments, executable commands and runtime parameters. The user
then starts the main Lobster process, the master, which reads the specifications from the
configuration file.

The division of a project into tasks begins by identifying smallest sets of input data that
can be processed independently, referred to here as data units. A single input file need not be
physically divided, but fractions of it may be assigned to different data units. The metadata
defining the units is stored by the master process in a database.

The units are then grouped into tasks for processing. This grouping is done “on the fly”, as
resources become available over the course of the run. If the workflow is a simulation rather
than the analysis of actual data, the metadata is generated internally by the master process and
each data unit is processed as a separate task.

The Lobster process hands the prepared tasks to an internal Work Queue [5] master, which
distributes the tasks and the files they require to workers running on a cluster. The user is
responsible for submitting workers, or can initiate a factory process that handles submission
automatically. Each worker process can run multiple tasks in parallel, by invoking the Lobster
task wrapper, which sets up the execution environment. If the CMS software environment is not
present, the wrapper will utilize parrot [7], a user-space tool that provides the required software
via CVMFS [1]. This allows workers to run on machines that are not part of the WLCG or
Open Science Grid [3] without requiring administrative access for software installation.

Predicting the processing time each task will require can be difficult, however choosing the
right task size is essential in opportunistic distributed computing. If tasks are too small, system
overhead increases because each task requires setup of the execution environment and transfers of
large data files. If tasks are too large, run times become excessive and the eviction rate increases.
Under Lobster, output metadata is continuously collected by Work Queue and returned to



1213
00:00

1214
00:00

1215
00:00

1216
00:00

1217
00:00

1218
00:00

1219
00:00

1220
00:00

1221
00:00

0

1000

2000

3000

T
as

ks
 r

un
ni

ng

all aod lhe maod

Figure 2. Example of a project using concurrent workflow processing. As tasks of the root
step “lhe” finish, the “aod” step starts processing, producing results that are then consumed by
the “maod” step. As each task of latter consumes the output of several “aod” tasks, the total
and concurrent task counts are lower. Most of the fluctuation of the total number of tasks stems
from stern competition over resources at the time this project was run.

the Lobster master, which uses the results to adjust task sizes dynamically and thus optimize
throughput.

2. Workflow Dependency Specification
Event simulation and analysis in HEP is generally a multistep process. Often, the steps cannot
be easily merged into a single workflow because each requires specific setup and configuration.
Consequently, in the conventional approach, each workflow must be run to completion on the
entire dataset before the next can be started.

We observed that this leads to two associated problems. Often most of the tasks in a workflow
are completed quickly but some require a long time to complete, creating a “tail” which delays
completion of the entire workflow even though only a small number of tasks are still being
performed. Second, during this long tail much of the computational resource is unused.

In order to utilize these unused resources and improve throughput, we added the capability
to process multiple workflows concurrently, even when the second requires output from the first.
To accomplish this we construct an acyclic dependency graph, a specification that indicates how
each workflow depends on prior steps. This graph, or set of dependencies is also stored in the
Lobster database. Upon completion of each task, the output metadata is added to the table of
available data units, and tasks in the subsequent workflow can begin as soon as enough data is
available to create a new task.

An example of this behavior is shown in Figure 2, where three subsequent workflows are
run: “lhe”, “aod”, and “maod”. As the first “aod” tasks finish successfully, Lobster injects their
output units into the database for the “aod” step, and subsequently starts to create new tasks
to process them.

3. Categories
Under our original approach, all workflows used the same resource specification for each task.
This was inefficient because different tasks often require different quantities of system resources.
Some workflows, for example event generation, must be run single-threaded while others are
more efficient with multiple CPUs, and memory requirements differ similarly, as shown in
Figure 4. Allocating the same resources for every task would leave some machines underutilized
and overload others.

To better allocate resources, we allow the user to divide workflows into categories and specify
the resource requirements for each category individually. We also added the capability to limit
the number of concurrent tasks, to avoid exhausting global system resources such as input
bandwidth.



50 100 150 200 250 300 350

Runtime / m

0

5,000

10,000

15,000

ta
sk

s

dedicated hot cache cold cache

0 20 40 60 80 100 120 140

Runtime / m

0

2,000

4,000

ta
sk

s

dedicated hot cache cold cache

1213
00:00

1214
00:00

1215
00:00

1216
00:00

1217
00:00

1218
00:00

1219
00:00

1220
00:00

1221
00:00

0

50

100

150

ta
sk

 s
iz

e 
/ u

ni
ts

ttH_maod ttjets_sl_maod ttjets_dl_maod

Figure 3. Runtime distributions for two categories and related task sizing. No runtime
limitation has been placed on the workflows in the top category, while a limit of 90 minutes was
used for the category shown in the middle, and was observed within the error margin granted to
the tasks. The bottom plot shows the tasksize adjustment to optimally reach the desired task
size. After an initial time period to gather statistics, the task sizes for the different workflows
in the category diverge from their user-provided default. At the end, tapering of the tasksize to
reduce the overall project runtime can be seen.

The resource requirements for each task are passed to Work Queue, which takes them into
account when assigning tasks to workers for execution. This is important in the opportunistic
computing environment as the available machines may vary considerably in capabilities.

Initial estimates of required resources may not be reliable, and external factors can also change
and affect performance. To respond to these uncertainties, some of the category parameters are
tunable during execution.

Finally, if runtime for a task is excessive it can result in eviction of the worker process from
the machine by the cluster management system. This results in the loss of all work in progress on
that machine. To minimize the risk of eviction, we use a feature of the CMS software framework
to limit the maximum runtime for any task in a given category. If a task reaches the assigned
time limit, it stages out all completed work and reports the unprocessed units to the master
before exiting, which returns them to the pool of available tasks in the database. Figure 3 shows
the effect of the runtime limitation and following task size adjustment.

4. Resource Monitoring
The use of categories allows the user to specify resource requirements, but they are still
responsible for estimating what these requirements are. This can be difficult, given the rapidly
evolving nature of both HEP software and the software environment. Overestimating the
resources that will be used leads to underutilization, while underestimation can lead to memory
exhaustion and excessive swapping, or eviction by the cluster manager. We use the Cooperative
Computing Tools resource monitor [6] to make this process easier and more accurate.

The resource monitoring is tightly integrated into Work Queue, and is used to provide



0 2000 4000 6000 8000

memory / MB

0

50,000

100,000

150,000

ta
sk

s

swap virtual resident

0 250 500 750 1000 1250 1500 1750 2000

memory / MB

0

20,000

40,000

60,000

ta
sk

s

swap virtual resident

0 2000 4000 6000 8000

memory / MB

0

20,000

40,000

60,000

ta
sk

s

swap virtual resident

0 1000 2000 3000 4000 5000 6000

memory / MB

0

5,000

10,000

ta
sk

s

swap virtual resident

Figure 4. Memory consumption broken down into different categories. From top to bottom:
all tasks, event generation (“lhe”), detector simulation and reconstruction (“aod”), and event
content slimming (“maod”). Notice the different scales on the x-axes, the memory consumption
varies greatly between the different categories.

0121
00:00

0122
00:00

0123
00:00

0124
00:00

0125
00:00

0126
00:00

0

10,000

20,000

al
lo

ca
te

d 
m

em
or

y 
/ M

B

Figure 5. Evolution of memory allocation over time. The first tasks in this category occupy
a whole worker before Work Queue receives enough statistics to assign an optimal memory
allocation, which is then tuned as the project progresses.

another layer between the worker and the wrapper of a task. The Work Queue master may
take an initial guess for resource consumption from the Lobster master if the user has provided
one. Otherwise, it will start tasks consuming all resources of a worker to acquire resource
measurements. All information about resource usage is sent back to the Work Queue master
when a task finishes. While the task is executed, the resource monitor will constantly measure
the resource consumption of the task and abort it if the allocation is exceeded. The master will
restart such aborted tasks with a new, expanded allocation, until the task finishes successfully.
Whenever the Lobster master creates a new task and passes it to the internal Work Queue



0121
00:00

0122
00:00

0123
00:00

0124
00:00

0125
00:00

0126
00:00

0

5,000

10,000

C
or

es

total committed

0121
00:00

0122
00:00

0123
00:00

0124
00:00

0125
00:00

0126
00:00

0

10,000

20,000

M
em

or
y 

/ G
B

total committed

0121
00:00

0122
00:00

0123
00:00

0124
00:00

0125
00:00

0126
00:00

0

500

1,000

O
ut

pu
t /

 (
G

B
/h

)

0121
00:00

0122
00:00

0123
00:00

0124
00:00

0125
00:00

0126
00:00

0.0

0.25

0.5

0.75

un
its

 r
em

ai
ni

ng

×107

Figure 6. Six day processing run with O(10 000) cores. Top two plots: number of cores
and memory in use. This varies somewhat over the run because the workload manager is
opportunistic and uses more cores and memory when they are available. Memory use closely
parallels the number of cores allocated, but depending on the worker size, the allocation of one
may be closer to the available capacity than the other. In this case, at the start of the project,
workers with less memory were available, leaving some cores unoccupied, while for the second
half, the memory allocation of the workers increased such that the available cores were used
more efficiently. Middle: instantaneous output performance. A measure of the total output
transferred back to the output storage element. This also includes output that will be merged
by a later task, and thus deleted from the storage element, to reduce the amount of files and
metadata to be handled. An output performace of more than 500 Gbit/s has been consistently
achieved throughout the project runtime. Bottom: number of remaining work units. The work
units were completed at a fairly steady pace over the six day period, with a small tail at the end
of the processing period.

instance, it is assigned a new resource allocation. The initial resource measurement and
subsequent adjustments can be seen in Figure 5. There are several different modes of the
resource allocation, a fixed mode, where the user specified resource usage is taken unmodified,
a maximum mode, using the maximal resource consumption of the task’s assigned category,
and modes minimizing waste of resources and maximizing throughput. For the latter two modes,
Work Queue will use previous tasks to calculate resource quantiles that lead to either a minimum
of task failures due to exhausted resources, and thus wasted computational efforts, or maximize
the task throughput by more aggressive allocation.



0514
04:48

0514
09:36

0514
14:24

0514
19:12

0515
00:00

0515
04:48

0515
09:36

0

10,000

20,000

C
or

es

total

Figure 7. Number of cores used. This graph records our initial run of more than 20 000 cores.
The number of utilized cores steadily declines due worker timeouts caused by excessive load on
the master.

5. Performance
The aforementioned changes have allowed us to use resources at hand more efficiently and
with less user intervention. Figure 6 shows core and memory usage, output performance, and
unit completion from a typical six day processing run with O(10 000) cores. The workload
manager ran unattended for the entire period, opportunistically adapting to changes in the
available resources and finally completing all the assigned tasks. This represents a typical project
generating event simulation for private group use, in this case providing a training sample with
larger statistics than available corresponding official samples.

While we have the ability to run on the scale of 10 000 cores throughout the year on the
cluster available to us, we have been permitted to scale up to 25 000 cores during maintenance
periods, with no opportunistic competition by other users for a short time. Results are shown in
Figure 7, where we were able to scale to more than 20 000 cores, albeit not able to sustain peak
core usage for prolonged periods of time. The Lobster master handles a large enough volume of
completing tasks, starving the Work Queue master of time to keep all connections to workers
alive. As a result, workers slowly time out until an equilibrium is reached. To alleviate this, all
database transactions have been optimized in a first step to reduce the time that the Lobster
master spends processing returned tasks, and thus allowing the Work Queue master more time
to keep connections alive. At the same time, we are also investigating the use of Work Queue
foremen to introduce a load-balancing between the Work Queue master and workers.

6. Conclusion
The capabilities of the Lobster workflow management tool for opportunistic computing in high
energy physics has been significantly improved. Workflows can now be assigned to categories
depending on their resource requirements, allowing for optimal assignment of tasks to nodes.
A bottleneck in the analysis sequence caused by relatively long periods of inefficient running
during processing tails has been circumvented by the addition of a new workflow dependency
specification feature. Duties which previously had to be handled by the user, such as estimating
resource requirements and monitoring system performance, are gradually being automated.
These refinements have made it possible to scale the system up and opportunistically utilize
as many as 25 000 cores.

References
[1] CernVM File System, http://cernvm.cern.ch/portal/filesystem.
[2] CMS Experiment Public web site, http://cms.web.cern.ch.
[3] Open Science Grid, https://www.opensciencegrid.org.
[4] Worldwide LHC Computing Grid, http://wlcg.web.cern.ch.
[5] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue + Python: A Framework For

Scalable Scientific Ensemble Applications. In Workshop on Python for High Performance and Scientific
Computing (PyHPC) at the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis (Supercomputing) , 2011.



[6] G. Juve, B. Tovar, R. F. da Silva, D. Krol, D. Thain, E. Deelman, W. Allcock, and M. Livny. Practical
Resource Monitoring for Robust High Throughput Computing. In Workshop on Monitoring and Analysis
for High Performance Computing Systems Plus Applications at IEEE Cluster Computing, 2015.

[7] D. Thain and M. Livny. Parrot: Transparent User-Level Middleware for Data Intensive Computing. In
Workshop on Adaptive Grid Middleware at PACT, 2003.

[8] A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar, P. Donnelly, P. Ivie, K. H. Anampa, P. Brenner,
D. Thain, K. Lannon, and M. Hildreth. Scaling Data Intensive Physics Applications to 10k Cores on
Non-Dedicated Clusters with Lobster. In IEEE Conference on Cluster Computing, 2015.

[9] A. Woodard, M. Wolf, C. N. Mueller, B. Tovar, P. Donnelly, K. H. Anampa, P. Brenner, K. Lannon, and
M. Hildreth. Exploiting Volatile Opportunistic Computing Resources with Lobster. In Computing in High
Energy Physics, 2015.


