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1 Abstract

In recent years, the size of bioinformatics datasets has followed an exponential growth

trend which show no signs of abating. While established genome search algorithms

exist, specifically BLAST, an algorithm which identifies similarities between a genomic

sequence and a database of other sequences, the growth of computer storage and datasets

has outstripped the growth in processing power.

Analysis of the problem domain and performance measurements indicate that a dis-

tributed computing model can provide significant and scalable performance benefits to

BLAST. Genome search is data-intensive, and sequence databases frequently range in the

gigabytes; established non-data-intensive distributed computing models do not suffice.

The aim of the project is threefold:

1. to build a framework for executing batch bioinformatics jobs using existing dis-
tributed computing resources, specifically the Condor pool at Notre Dame;

2. to provide a user-friendly tool for bioinformatics researchers to process BLAST
search queries;

3. to provide users a useful and unobtrusive record of queries they conducted.

A system called BioCompute was developed atop Condor to meet these goals. Condor

is a distributed batch computing system used by many institutions around the world.

Notre Dame’s Condor pool comprises several hundred machines across campus.

Using BLAST as a reference application for the first goal, a model was developed

in which input queries were distributed across a static pool of hosts pre-seeded with

multi-gigabyte datasets. Currently, BioCompute runs on 32 nodes. The interface and

framework were constructed with modularity in mind in order to facilitate adding new

applications in the future. To satisfy the second goal, a web interface was developed

to submit, monitor, view, and explain BLAST jobs and results. This interface should

accommodate users with a wide range of familiarity with the original BLAST tool. In

satisfaction of the third goal, this interface records the parameters and details of each
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job submission to ease reproducing results and provide a paper trail of conducted queries

and comments on the query results.

The functional goal of this tool is to empower biologists to conduct large BLAST

searches in a smaller time frame by hiding the implementation details of the underlying

computing model.
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3 Introduction

3.1 Growth Trends in Bioinformatics

The size of bioinformatics datasets has grown exponentially in recent years, and shows no

signs of abating. With increases in sequencing speed and parallel efforts being conducted

across the globe on many genomes, an explosion of genomic data is occurring. Figure 1

shows the exponential increase in base pairs and sequences stored in NCBI’s GenBank

repository since 1982.

While the collective speed of sequencing and annotating sequences has increased—

yielding larger and faster-growing datasets—the resulting volume of data is problematic

from a data management and processing viewpoint. The cost and availability of com-

puting power has roughly followed Moore’s Law, which postulates that the number of

transistors on a chip will roughly double every eighteen months, this trend has slowed or

been transformed in recent years by the advent of multi-core processors. Additionally,

other bottlenecks to efficient processing of this data include the I/O speeds of disk drives,

which have not scaled in proportion to increasing disk size and decreasing cost.

3.2 BLAST and Condor

Distributed computing systems can alleviate this growing mismatch between available

computing power and the growing volume of bioinformatics data. Distributed systems

have been developed to effectively harness and utilize the computing power of many

connected systems and the parallel storage of multiple attached local disks. Condor [11]

is one such system which was developed specifically to harness idle workstation computing

power to provide collective distributed computing resources to the community.

BLAST [2] is a widely-used data-intensive bioinformatics application. It accepts

nucleotide or peptide sequences as input, conducts alignment searches against much larger

sequence databases, and returns a ranked set of matching sequences. Multi-sequence

7



01
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
9
8
2

1
9
8
6

1
9
9
0

1
9
9
4

1
9
9
8

2
0
0
2

2
0
0
6

Base Pairs of DNA (Billions)

Figure 1: Growth of GenBank in recent years [6].
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BLAST queries are trivially parallel and thus are easily distributable.

There are many practical and logistical barriers intrinsic to harnessing distributed

computing resources. Reliability and fault-tolerance are concerns when dealing with

multiple independent systems. Effective division of the processing task is another, along

with load-balancing and dealing with heterogeneous distributed execution environments.

In short, harnessing distributed resources, while possessing the potential for high return

on investment, is complicated and difficult.

3.3 Providing a usable BLAST abstraction atop Condor

Such systems present intrinsic usability difficulties even for those versed in their construc-

tion and use. The necessity of such systems will grow and spread as the volume of data

grows in many domains. To facilitate growth, special attention should be paid to the

usability and interfaces of such systems to make them approachable and understandable

by those not versed in distributed computing but in the relevant problem domain.

BioCompute aims to provide an abstraction of distributed computing resources for

bioinformatics applications. By hiding details of the distributed system and providing

a usable domain-pertinent interface, BioCompute can both improve bioinformatics run-

times and facilitate usage of distributed resources. It also aims to aid in data management

by providing tools to annotate and detail experiments.

BioCompute has been developed to handle distribution of BLAST queries. Work

is in progress for the construction of a modular, application-agnostic system for which

modules can be written to provide distributed implementations for different applications.

This paper will discuss the implementation of BioCompute to distribute BLAST

queries. Section 4 reviews related works, while sections 5 and 6 discuss the implemen-

tation of distributing BLAST via Condor and handling replication of BLAST sequence

databases, respectively. Section 7 discusses performance and affecting factors, and sec-

tion 8 addresses user-facing usability concerns.
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4 Related Works

4.1 Distributed Systems

4.1.1 MapReduce

MapReduce [4] is a distributed programming model and computing system developed

at Google for data-intensive applications. It is modeled and named after the map and

reduce primitives in LISP: a map function is applied to each item in a list to produce a

list of resulting items, and a reduce function is executed on lists of the resultant items

to produce a scalar result. By restricting users to this functional programming model,

MapReduce can use a common distributed execution model for a variety of real-world

applications.

In their programs, MapReduce users specify a map function and a reduce function.

The input data is split into pieces and each piece is fed to an instance of the map function,

which emits values which are fed to instances of the reduce function. By forcing users

to write their programs in a manner which emphasizes modular and independent com-

putations, MapReduce can efficiently distribute execution of the program on thousands

of clusters.

MapReduce seeks to make it easy for developers to harness distributed computing

resources to execute very large data-intensive jobs while hiding logistical concerns typical

to distributed computing, e.g. fault tolerance and load-balancing. It is implemented as

a C++ library against which a user must write, link, and compile their programs.

While BioCompute’s division input division strategy closely resembles that found in

MapReduce, BioCompute would have to undergo many changes to be implemented on

MapReduce. First, the binary BLAST application would have to be modified in some

fashion in order to hook into the MapReduce structure, where no such modification has

taken place in the current implementation. Also, running BLAST jobs require querying

large sequence database files which are not trivially divided nor distributed. MapReduce’s
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programming model does not accommodate such large, static resources, so the database

would have to be divided among jobs, which would introduce domain-level algorithmic

complications, and further modifications to the binary application. In short, BioCompute

as-is could not run on MapReduce, but similar computations could be accomplished after

non-trivial modifications to the execution framework.

4.1.2 Condor

Condor [11]is a distributed computing system developed at the University of Wisconsin-

Madison. Based on the fact that many personal workstations possessed on-demand com-

puting power which often sat unused, it was originally developed as a tool to pool and

harness idle workstation CPU cycles. As such, it is built to handle highly heterogeneous

Unix cluster environments. It was built to respect the rights of the machine owners, who

can specify the level of Condor usage on their machines, and remove a Condor job from

their machine at any time.

Jobs submitted for execution in the Condor pool are described by a Condor submit

file. This file details the inputs, executable, outputs, and parameters of the job and

requirements of the job environment. Condor has a classification system called “Clas-

sAds”, which describe attributes of a machine’s execution environment in name-value

pairs. When jobs are submitted to the Condor system, attribute values are specified,

and machines which match the specifications are considered for job execution.

Condor is a flexible environment. Programs typically do not require recompilation

or relinking to run in the Condor environment, nor are they constrained to a particular

programming model or language. Unless otherwise specified, Condor filters nodes using

ClassAds to find an execution environment matching the submitting computer (i.e. 32-

vs. 64-bit, hardware architecture, etc).

Reliability and fault-tolerance is a major concern in distributed systems. In the event

of an expected shutdown of a machine running a Condor job, Condor can package up the
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execution and resume the execution on another machine. In the event of an unexpected

shutdown, e.g. someone accidentally unplugging a machine, Condor can restart the job

on another eligible node.

There is a Condor pool at the University of Notre Dame composed of hundreds of

machines of different varieties. Computer lab workstations, faculty workstations, and

various computing clusters are included. Condor is the underlying distributed system

upon which BioCompute relies for distributed execution.

4.2 The Chirp Filesystem

Alongside Condor, Notre Dame also runs a distributed file-system named Chirp [10]. The

file-system was designed to facilitate data-transfer within local-network computational

grids.

Chirp aims to provide unprivileged deployment, simple interfaces, familiar access

controls, and flexibility to accommodate different types of use cases. Use of Chirp is

commonly facilitated through Parrot [9], an interposition agent which presents files on

various nodes as a directory tree in a Unix system and accordingly rewrites system calls

to those resources.

Chirp has two main parts, the chirp server and the catalog server. The chirp server

is the client which operates in user-space on a node, provides files for distributed access,

and periodically informs the central catalog server of its presence and status. The catalog

server maintains and reports information about all the Chirp nodes. By maintaining a

periodically-updated central list and caching it on nodes, Chirp can provide fast and

local inquiries into the top-level of the file-system.

BioCompute employs Chirp alongside Condor to aid in efficient and simple batch

distribution of BLAST sequence databases across the Notre Dame network. Chirp pro-

vides a simple interface for a peer-to-peer file-distribution mechanism which reduces total

distribution time.
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4.3 Distributing BLAST

4.3.1 University of Iowa BLAST Cluster

Braun et al. detail three possible approaches to distributing BLAST queries among a

cluster and discuss the implications of the design options they made in designing a cluster

for batch processing of BLAST queries [3]. The first and most fine-grained approach is

to parallelize to the level of comparing two individual sequences against one another,

one source and one target. The next approach to dividing BLAST queries they mention

is to partition the genomic databases into “chunks” and distribute these chunks among

several nodes. When a query is submitted for processing against a database, the query is

submitted against all chunks of the database, and the results are returned and merged.

The third and most coarsely-grained approach entails storing complete databases on

nodes and splitting up the set of incoming query sequences across many nodes, each with

a complete copy of the database against which to compare results.

At the time of the writing of the paper, only the coarse-grained parallelization of

BLAST queries had occurred, and work was in progress on the medium-grained approach

involving partitioning the databases.

The cluster accepted job submissions from two sources: a daily batch input from

an array of sequencing machines and a web interface. At the time of writing, the vast

majority of system use came from the batch processing. The researchers noted that at the

time of writing, 90% of use cases involved querying a single sequence against a database.

In this case, coarse-grained distribution of BLAST will not result in any performance

improvement of processing because there would only be one sequence to run against one

database.

The paper noted that an implementation of the medium-grained database distribu-

tion method was nearing completion. Since the sequence datasets are divided in this

implementation, the merging of results from each sequence-database comparison in order
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to maintain output-compatibility with a normal, sequential BLAST is non-trivial. Once

all jobs have completed and returned results, the results must be sorted. The E-values,

the number of significant alignments expected by chance, must be recomputed to reflect

the actual size of the whole database rather than the size of each individual partition.

Also, the results must be sorted by each match’s score, which is a function of the length

of the sequence alignment.

This coarse-grained implementation described in the paper closely resembles Bio-

Compute’s division strategy. BioCompute’s only source of input sequences is through a

web-based interface, but the character of input is different than what the authors expect

in their system. Queries sourced from the web interface in their system are treated as

time-critical and have operational preference over batch jobs. In BioCompute, web-based

jobs are treated as batch queries and are expected to have a potentially lengthy runtime.

While there is emphasis on immediate feedback to the user in BioCompute and the sys-

tem is built to deliver processing time improvements to BLAST, the user interface does

not expect nor encourage the user to expect immediate results processing.

It should also be noted here the BioCompute’s BLAST distribution strategy assumes

sequence input files will multiple queries, often many thousands of queries. This has been

the observed standard practice of bioinformatics researchers at Notre Dame.

At full capacity, the sequencing systems feeding the batch processes produce 2880

sequences per day. Typically eighty percent of the sequence pass verification steps and

are fed to BLAST. The paper reports that a daily load of 2310 sequences are processed

by the cluster in 20 hours, keeping up with the daily production of sequences by the

sequencers. By contrast, a single node at the time would have taken more than three

weeks to process the same dataset.
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4.4 Web Portal

4.4.1 RIKEN Bio Portal

The Advanced Center for Computing and Communication at the RIKEN Institute in

Japan saw a need for a user-friendly system for life sciences researchers to access dis-

tributed computing resources at the Institute [12]. They noted that many life sciences

researchers were unfamiliar or uncomfortable with traditional computer user interfaces,

especially the command line. They developed Bio Portal, a web interface written in Java

using the Commodity Grid Toolkit, to streamline and simplify using the RIKEN Super

Combined Cluster (RSCC) in order to process BLAST and ClustalW jobs.

Using Bio Portal, life sciences researchers (“wet” researchers) are able to easily upload

genomic or protein sequences for processing, view and download results, stop progress of

currently-running jobs, and delete jobs. Also, frequently researchers would need to use

results from BLAST as input for a ClustalW job, and the process for doing so manually

using Bio Portal’s system was slow and cumbersome, so a BLAST+ClustalW processing

option was added which executed this chain of processes automatically.

The RSCC uses Hi-Per BLAST, a parallelized version of BLAST which maintains

result compatibility. While large jobs were expected to effectively utilize the computing

resources of the RSCC, it was postulated that smaller jobs would not benefit in runtime

from the cluster’s resources because of higher temporal overhead when using the RSCC.

A separate server was added to Bio Portal to process jobs with fewer input sequences.

After conducting trials, the team concluded that jobs against large databases such as

“nt” should be run on the RSCC cluster, while jobs against smaller databases such as

“sts” should be run on the separate server. They found that only when comparing against

databases of intermediate size such as “patnt” should the number of sequences be using

as a tool in estimating job runtime and selecting which computing resource to use. They

found that database size is more influential in resource selection than the number of
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sequences.

A separate group in RIKEN hosts mirrors of public databases, and Bio Portal syn-

chronizes their databases daily with these mirrors and provides status indicators and

timestamps for each database.
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5 Distributing BLAST Jobs

5.1 The BLAST Application

5.1.1 Description

BLAST is a collection of algorithms which identify similarities between a genomic se-

quence and a database of other sequences. When BLAST is run, each query is compared

against the specified database according to the chosen algorithm, and the algorithm re-

turns a the names of sequences found in the database which are similar to those in the

input file.

Because BLAST is only an application of BioCompute, the original BLAST algorithm

itself is not modified. The BLAST executable is used in its original form, without any

modifications or recompilations. The focus of BioCompute is to implement a generalized

pattern of abstraction atop Condor allowing for multiple applications to be expressed

and used by those with little or no background in formal computing.

5.1.2 Inputs

There are two input vectors for BLAST execution, hereafter referred to as input files

and databases. BLAST input files are in the text-based FASTA format specified by the

NCBI. They contain a list of queries, and are supplied by the application user. The

beginning of each query is noted with a 〉, followed by the a description of the sequence.

The description typically includes a name and identifier number, ended with a newline.

Sequence names and identification numbers often follow conventions set by the NCBI. A

nucleotide or peptide sequence follows, representing base pairs, amino acids, or patterns

thereof in a standardized text representation. Whitespace within the sequence is not

significant, but lines shorter than 80 lines are recommended for readability. A simple

example of FASTA-formatted file containing peptide sequences is shown in Figure 2,

while Figure 3 shows a nucleotide sequence in FASTA format. Typical input files for
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>1397save_transcriptional_regulator_GCN4

VPESSDPAALKRARNTEAAR

RSRARKLQRMKQLEDKVEEL

LSKNYHLENEVARLKKLVGE

R

>1381save_cobratoxin

LECHNQQSSQTPTTTGCSGG

ETNCYKKRWRDHRGYRTERG

CGCPSVKNGIIINCCTTDRC

NN

Figure 2: A sample peptide sequence in FASTA format

>MAGI_43307_1

AAAGTTGAGTGGTTGGTAACA

GTTACCGTTCTTAAGATTGAT

CAACTATGGTGGTACGAGTCT

TGTAGAAAGTGCCTCAAGAAA

ACAAAGCCTCATGGTGATGCC

TATAAATGCTCGGACTCTGGT

TGTGGCCATGTTGGTCCGCCT

AATCCAAGGTACAGGTTGCTC

ATCACAGCAGGAGATGAGACAG

Figure 3: A sample nucleotide sequence in FASTA format

BioCompute’s initial target use cases range from several hundred bytes to dozens of

megabytes.

BLAST databases are large compilations of sequences in a binary format. The

databases used in BioCompute range in size from several megabytes to several giga-

bytes. Many databases are maintained and hosted by the NBCI including the standard

non-redundant database nr. Table 1 shows a list of 39 sequence databases currently host

by BioCompute, sourced from both the NCBI and datasets provided by researchers at

Notre Dame.
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Name Size
Heliconius e unigenes 108K
ACWP2 contigs v1 592K
ABWP1 contigs v1 752K

CCMHS-1 contigs v1 824K
CCWP1 contigs v1 872K
ABWP2 contigs v1 1.3M
ROB-2 contigs v1 1.5M
WOA-2 contigs v1 1.5M
ROA-2 contigs v1 1.5M
WOB-1 contigs v1 1.8M

Heliconius e proteins 2.1M
ACHS1n contigs v1 2.2M
ACWP1 contigs v1 2.3M
WOB-2 contigs v1 2.4M
WOA-1 contigs v1 3.0M

ACCanker contigs v1 3.2M
ROA-1 contigs v1 3.4M
CCWP2 contigs v1 3.7M
ROB-1 contigs v1 3.9M

PfalciparumAllTranscripts PlasmoDB-5.5 4.1M
CCNHS-1 contigs v1 5.1M
ACHS2n contigs v1 5.3M

CCCanker contigs v1 5.8M
1 celera contigs 6.3M
2 celera contigs 7.1M

bombyx predicted proteins 7.2M
CCMHS-2 contigs v1 11M
CCNHS-2 contigs v1 13M

ButterflyBase 18M
lepbase 22M

Fagacea db.fasta 30M
Fagaceae db 87M
uniprot sprot 233M

Drosophila melanogaster unigenes 240M
agambiae.CHROMOSOMES-PEST.AgamP3 261M

pataa 356M
patnt 1.7G

uniprot trembl 3.5G
uniprot trembl.fasta 3.6G

nr 6.4G

Table 1: List of sequence databases hosted by BioCompute and sizes.
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5.1.3 Outputs

The original, unmodified BLAST program has many multiple output formats which are

not equivalent in form or content. All of these output options are presented to the

BioCompute user. The output of a BioCompute BLAST job matches the output of an

original BLAST in content, but the form may be slightly different; depending on the

output type selected, additional program header information is scattered throughout the

file, one for each of the distributed Condor jobs. This output file could be normalized and

scrubbed to more closely represent the form of original BLAST queries, but this process

would be complicated by the myriad output options. Figure 4 shows an example of the

default output option for BLAST.

5.2 Comparison to MapReduce

A BLAST input file can have any number of query sequences. Typical jobs run during

BioCompute’s testing range from tens to hundreds of thousands of queries. Each query

sequence is compared independently against the specified database and the results of

queries are not dependent on the results of other queries. Because of their independence,

these queries need not be compared against the database in any particular order, nor

need they be executed on the same machine; the value of the function is determined by

the input sequence, the blast algorithm, and the database.

In order to distribute the queries among nodes, the original input file is split into

batches of N queries each. Each of these resultant input query shards now can be run

against a BLAST database to produce the sequences matching those in the input file.

This set of matching sequences is a partial result for the query of the original input file

against the database, but it is a complete result for the query of the input shard against

the database. These self-contained subsets of results are then combined into one result,

corresponding to the result for the original input file. See Figure 5.

This model of dividing input and distributed execution closely resembles Google’s
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Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,

Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),

"Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs", Nucleic Acids Res. 25:3389-3402.

Query= Contig2

(910 letters)

Database: All non-redundant GenBank CDS

translations+PDB+SwissProt+PIR+PRF excluding environmental samples

from WGS projects

7,135,729 sequences; 2,462,332,163 total letters

Searching..................................................done

Score E

Sequences producing significant alignments: (bits) Value

ref|YP_002221402.1| NADH dehydrogenase subunit 2 [Blastocystis s... 37 2.1

gb|ACD10933.1| NADH dehydrogenase subunit 2 [Blastocystis sp. Na... 37 2.1

ref|YP_001096002.1| NADH dehydrogenase subunit 4 [Metaseiulus oc... 37 2.8

ref|YP_001096013.1| NADH dehydrogenase subunit 4 [Metaseiulus oc... 37 2.8

ref|ZP_00239675.1| hypothetical protein protein [Bacillus cereus... 36 4.7

>ref|YP_002221402.1| NADH dehydrogenase subunit 2 [Blastocystis sp. NandII]

gb|ACH86083.1| NADH dehydrogenase subunit 2 [Blastocystis sp. NandII]

Length = 493

Score = 37.0 bits (84), Expect = 2.1

Identities = 24/81 (29%), Positives = 43/81 (53%), Gaps = 5/81 (6%)

Frame = -1

Query: 829 FYHFKITFSLSDIDIVFDILLEIGENFIVYGLLYSALV----FLIMYYFVTYCVDNR-YI 665

+++ KI + LSD+ V+ +G +FI+ + + FL +Y C++N Y+

Sbjct: 359 YFNNKIKY-LSDLSYVYKYNKTLGLSFIITMFSMAGVPPMAGFLAKFYSFFVCIENNFYL 417

Query: 664 LATLNDGLPKISNFYFVSFIK 602

LAT+ L I FY++ F+K

Sbjct: 418 LATIGVLLSIICTFYYIRFLK 438

Figure 4: A snippet of a typical BLAST output in the default format.
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MapReduce model in some respects: a problem is divided into independent subproblems,

a map function is evaluated on the input splits, and the intermediate values are reduced

into a result for the original problem. In BioCompute, the input data is the FASTA

sequence file originating in the user, the map function is the BLAST executable operating

on an input shard and necessary databases, and the reduce step is simply an ordered

concatenation of the output streams of the independent, distributed subproblems.

BioCompute differs from MapReduce in that it requires large, static sequence databases,

which are treated as atomic units to reduce complexity in the problem domain. This is

discussed more in Section 6.2. MapReduce does not handle large, indivisible files. In

order to provide these resources in whole on remote execution nodes, BioCompute dis-

tributes these databases in batch ahead of time, and therefore can assume their existence

on remote nodes when scheduling work processes.

5.3 Execution Overview

Each BLAST job submission to BioCompute is executed using the Notre Dame Condor

pool. The following is the sequence of events which occurs for every job submission.

1. The user uses the “Submit Query” page on the web interface to select a local FASTA

file to upload, choose a database to run the sequence against, specify BLAST

options, and name the job. The user submits the page and an HTTP post is

submitted to the submission processing page.

2. The submission processing page creates an entry in the database for the job, creates

a new job directory on the server, and copies the sequence input file to said directory.

The current set of job execution scripts is copied into the directory as well.

3. The job-execution script is called. It’s first task is to split the sequence file into

segments of N queries each. A Condor submit file specifying the number of jobs to

run and their respective inputs is then generated. A sample submit file is shown
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in Figure 8. At this point, the BioCompute job is ready for submission to Condor:

there are K input files of at most N queries each, and the script which Condor will

distribute is in the job directory and ready to be copied to BioCompute worker

nodes.

4. The job is submitted to Condor. Once jobs are dispatched to BioCompute com-

puting nodes, the script checks for the existence of the required database on the

local file-system. If it is found, then the job will continue normally and BLAST

will execute on the input split. When a job is complete, its standard output and

error streams are sent back to the master job directory and stored in the indicated

filenames.

5. Upon completion of all jobs, the results from each job split are concatenated in

order. This is a linear time step, but if necessary in the future, this step can be

easily divided as it is simply concatenation of ordered, numbered strings. After

this merge is completed, a timestamped “completed” file is written to the directory

indicating the job is complete. Optionally, an email can be sent to the user notifying

them of the job’s completion.

6. Upon a user requesting to view the job through BioCompute’s web interface, the

status of the job recorded in the database is checked. If the job is not in a terminal

state indicating its status will not change, i.e. “Complete” or “Complete with

Error”, the existence of the “completed” file in the master job directory is checked.

If it is there, errors in execution are checked for, the database is duly updated and

the newly-updated status is displayed to the user.

5.4 Submit File Overview

The Condor submit file details execution details of a distributed job. Many parts of a

submit file are frequently similar across many different types of jobs. This section will
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review the salient and unique aspects of the sample submit file shown in Figure 8. This

sample submit file is representative of those generated for BioCompute jobs in general.

The first differentiating part of the submit file is the requirements line. This line is

specifying what BioCompute requires of a node in order to run. The first clause specifies

the machine group. Currently, BioCompute nodes are restricted to the cluster designated

sc0 within the Condor pool. The next attribute restricts BioCompute jobs to only run

on the first CPU of a machine; under the current configuration of the Condor pool, each

CPU of a multi-cored machine can be assigned jobs independently. The final clause

ensures jobs are only assigned to machines where memory is currently available. These

last two clauses were added because it was found that BioCompute jobs would frequently

deadlock when two jobs were scheduled to two CPUs on the same machine. Many of the

sequence databases in BioCompute are larger than available memory and as a result

the jobs are I/O-bound. Scheduling two processes on the same machine would result in

detrimental competition for available memory and disk access.

The memory and CPU restrictions were added to reduce the possibility of this hap-

pening. This could result in reduced performance for jobs against databases which are

smaller than half the available memory because otherwise jobs would be able to scheduled

on both CPUs of a machine without negative effects. It should be emphasized here that

the sc0 cluster is a shared cluster and not exclusive to processing BioCompute jobs, and

therefore there could be other processes running and consuming memory on a machine.

The policy of restricting to a single CPU has performed suitably so far for databases of

all sizes.

The next salient attribute of the submit file is the arguments line. This is the set

of command-line parameters which will be fed to blast.script, a wrapper for the BLAST

executable. The parameters include the command-line options which specify how the

job will be executed. These include which variation of BLAST will be performed (e.g.

blastn, blastp, tblastx), which database to compare against, the output format, and the
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number of sequences and alignments to show.

In addition to the BLAST job parameters, the BioCompute-assigned ID number is

passed along, and the Condor job number is indicated with the $(PROCESS) macro.

The Condor job number indicates which division of the job is being executed and is in

the range [0,Q), where Q is the number on the queue line of the submit file. The output

and error files which are transfered back to the master job directory are marked with the

Condor job ID to designate order and provide ensure unique filenames.

The on exit remove line directs Condor how to handle a job which fails to find the

requisite database on the local node. When that happens, the script exits with error code

101, indicating to Condor that it should be removed from that local node and reassigned

to another eligible node.

5.5 Remote Execution Script Overview

Three noteworthy events occur in the remote execution script on BioCompute nodes:

1. The script queries the local Chirp daemon for the local path of files stored on the

node.

2. The script checks for the existence and accessibility of the database it will query

against.

3. If the database is readable, the script calls the BLAST executable.

The sequence databases are stored locally on the BioCompute nodes through the

Chirp distributed storage system. Access to the Chirp file-system is usually obtained

through the chirp server process, but in the special case where the requisite files stored

via Chirp reside on the local node, as is the case in BioCompute, faster access can

be obtained by accessing the local files directly and circumventing chirp server. To do

this, the script requests the local Chirp path from Chirp via the localpath directive and
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universe = vanilla

executable = ./blast.script

requirements = (MachineGroup=="sc0") &&

(VirtualMachineID==1) && (Memory > 0)

arguments = 194 blastn 0 ButterflyBase 194.split.$(PROCESS) $(PROCESS) 50

output = 194.output.$(PROCESS)

error = 194.error.$(PROCESS)

transfer_files = always

transfer_input_file =194.split.$(PROCESS)

on_exit_remove = (ExitCode!=101) || (ExitBySignal==TRUE)

log = 194.logfile

queue 2116

Figure 8: A typical Condor submit file for BioCompute jobs

proceeds to access the files through the local file-system. In addition, to allow this, the

ACLs of the BioCompute database directory must be set to allow local access.

The second item of note is that the script checks for the existence of the database

on the local node before calling the BLAST executable. If it is not found, the script

exits with code 101, directing Condor to reschedule it to another node, as mentioned

previously.

5.6 Reporting Job Status

A Condor job generates and maintains a logfile in the master submission directory. Upon

job completion, BioCompute generates a file marking the time of completion. Using these

two sources of information along with the size of the standard out stream, BioCompute

currently reports a job as Submitted, Running, Complete, or Complete with Error. A

new system is being built which will rely solely on the Condor logfile and give more

granular status reporting.
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5.7 System Reliability

BioCompute is entirely dependent on the underlying Condor system for job execution.

Condor is a mature and proven distribution platform. BioCompute should thus “hand

off” jobs to Condor for execution as quickly as possible in order to reduce the domain

for errors and potential for job failure. By pushing responsibility to Condor quickly,

BioCompute reduces the possible space for job failure.
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6 Handling Sequence Databases

6.1 Distributing Databases

Distributing BLAST across a set of nodes differs from the MapReduce model in its

dependency on large databases. In MapReduce, all inputs to the program are expressed

as splits of a list, while the BLAST there is the additional dependency of a database. It

is not feasible to simply distribute the databases on-demand per each instance because

of their relatively large size and the relative paucity of network bandwidth, a frequent

bottleneck in distributed systems.

Complete copies of the required databases are stored locally at each node using the

Chirp distributed file-system. Databases are added by first staging the requisite files in a

master copy which is not used for production job execution. To enable reproducibility of

results, once a database is added to the system under a specific name and release date, it

will not be updated. Rather, the updated version of the database would be distributed

under a different release date.

Adding a new database to the system is handled by a set of scripts which first push

the new database onto a single node in the cluster and then distributes the data among

the cluster by making a call to the chirp distribute function provided by the Chirp file-

system. This function efficiently distributes a file or directory on one node to multiple

specified Chirp nodes.

There may be a significant portion of time during which a newly-added database will

be locally stored on a fraction of the BioCompute nodes. Upon arriving at a node for

execution, each BioCompute job checks for the presence of its required database. If it is

not stored on the machine, the job exits with an exit code specifying that the database

could not be found on the machine. The Condor job handler will then reschedule the job

at another node. In this way, new databases can be added to the production system and

queried against while only existing on a portion of the cluster.
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6.2 Treating BLAST Databases Atomically

In BioCompute, the BLAST databases are treated as atomic; a complete copy of each

database is stored locally on each node, and the split of the original input sequence

is compared against the whole copy of the database. Strictly speaking, each BLAST

database is not atomic. It it possible to split a database along sequence boundaries and

compare input splits against database splits. Treating databases as atomic elements,

however, greatly reduces the complexity of the “reduce” step for the BLAST abstraction:

the original BLAST algorithms use domain-specific heuristics to determine the relevance

of results from the comparison between an input sequence and the database, and order

results accordingly. By maintaining the BLAST databases intact and whole, BioCom-

pute avoids the necessity of reimplementing these heuristics. Each input sequence will

have been compared against the whole database and the result set will already be or-

dered according to domain relevance. In addition, treating databases as atomic elements

simplifies other processes including adding and distributing databases, distributing jobs

among nodes, and adding nodes to the BioCompute pool.

30



7 Performance

7.1 Expectations

The BLAST algorithm compares each input sequences against all sequences in a database,

and the comparisons of each input sequence are independent from the comparisons of

every other sequence. Because of this decoupled nature of the sequence comparisons, it

is trivial to distribute sequences to different computers to execute. It is expected that

runtime increases linearly in proportion to the number of input sequences, not considering

job startup time. Reducing the number of sequences in a job should therefore effect a

roughly proportional linear reduction in runtime.

7.2 Preliminary Results

To test these expectations, an incoming query file was divided into roughly equal parts

size for submission to Condor, a distributed platform. A 2.6GB version of the nr database

was fully replicated onto 16 machines using the Chirp file-system so as to avoid multiple

processes accessing the same database over the network. In order to measure performance

increase, query files with 1,2,3..239,240 queries were submitted to Condor Blast. The total

processing time of each query set was measured and recorded.

Referring to Figure 9:

• Condor Blast indicates runtimes for queries distributed as described

• Blast is running the n-query job against a single instance of the database residing

elsewhere on the network

• Parrot Blast is running a single, undivided n-query job against a locally-stored copy

of the database

This test shows that Condor Blast does indeed offer performance benefits over using

normal BLAST; The runtime for Condor Blast remained relatively constant with the
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Figure 9: Preliminary Performance of BLAST distributed sequence-wise over Condor
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increase in query set size, while both Parrot Blast and Blast increased linearly with query

set size. These performance benefits are shown to scale while the number of Condor jobs

submitted is smaller than the number of available nodes. The largest query set in this

test was 240 queries, and incoming query files were split into batches of 30 queries per

job. This results in only 8 machines being utilized at a time. On a 16-machine cluster,

the trend for the Condor Blast line should in theory hold until 480 queries before stepping

upwards because multiple jobs would have to be run on the same machine.

7.3 Characterizing Job Executions

Both the input division and results merging steps of a BioCompute job are currently

implemented in linear time algorithms with respect to the number of queries submitted.

With a small number of queries, these time taken by these steps are negligible, and the

time has not been observed to be significant in any jobs submitted yet. If required in

the future, these steps can be implemented as additional Condor jobs to be executed in

a remote, distributed fashion.

7.4 Task Granularity

The number of sequences, N, in each division of sequences is a variable to tweak. As-

suming low startup overhead time per job, a lower N is desirable. In an real-world

environment, however, many factors could affect an optimal N, which could depend on

the current job load on Condor and the amount of churn in Condor jobs—executing on a

node with the needed sequence database already loaded in memory from a previous job

might not need to read as much from disk and thus incur a lower startup penalty.

A 580-sequence input file was tested on BioCompute with values of 25, 50, and 100

for N, spawning 24, 12, and 6 individual Condor jobs, respectively. As shown in Table 2,

the jobs with N = 25 ran much faster than the jobs with higher N values. The jobs with

N = 50 and N = 100 had similar execution times.

33



N CPU Time (s) Wall Clock Time (s) Jobs Spawned
10 6,523 266 58
25 5,230 327 24
50 5,000 723 12
100 4,368 790 6

Table 2: Execution time and job granularity for 580 input sequences.

N CPU Time (s) Wall Clock Time (s) Jobs Spawned
10 29,855 1282 213
25 26,046 1058 86
50 24,291 1151 43
200 23,036 2891 11

Table 3: Execution time and job granularity for 2126 input sequences.

Runtime dramatically improves when N is sufficiently small to effectively utilize the

entire cluster of BioCompute machines. These results indicate that a value for N is

desired wherein enough jobs will be spawned to saturate the available nodes.

Additionally, a 2126-sequence input file was tested with values of 10, 25, and 200

for N. Table 3 showed a large speed improvement from N = 200 to N = 25, from 2891

seconds to 1058 seconds. However, when N = 10, 213 jobs were spawned and execution

took 1282 seconds, indicating a general location of the lower limit for the optimal value

of N.

Peripherally, choosing smaller N would lead to more granular status reporting: Condor

maintains a logfile in the master directory indicating how many jobs have been spawned

and their statuses. Lower values of N would enable more granular status reporting to be

presented to the user using only Condor job statuses. In the event of unreliable systems,

the additional granularity of smaller jobs would result in less wasted computing in the

event of failure of an executing node.
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7.5 Future Work

Many variables potentially relating to distributed BLAST performance have not been

examined in this context. The size of the database remained constant among tests, but

changing it may change the scalability characteristic of job execution [12]. In addition,

the BLAST output formats differ widely in size and data layout, and these may have

an effect on the total job execution time and the execution profile of the division and

reduce/merge stages. In addition, these tests were conducted sequentially and in isolation

from one another, but in a shared computing environment with other jobs. This would

not be a typical usage pattern; users of BioCompute are expect to submit long jobs

which would execute concurrently. Testing two jobs executing in tandem could show

that multiple BioCompute jobs with small input query sets could effectively harness

BioCompute by selecting different nodes on which to work. This could also potentially

reveal inefficiencies where nodes alternate between processing two different BioCompute

jobs on different databases, potentially causing a higher cache miss rate on memory. Also,

BioCompute has processed jobs orders of magnitude larger than the test cases presented

here, and tests should be conducted on jobs such as these to determine their execution

profile.
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8 Usability

8.1 Relevant Usability Paradigms

A primary design consideration of BioCompute is its usability and user-friendliness. Dur-

ing its development, two usability metaphors were used as guiding principles: electronic

lab notebooks and portals. In this context, electronic lab notebooks seek to improve

upon their paper-based brethren while portals seek to hide the perceived complexity

of underlying systems. This section will discuss how BioCompute was implemented to

achieve the desirable aspects of electronic lab notebooks and portals while recognizing

and mitigating their drawbacks.

8.2 Portal Abstraction for Distributed Resources

8.2.1 Hiding Complexity

BioCompute aims to lower barriers surrounding distributed computing resources by pre-

senting them for use in the form of a web portal. While such resources already exist,

existence is not the sole prerequisite for effective use. By providing an easy, streamlined,

and simplified means of access to pre-existing resources—in this case, the Condor pool

at the University of Notre Dame—a web portal act as a catalyst for the production of

meaningful results.

A portal for bioinformatics makes existing distributed computing resources accessible

to researchers whose domain research can utilize such resources but whose domain ex-

pertise does not cover the effective engagement of such resources. BioCompute succeeds

where it is an abstraction for the distributed resources it provides; if the user regards the

system only ever as a “faster, easier BLAST that keeps track of things for me”, then it

may be considered to be working well.

In addition to hiding the complexity of distributed resources, a portal can mask the

complexity of underlying domain applications. Many “wet sciences” researchers are often
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not familiar or comfortable with command-line interfaces. Such interfaces, while efficient

for those proficient in their use, often do not lend themselves to discoverability and do

not meet the usability expectations of those whose background is not computer-based.

In its original form BLAST is a command-line tool. BioCompute can make empower

researchers to use BLAST by hiding the command-line behind a web interface, which is

more familiar to typical modern computer users.

8.2.2 “Leaky” Abstractions

All abstractions are “leaky” to some degree [7]—that is, at times they break down and

expose details which should be abstracted. Inasmuch as BioCompute is a layer of ab-

straction, it sits atop and depends upon a number of other independent, existing systems.

There are a number of dangers which present themselves in such a situation. Users of

BioCompute should not have to worry about the state of the distributed resources upon

which it runs, nor should they even need to know it runs in a distributed environment.

In the event of a failure in an underlying system, the abstraction “leaks” and users are

affected.

8.2.3 User Interface Issues

The portal must accommodate users with varying levels of familiarity with the underlying

system while minimizing user frustration on all levels. Often, novice users are discour-

aged by poor documentation or vague choices, while experienced users feel constrained by

seemingly rigid choices and feel unproductive while learning a new environment. BioCom-

pute should not be frustrating to users who are familiar with the BLAST command-line

tool. While BioCompute should be inviting to users with less familiarity with computers

than its developers, it should not rebuff users who require additional flexibility in order

to effectively use the system. BioCompute delivers unique benefits in its harnessing of

distributed resources and transcription features, and forcing advanced users to choose
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between those benefits and additional flexibility in the domain application should be

avoided.

8.2.4 Sequence Database Management

BioCompute will only be useful to researchers if it hosts the databases they are interested

in querying.

In order for BioCompute to be a useful and practical resource for bioinformatics re-

searchers, it must have relevant sequence databases against which to run. Inasmuch as

it is BioCompute’s goal to be an eminently useful and flexible tool, hosting databases

which further this goal is desirable. So far, these databases have been sourced from

public outlets, i.e. NCBI, or from the bioinformatics researchers themselves. Since there

is currently a small group of users who are in close contact with those developing Bio-

Compute, there has been little issue collaborating and sharing data to host. It would be

desirable to streamline the sequence database submission process so that in the future

user requests for hosting databases can be accommodated quickly. There is concern,

however, with accepting dataset submissions and hosting and distributing automatically.

To this end, a set of scripts have been developed to enable easy addition of databases to

the BioCompute system, but which require explicit administrator action to do so.

Currently, the initial task of getting a database hosted on BioCompute presents addi-

tional burden to users compared to executing BLAST on their local machine. However,

this should be a relatively infrequent activity for users; a typical use case would be a

researcher conducting a large number of queries against a small number of databases

over a period of time. In this case, the benefits of harnessing the distributed system are

obvious and would outweigh the initial burden getting the database hosted. In addi-

tion, there may be future scenarios where in which it is necessary to limit the number of

databases a user may upload. Regardless, development of BioCompute must occur with

the realization of this matter.
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8.2.5 Input File Limitations

A specific drawback of BioCompute in its current implementation rests in its use of

HTTP file uploads for the sourcing of FASTA input sequences. There is currently an

upper limit to the size of the input file which depends on the user’s Internet connection

and network proximity to the server and the HTTP server’s timeout settings. Although

comprehensive tests have not been conducted, files as large as 53 megabytes have been

uploaded through a direct connection on the Notre Dame network. The server’s timeout

length has since been to facilitate larger input files.

8.2.6 BLAST Results File Formatting

The results returned from BioCompute differ slightly from those returned from BLAST.

Currently, the results aggregation algorithm is a näıve ordered concatenation. This pro-

vides results which do not differ significantly from BLAST, but contain formatting dif-

ferences which could be distracting and betray the abstraction of the distributed system.

Developing a results post-processor to reconcile these differences is complicated by the

fact that BLAST has multiple output formats which are neither isomorphic nor equiva-

lent.

8.2.7 Mitigation

Many of these issues could be addressed by providing a command-line client to interface

with the BioCompute system. By providing such a client, one could separate the inter-

faces used by advanced and regular users so as to minimize frustration in both groups

and focus on the needs and expectations of each group separately. It could address the

input sequence size limitation by providing a less restrictive file-upload delivery vector.
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8.3 Electronic Notebook

BioCompute currently provides text-based “blank-page” [8] electronic lab notebook func-

tionality for BLAST jobs; it allows users to add textual details about a job. This allows

researchers to tightly couple their observations and notes about the job with the input,

results, and recorded metadata of the job itself.

It is important that an electronic lab notebook be an unobtrusive element in re-

search workflow; the use of a single component should not materially impinge on existing

workflows nor set unreasonable restrictions on defining new processes. To this end, Bio-

Compute’s electronic lab notebook functionality has been of the “blank-page” philosophy;

it provides room for free-form text input instead of limiting users to entering data in a

rigid form. While many other data types are found and recorded in paper notebooks,

including images, equations, graphs, and plots, BioCompute does not currently support

them.

8.4 Automatic Transcription

Much bioinformatics research is conducted via computer-based experimentation, and

as experiments become faster, larger, and easier to run, the feasibility of traditional

paper-based lab notebooks reaches its scalability limit. An electronic lab notebook can

especially aid in transcription of experiment details in a computer-based milieu.

Non-computer-based research traditionally required manually maintaining detailed

notes of conducted experiments, but computer-based research, such as that facilitated by

BioCompute, could easily benefit from an electronic lab notebook. The parameters and

results of such research are digitally sourced and can be automatically recorded by an

electronic notebook and presented for annotation or observation, obviating the need for

rote manual transcription of details which can be automatically recorded and reducing

the possibility of human error or forgetfulness in transcription.

In short, electronic notebooks can reduce the amount of drudgery and accidental

40



complexity inherent in the processes of conducting computer-based research and allow

researchers to focus instead on the problem domain.

8.5 Data Explosion

Even in the face of exponentially-growing datasets, the absolute financial costs surround-

ing computer-based bioinformatics experiments are decreasing. Additionally, BioCom-

pute aims to ameliorate temporal limitations on bioinformatics through distributed pro-

cessing. This decrease in barriers begets an increase in the frequency and iteration cycle

of experiments. In an environment with greater processing resources, experiments need

less justification for execution, and the consideration given each experiment before run-

ning it is decreased. The ability and opportunity to conduct relatively rapid iterations

of experiments at lower costs highlights the benefits of managing the resultant data and

automatically transcribing the details and results of each job. In addition, the exponen-

tial growth of datasets provides a greater domain over which experiments can be run,

adding further to the volume of bioinformatics data to be managed.

8.6 Collaboration and Sharing Results

In environments where research has scaled beyond one person, effective collaboration is

limited by the physical singularity and location of a paper-based lab notebook. An elec-

tronic lab notebook can aid in the effective dissemination of experiment data throughout

a research team. BioCompute provides functionality which lets researchers easily share

their queries and associated notes with other BioCompute users.

8.7 Reproducibility

BioCompute is expected to regularly undergo changes, revisions, and updates to its ex-

ecution model. It is important to enable the reproducibility of jobs executed within
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BioCompute in the face of these changes. In order to ensure against these likely future

changes, and additionally to ensure system modifications in BioCompute’s testing en-

vironments do not affect adversely affect data processing in production environments,

a snapshot of the scripts used to execute the job is stored alongside the results. This

snapshot provides a trace of how the job was executed and records the command-line

call to the BLAST executable and the surrounding computing environment.

In addition to being affected by BioCompute’s script structure, reproducibility and

an accurate log of research queries is affected by the possibility of changing databases

on BioCompute’s system. It is anticipated that as BioCompute grows in use, researchers

will request custom sequence databases to be included in the system. In addition, some

sequence databases currently hosted on BioCompute are publicly sourced and regularly

updated, e.g. nr, the standard non-redundant database maintained by the NCBI.

In order to maintain strict reproducibility of results, ideally sequence databases should

be static and not updated or removed once included into the BioCompute system. If an

update to a database were to be included, it would be added under a related name with

a differentiating timestamp, while still including the full copy of the earlier version.

This model is not universally feasible in the long-term, especially considering the

continued growth of datasets. In addition, keeping all old datasets may clutter the user

interface and make it difficult to find and select the desired database. However, if the

database against which a job was run was not available or modified since the job was

run, then the integrity of the lab notebook and the ability to confirm results is affected.

There are special cases of sequence databases which should be update-able in place

without negatively affecting reproducibility. These databases should be publicly trans-

parent in the criteria by which sequences are added and should be modified in an append-

only mode. nr fits these criteria, as do similar databases from the NCBI, while custom

datasets sourced from individual researchers or labs do not have these attributes. As

such, a scenario is foreseeable wherein datasets with these attributes are updated in
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place frequently, while other sequence datasets remain static and are updated in full

under a differentiating timestamp.

8.8 Future Work

By providing these functionalities, BioCompute provides a platform for structured storage

of data in a consistent interface, as opposed to a tool with an ephemeral, unstructured,

and inconsistent relationship with the data upon which it operates. BioCompute auto-

matically records meta-data associated with the job and stores it alongside the results of

the BLAST program, thereby giving context and meaning to the results and facilitating

reproduction and verification of the data. In the future, BioCompute can be expanded

to provide these benefits to other types of data and for programs other than BLAST.

There are many possibilities for BioCompute to expand and become more useful

in its function as an electronic lab notebook. First, adding fine-grained access controls

similar to Unix groups would allow collaborating researchers to share results and progress

without showing giving the results visibility to the entirety of BioCompute. While this

may be antithetical to a wholly collaborative environment, it would improve usability by

alleviating researchers’ worries about the exposure of proprietary and custom datasets

and results. Similar constructs could be added around user-sourced sequence databases.

BioCompute could be expanded to accommodate other types of data and other pro-

grams. InterProScan is another program which would fit BioCompute’s model well. In

addition, BioCompute could provide a flexible tool for chaining processes together in a

manner conceptually similar to the stream-pipe functionality found in Unix command

lines. A first step in this direction would be the ability to return a FASTA file of the

sequences matched from a BLAST query (a normal BLAST query returns just the names

of the matched sequences).

BioCompute could also serve as a data-processing workbench. A model could be

constructed wherein data from experiments is sent first to BioCompute for hosting and
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further processing options. This would provide a common and familiar environment

where users could use common metaphors to manipulate, process, and add value to

disparate data types.
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9 Conclusion

Bioinformatics datasets are growing quickly and are large enough to effectively utilize

distributed computing resources. Distributed computing presents many unique challenges

and is complicated enough to benefit from layers of abstraction between the problem

domain and the underlying system. Efforts should be made to make systems usable and

accessible to users with typical computer skills.

The implementation of distributing a task among computers has a significant impact

on performance, and the runtime improvements from distribution of a task are usually

separate and orthogonal from the domain algorithm performance improvements.

BioCompute has laid the groundwork for a system which can effectively present dis-

tributed resources to end users. Development will continue on adding new application

modules to the system to enable distributed execution of programs other than BLAST.

Through the development of the service, areas for improvement were uncovered, includ-

ing the need for a better file input management system, the advantages of providing a

command-line client, and the concept of building a noun-verb framework in which data

set are represented by nouns which are produced and consumed by distributed applica-

tions.
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