
PONCHO: Dynamic Package Synthesis for Distributed and
Serverless Python Applications

Barry Sly-Delgado
University of Notre Dame

bslydelg@nd.edu

Nick Locascio
University of Notre Dame

nlocasci@nd.edu

David Simonetti
University of Notre Dame

dsimone2@nd.edu

Brett Wiseman
University of Notre Dame

bwisema3@nd.edu

Ben Tovar
University of Notre Dame

btovar@nd.edu

Douglas Thain
University of Notre Dame

dthain@nd.edu

ABSTRACT
An increasing number of distributed applications operate by dis-
patching function invocations across the nodes of a distributed
system. To operate correctly, the code and data dependencies of
the function must be distributed along with the invocations in
some way. When translating applications to work on large scale
distributed systems, managing these dependencies becomes chal-
lenging: delivery must be scalable to thousands of nodes; the depen-
dencies must be consistent across the system; and the method must
be usable by an unprivileged developer. As a solution, in this paper
we present PONCHO, which is a lightweight Python based toolkit
which allows users to discover, package, and deploy dependencies
as an integral part of distributed applications. PONCHO encapsu-
lates a set of commands to be executed within an environment.
PONCHO offers a lightweight solution to create and manage envi-
ronments increasing the portability of scientific applications as well
as reproducibility. In this paper, we evaluate PONCHO with real-
world applications in the fields of physics, computational chemistry,
and hyperparameter optimization, We observe the challenges that
arise when creating and distributing an environment and measure
the overheads that emerge as a result.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies.

KEYWORDS
Distributed systems, Systems, Serverless
ACM Reference Format:
Barry Sly-Delgado, Nick Locascio, David Simonetti, Brett Wiseman, Ben
Tovar, and Douglas Thain. 2022. PONCHO: Dynamic Package Synthesis
for Distributed and Serverless Python Applications. In Proceedings of the
2nd Workshop on High Performance Serverless Computing (HiPS ’22), June
30, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3526060.3535459

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HiPS ’22, June 30, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9311-9/22/06. . . $15.00
https://doi.org/10.1145/3526060.3535459

1 INTRODUCTION
An increasing number of scientific applications are structured
around the concept of remote function invocation. In this model,
a distributed application consists of a manager process that dis-
patches function invocations to a fleet of cooperating worker nodes,
whether drawn from an HPC facility or a cloud provider. These re-
mote invocations can take several forms, depending on how much
needs to be "shipped" to the worker node. At one extreme, the
worker has nothing pre-installed, and the function along with all of
its inputs must be sent on each invocation. At the other extreme, all
the components of the function are already present at the worker,
and the manager must simply send a lightweight invocation record.
Various intermediate forms are also possible.

Regardless of the method, the software environment is an essen-
tial part of development and execution of scientific applications.
Users, in turn, need a method to determine, retrieve and consolidate
the dependencies for their applications. Execution models within
serverless and distributed computing must enable the means to
have dependencies be accessible to a user’s application. Producing
the package needed for the environment is often a manual process.
Users need a certain amount of understanding of an application
to install any needed dependencies. This generates issues when
attempting to share or reproduce work. How does a user go about
determining the dependencies needed for an application?

There are multiple challenges that arise when generating an
environment. For example, a user’s application may function with
Python 3.5 but not with Python 3.8. This might occur for various
reasons such as the application itself or one of its dependencies
require that version. However, if Python 3.5 is not installed on the
system, how does the user go about getting it installed? For local
applications, this issue can be easily solved using a package manger
like Conda, Spack and Nix [3, 10, 11], which are package managers
primarily used for finding and downloading packages. However,
challenges appear when attempting to execute these applications
on distributed systems.

Distributed applications can be executed in environments such
as HPCs, clusters and clouds where many users can execute tasks
simultaneously. With these applications, each user must have a
method to ensure that their application executes in the proper
environment. Using the same method as one would locally may
not be feasible for multiple reasons. For example, using the local
method with a distributed application would require each machine
to use a package manager and install the needed dependencies.
In this scenario, each machine is making a request over a shared

https://doi.org/10.1145/3526060.3535459
https://doi.org/10.1145/3526060.3535459
https://doi.org/10.1145/3526060.3535459

network for the same dependencies. Using this method does not
scale well on large distributed systems containing many nodes. Not
only will this affect the performance of a user’s application but other
users applications will be affected as well. Furthermore, there is
also the possibility that each request could produce different results
by downloading different versions of the requested dependencies.
Thus, a new method must be able to scale up to thousands of nodes
and have consistent environment delivery such that each node used
for an application will be receiving the same environment.

Our solution, PONCHO, is a lightweight Python based toolkit
which allows users to synthesize environments from a concise,
human-readable JSON file containing the necessary information re-
quired to build a self-contained Conda virtual environment needed
to execute scientific applications on distributed systems. The PON-
CHO toolkit is composed of multiple components. Each component
can be used individually or in tandem to suit a user’s needs. pon-
cho_package_analyze is a tool that performs a static analysis of
a python application to determine all of its top-level module depen-
dencies, the interpreter version it uses, and creates a JSON speci-
fication file. poncho_package_create, consolidates each compo-
nent needed to run the application via a specification file into an
portable environment tarball, which can then be transported to
remote systems. poncho_package_run unpacks and activates an
environment on a given system and executes a task within said
environment. Finally, poncho_package_serverize combines an
environment with a given Python function and converts it into a
continuously running module that can be invoked in a serverless
manner.

To examine PONCHO we tested it with various real-world appli-
cations in the fields, of particle physics, computational chemistry
and hyperparameter optimization. In these tests, we measure the
various overheads that can arise when using PONCHO. These over-
heads are measured in environment creation and delivery using
various configurations. Our results show that PONCHO can con-
sistently create and deliver environments without extraordinary
overhead.

2 DISTRIBUTED PYTHON APPS
2.1 Background
Enabling distributed computing within a high-level language such
as Python provides many benefits to users. Python-native dis-
tributed applications allows users to access high-throughput and
parallel computation using the Python interface. This eases the
process of creating and executing distributed applications for users
who are familiar with Python since they are working within a famil-
iar interface. Distributed python applications, like other distributed
applications, need to manage several functions, such as managing
allocations, managing resources, and scheduling tasks to form one
coherent and reliable system. It is critical that no segment of the
process is prone to faults as it would affect the system as a whole.

There are currently various Python-native frameworks that en-
ables distributed computing. Parsl is a scripting library which en-
ables users to scale their Python applications on distributed systems
[5]. The library is able to dynamically create dependency graphs
of the tasks needed to be executed by the application. Dask is a
tool that allows user to encode parallel algorithms in Python using

primitive Python data types [19]. PythonTask is an extension to
Work Queue [1] which allows users to run Python functions as
tasks. These tasks are returned as Python values which enable the
user to manipulate data easier as opposed to returning results in a
file, which may add unnecessary I/O. PythonTask allows users to
specify the environment needed to run each task, as it is possible
that different tasks within an application require different environ-
ments, where an environment is a set of dependencies that a task
needs to execute properly.

2.2 Challenges
Challenges arise when distributing tasks using a distributed appli-
cation. Some remote systems may not have the specific packages
that are required installed. As a result, the application is unable to
run. Thus, being able to generate an environment with the needed
components is crucial. Furthermore, if the incorrect versions of
said packages are installed instead, the application may produce
unexpected results. On rarer occasions, Python itself or the correct
Python version may not be installed either. One way one might
attempt to solve this would be the same way one does locally, by
installing any needed dependencies on each system that the user
will use. However, as an applications evolves, new packages will
have to be installed manually or old packages will need to be up-
dated. This can produce inconsistency across the machines in a
distributed systemwhere different machines have different versions
of the same packages. As a result applications may produce unex-
pected results or may fail to execute completely. Thus, having one
transportable environment that is sent to each machine is preferred
as each environment has the same source and is guaranteed to be
identical on each machine.

In the case of transportable environments for distributed applica-
tions, a challenge arises when deploying an environment on remote
systems. The level in which an environment is deployed can vary
on different types of systems. For example, if there are multiple
tasks to be executed on the same node, deploying the environment
to each task could create an unnecessary overhead if these tasks
share the same dependencies. This can reduce the scalability of an
application if there is a large amount of nodes being used. However,
if these tasks require different environments it is preferable to do so
as each task may not be able to execute on another task’s specified
environment. Conversely, the environment could be deployed per
node. This may work well for certain computation models such as
FaaS, where a single node is dedicated to a single function. However,
for other distributed computation models the opposite issue could
arise when multiple tasks require different environments. In this
situation, one solution may be to create one large environment that
encompasses each task’s dependencies. If an application is running
and a new task arrives at a node requiring a different environment
than the one already deployed on the node, merging the environ-
ments may be a possible solution. However, there may be conflicts
with the packages when trying to merge these environments. Also,
if these environments share dependencies, an inflated environment
containing many redundancies may be created, that is if redundant
packages are not omitted during the merging process. As more
tasks with different dependencies are created, the larger that en-
vironment becomes, using a larger amount of allocated resources

and reducing the scalabilty of an application. Thus, understand-
ing configuration of the application is necessary to minimize the
overheads that arise when using transportable environments.

3 THE PONCHO TOOLKIT
The PONCHO Toolkit allows users to dynamically synthesize en-
vironments in which their application can be executed in. This
environment is specified using a declarative JSON file. This en-
vironment can then be distributed to remote machines ensuring
that applications execute properly. The toolkit is comprised of
four parts: poncho_package_analyze, poncho_package_create,
poncho_package_run, and poncho_package_serverize. Each tool
can be used individually or with each other to aid in the creation
and distribution of the environment and the execution of the ap-
plication. The environment is packed within a tarball which can
include Conda packages, pip packages, remote git repositories, and
data retrievable via http or https. Figure 1 depicts the intended
workflow of using the PONCHO toolkit’s base operations.

poncho_package_analyze

poncho_package_create

poncho_package_run

env_spec.json

env.tar.gz

application.py
Git Pip

Conda HTTP

sandbox

Task

manual annotation
by end user

static analysis

Figure 1: PONCHO Toolkit

poncho_package_analyze is a tool which preforms a static
analysis on Python code to determine the Conda or pip pack-
ages the program depends on. This analysis can be performed
at either the program or function level. With this information,
poncho_package_analyze generates a file specifying the packages
and dependencies needed to run the Python code. To achieve this,
poncho_package_analyze searches through all the Python pack-
age imports in the given Python code and determines which ones
come from an external source; poncho_package_analyze then it-
erates through the user’s local Conda and pip environment and
matches all the external Python package imports with a Conda or
pip package. Afterwards, poncho_package_analyze generates a
JSON encoded specification file that details the package dependen-
cies needed to run the application. Users are also able to create
this specification via manual annotation. The PONCHO environ-
ment specification enables users to specify which Conda and pip
packages need to be included into the environment. Users may also
include git repositories and files retrievable via http or https to

include within the environment. Figure 2 shows an example envi-
ronment specification that includes Conda packages, a pip package,
a git repository, and retrievable data set.

poncho_package_create reads an environment specification
file and synthesizes a Conda environment that includes the specified
dependencies. Any specified git repositories will be cloned into the
environment and any data sourced via http or https will be fetched
and included in as well. The specification used to create the package
is also saved within the package. The environment is then packed
using Conda Pack [4] into a tarball. This package is a portable
environment that can then be distributed to remote systems. Since
this tool uses Conda to create the environment, it is optimal that the
versions of required dependencies are specified in the specification
file. Not listing package versions may result in a substantial increase
in runtime when creating the environment.

poncho_package_run is a tool that is used to unpack and acti-
vate the environment and run specified commands within said en-
vironment. This operation has two inputs: an environment package
and a command to execute as a task. This environment is unpacked
into a temporary directory unless specified otherwise. The path
of any included git repositories or files fetched via http are set as
environment variables. When users specify the unpack directory,
multiple instances of poncho_package_run may reuse the same
directory and the environment will only need to be unpacked once.

"conda": {
"channels":["defaults", "conda-forge"],
"dependencies":["python=3.9", "pip",

"numpy", "ndcctools", pip": {["dill"]}],
},
"git": {

"CODE_DIR": {
"remote": "https://github.com/...

}
},
"http": {

"REF_DATA": {
"type": "tar",
"compression": "gzip",
"url":"http://ncbi.nih.gov/...db.tgz",

}
}

Figure 2: Sample Package Specification

poncho_package_serverize takes the final step and combines
a packaged environment, then name of a python function (found
in that environment) and integrates it with a standard process for
accepting function invocations over a socket. This combination
of assets forms a network function: a single object that can be
moved from place to place in the network, and then easily invoked
as a self-contained function. This enables the easy transformation
of application code from local function to a "serverless" application.

The PONCHO tools have a natural integration with Work Queue
[8], a framework for building large distributed applications that
span thousands of machines drawn from clusters, clouds, and grids.
Integrating PONCHO with Work Queue allows for users to execute

their application with a stable environment on each machine, in a
variety of configurations, depending on the need. Three different
modes of invocation are available, shown in Figure 3.

The first invocation method (package per task) causes assets
to be sent with each task. In this configuration, the user attaches
a package to each task with t.python_package(p) prior to sub-
mitting the task. poncho_package_run is then added as a wrapper
for the task. It takes in the environment package and the original
task command as arguments. Thus, when a task arrives at a worker
the environment is unpacked, activated and the function executed
inside the environment. When the task is complete, the unpacked
environment is removed to reclaim storage space. This method
is most appropriate when different functions require different en-
vironments, and the cost of deployment is small relative to the
runtime of the function.

The second invocation method (package per worker) causes
all assets to be deployed once with each worker, and then shared
among all tasks that use that worker. Workers are deployed by
the Work Queue Factory, a tool that submits, monitors, and (when
needed) removes workers to maintain a desired level of service. To
attach a package to a worker, the user simply raises the package
statement up to wkrs.python_package(p). This causes the factory
to attach the desired package to the worker submission, and then
invoke poncho_package_run appropriately as it starts each worker.
Thus, each worker gets a concrete Python environment. Since tasks
inherit the environment of the worker it is on, all tasks will run in
the desired environment. This is appropriate if all tasks require the
same environment, and amortizes the setup cost across multiple
tasks. However, it still results in every task invoking its own Python
interpreter, and paying the cost of importing the environment into
memory.

The third invocation method (serverless) eliminates these costs
by sharing the startup costs among multiple tasks. From the user’s
perspective, this is accomplished by transforming an existing Python
function into a network function via poncho.NetworkFunction.
poncho_package_analyze then performs a static analysis on the
function, generating a PONCHO specification. This specification is
then created into a tarball via poncho_package_create. Included
within the tarball is the serialized function and generalized code for
the coprocess. poncho_package_run executes each worker node
with this specified process. When the worker is initialized, it loads
the network function as a coprocess and makes it a target for in-
vocation of arriving tasks. From the user’s perspective, tasks are
defined and invoked in the same way as before, except that the
function definition and assets are already located at the worker.

These configurations displays PONCHO’s flexibility to be incor-
porated within various models of computation. For each configura-
tion, little needs to be changed to modify the structure. Different
configurations modify the locality of invocation of a given task that
produces the same result. Changing the locality of invocation may
be beneficial depending on the type of application being executed.
The division between setup and invocation reflects the cost be-
tween the two. When the division is skewed towards the setup side,
node setup occurs faster while task invocations will take longer.
When the division is skewed towards the task side, node setup
takes longer while task invocation becomes quicker. It is important
to note that setup is a one time cost per node while invocations

Invocation Level 1: Package Per Task

import work_queue as wq

def func(x, y, z):
...

wkrs = wq.Factory('condor', 'name')
with wkrs:

t = PythonTask(func, 7, 42, 88)
t.python_package('pkg.tar.gz')
q.submit(t)
...

Invocation Level 2: Package Per Worker

import work_queue as wq

def func(x, y, z):
...

wkrs = wq.Factory('condor', 'name')
wkrs.python_package('pkg.tar.gz')
with wkrs:

t = PythonTask(func, 7, 42, 88)
q.submit(t)
...

Invocation Level 3: Serverless

import work_queue as wq

def func(x, y, z):
...

remote_func = poncho.NetworkFunction(func)
wkrs = wq.Factory('condor', 'name')
wkrs.coprocess(remote_func)
with wkrs:

t = RemotePythonTask('func',7,42,88)
q.submit(t)
...

Figure 3: Examples of Invocation Levels

typically occur more than once. Thus, the most efficient balance
between setup and invocation is application dependent. Figure 4
presents a detailed view of each invocation level. With invocation
level 1, the division is skewed towards setup. Levels 2 and 3 skew
this division towards invocation.

4 EXAMPLE APPLICATIONS
TopEFT [6] is a distributed python application that runs a particle
physics analysis analyzing the top quark. The data is sourced from

experiments from the CMS project at CERN. These experiments use
the Large Hadron Collider (LHC) which creates billions of collision
events. These events are analyzed with TopEFT. The application
uses amanager-worker paradigm to distribute events to be analyzed.
The number of events given to each task can be augmented by
specifying the chunksize. The results are generated in a sequence of
events and then accumulated at the end. Since TopEFT is dependent
on the Coffea framework [23], it is crucial that it is accessible to
each task.

Colmena-XTB is a computational chemistry application that
runs an analysis across multiple nodes. This application is depen-
dent on Colmena [2] which is a library for building simulation
workflows on HPC. Colmena is composed of "Thinkers" and "Do-
ers". "Thinkers" generate tasks to be sent to a task server. The
"Doer", receives the task requests and deploys them. Requests are
asynchronous thus the order of results is non-deterministic.

Shadho [14] is a application for hyperparameter optimization.
The application attempts to determine the best hyperparamters to
use for a certain model based on the hardware being used. To do
this, Shadho observes the results of training on various sets of hy-
perparameters to determine the optimal solution. This application
uses Work Queue for distributed task management.

5 EVALUATION
5.1 Environment Creation
With environment creation, a user’s configuration can drastically
increase the overhead of the application. Since Conda is used by
poncho_package_create to create the environment, PONCHO’s
environment execution time is reliant on Conda’s environment
solver execution time. Because of this, how the environment specifi-
cation file is stated can drastically change the environment creation
time. More specifically, whether package versions are listed or not.
Because of Conda’s relatively slow environment solving time. we
added the option to use Mamba [16] as well. Mamba is a CLI that
acts as a replacement of Conda and often offers a faster solution to
those created by Conda.

We categorized package specifications into three categories,
empty version specifications, immediate version specifications, and
nested version specifications.With empty version specifications,
Packages are listed without a version. This is the minimum informa-
tion required to create an environment. With immediate version
specifications, the versions of packages that are immediately im-
ported within an application are specified. Finally, with nested
version specifications, every package that will be included in the
environment has its version specified. We then created each type of
specification for TopEFT and SHADHO. Thus, for each application
and each specification type we created the environment using both
Mamba and Conda. Before each environment creation, it was en-
sured that Conda’s cache was empty so that times were consistent
on each run.

When creating an environment, a large portion of the time is
spent by attempting to solve the environment. Execution time is
also dependent on the number of packages in an environment. As
the number of required packages increase, the overhead is expected
to increases as well. With empty version specifications, users can

work_queue_manager

work_queue_worker

$ T.1 T.2 T.N

X Y

P D

X Y

P D

work_queue_factory

X Y

P D
X Y

P D

main application

end user

PKG
start workers
via batch system

send tasks
to workers

start factory

start
application

PKG

work_queue_manager work_queue_worker

$ T.1 T.2 T.N

X Y

P D

X Y

P D

poncho_package_run

work_queue_factory

X Y

P D
X Y

P D

main application

end user

PKG
PKG

start workers
via batch system

send tasks
to workers

start factory

start
application

work_queue_manager work_queue_worker

poncho_package_run

work_queue_factory

main application

end user
PKG

PKG
start workers
via batch system

send tasks
to workers

start factory

start
application

coprocess

Tasks
Network

code
Tasks

Remote
Function

PKG

Network
Function

Remote
Function

Environment
Dependencies

poncho_package_analyze

poncho_package_create

Serverize

Figure 4: Detail of Invocation Levels
Detail of each of the invocation levels. Top: Each task is in-

voked independently with its own package deployment. Middle:
Each worker is invoked with its own package deployment, that
is then shared among all tasks running on that worker. Bottom:
Each worker deploys a coprocess for executing tasks in a common
serverless style.

expect environment creation to take a relatively long time. In com-
parison, far shorter times can be expected when specifying the
versions of packages as shown by Table 1. Mamba is able to create
a solution in a faster time with empty version specifications when
compared to Conda. To test the overhead produced from environ-
ment creation, we cleared Conda’s cache, however it is expected
that the overhead for creating the environment would be reduced
over time as Conda caches packages.

Certainly, if an application has strict requirements for the pack-
ages that are imported it is best to have a nested specification. With
immediate and empty specifications, there is some work to be done

with by the environment solver to insure compatibility between
components. Thus, downloaded packages may change due to up-
dates to the requested packages and resolved environments may
come out different. It is estimated that given a set of pip and Conda
packages 60 percent of pip packages and 80 percent of Conda pack-
ages have been modified within 10 days [21]. Thus, if an application
has strict requirements maintaining a nested specification is the
way to go. Otherwise, if an application is more flexible to updates
to dependencies one may use immediate or empty specifications.

TopEFT Specification Conda Mamba
Empty Version Specification 2940.30s 281.19s

Immediate Version Specification 512.04s 107.70s
Nested Version Specification 118.87s 103.79s

Shadho Specification Conda Mamba
Empty Version Specification 257.11s 131.37s

Immediate Version Specification 258.18s 132.45s
Nested Version Specification 159.80s 130.66s

Table 1: Environment Creation Performance

Mean environment tarball creation times per application and
specification type using Conda and Mamba

5.2 Unpacking and Activating
When using PONCHO there will be the overhead of unpacking and
activating the environment on a select machine. PONCHO environ-
ments are contained within tarballs, thus they must be unpacked
once they arrive on the designated machine. These tarballs can vary
in size depending on the amount of required dependencies. Thus,
it is important that we examine how the size of an environment
tarball affects the time it takes to unpack and activate.

To measure the time that it takes to unpack an environment, we
first generated environment tarballs for three applications, TopEFT,
Colmena-XTB, and Shadho. Each tarball’s size was recorded as
shown in Table 2. Then, with a trivial python program, we used
poncho_package_run to execute the program for each applica-
tion’s tarball.

From Table 2, we can observe the expected correlation between
the size of the environment tarball and the time taken to unpack
and activate the environment.

5.3 Invocations
With the use of Work Queue, there a various configurations to
deliver an environment to remote machines and execute tasks.
The configuration used for environment delivery can very much
affect the runtime of the application. The variations of execution

Application Compressed Unpacked Mean Time
TopEFT 594MB 2GB 20.97s
Shadho 438MB 1.4GB 12.47s

Colmena 1.4GB 4.8GB 46.30s
Table 2: Unpacking Performance

Mean time taken to unpack and activate an environment.

Level 1 Level 2 Level 3
Application Per Task Per Worker Serverless

TopEFT 175.70s 28.17s 27.93s
Shadho 126.46s 24.12s 25.42s

Colmena 487.07s 59.96s 50.54s
Table 3: Performance of Invocation Levels

Average time to execute minimal 100 tasks on 10 workers with
each application package and invocation level.

models include the three invocation levels: per task, per worker,
and serverless. When sending the environment per task, each task
will unpack and activate the environment before it executes the
task it is given. In this configuration, users may benefit from the
ability to give tasks different environments. When sending the
environment per worker, each worker unpacks and activates the
environment before receiving any tasks. As tasks arrive, they inherit
the environment of the worker. Thus, each task will execute in the
same environment. In the serverless configuration, each worker
will again unpack and activate the environment. After, the worker
will start the network function coprocess which includes the remote
function to be invoked. Tasks invoke the function via the coprocess
and return the results to the user.

To test the various configurations, we measured invocation times
for each invocation level and application using a trivial Python func-
tion. For each application the environment has already been built
using poncho_package_create. Thus, the times measured will show
how each configuration would affect the runtime of the application.

From the results shown in Table 3, the runtime when distributing
the environment per worker is exceedingly better than distributing
the environment per task. This is due to many task redundantly
extracting the environment within the per task configuration. The
per worker and serverless configurations produce similar results.
The reasoning behind the similarity can be to traced to the task
executed being fairly minimal.

6 RELATEDWORK
Package mangers - PONCHO uses Conda to manage packages.
There are a variety of other applications that manage dependencies
such as Nix and Spack which have been evaluated within HPC
environments [9, 11]. Work has been been conducted studying the
lifetimes of dependencies with Binder Python Containers. [21]. As
dependencies grow, there is added resource consumption used by
package managers. Landlord [22] attempts to solve this issue by
reducing storage consumption by merging container specifications.

DistributedPythonFrameworks PONCHOwas implemented
to be used along side Work Queue [8], a distributed framework.
However there are various frameworks that enable the creation
distributed python applications such as Parsl, Dask and PyCOMPSs
[5, 19, 24]. These frameworks manage the distribution of tasks
between machines.

Containers on HPC - Much work has been done to bring con-
tainerization onto HPC environments. Though PONCHO is not a
container itself, its intended use is similar to those of containers.
Primarily to be accompanied with the execution of a distributed
application. PONCHO differs from traditional containers by being

a able to statically analyze code and automatically synthesizing
the needed dependencies. PONCHO along with Work Queue can
be easily integrated within a user’s application to provide consis-
tency within the execution process. The container applications
Singularity[15], Shifter[12], and Charliecloud [18], differs from
other container applications such as Docker [17], by being intended
for use in HPC environments. Though, there were early attempts to
integrate docker within HPCs [13]. Studies have been conducted to
evaluate container usage in HPC environments such as comparing
Singularity, Shifter and Docker [20], where Singularity was found
to be the most suitable for use with HPCs. Shifter alone has been
studied in use with scientific applications at Blue Waters [7].

7 CONCLUSION
In this paper we presented the PONCHO toolkit for dynamically
synthesizing environments for distributed and severless applica-
tions. We’ve measured overheads using various configurations to
depict the expected overhead from using PONCHO. These results
show that added overhead is both application and configuration
dependent. Future work may include dynamically optimizing ex-
ecution configurations at the application level, minimizing task
dependencies, and exploring other deployment methods.

ACKNOWLEDGEMENT
This work was supported in part by NSF grant OCI-1931348.

REFERENCES
[1] Cctools. https://github.com/cooperative-computing-lab/cctools.
[2] Colmena, ai-steering for hpc, https://colmena.readthedocs.io.
[3] Anaconda software distribution, https://docs.anaconda.com/, 2020.
[4] Anaconda Inc. conda-pack: 0.6.0. https://conda.github.io/conda-pack/.
[5] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard,

J. M. Wozniak, I. Foster, M. Wilde, and K. Chard. Parsl: Pervasive parallel pro-
gramming in python. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’19, page 25–36,
New York, NY, USA, 2019. Association for Computing Machinery.

[6] A. Basnet, K. Bloom, F. Canelli, S. S. Cruz, J. E. P. Cortezon, J. R. G. Fernández, A. T.
Fernandez, R. Goldouzian, B. A. Gonzalez, M. Hildreth, K. Lannon, J. Lawrence,
S. P. Liechti, C. E. Mcgrady, K. Mohrman, H. Nelson, B. Tovar, Y. Wan, A. Wight-
man, B. Winer, F. Yan, B. R. Yates, H. Yockey, and M. Zarucki. Topeft/topcoffea:
Topcoffea 0.1, Aug. 2021.

[7] M. Belkin, R. Haas, G. W. Arnold, H. W. Leong, E. A. Huerta, D. Lesny, and
M. Neubauer. Container solutions for hpc systems: a case study of using shifter
on blue waters. In Proceedings of the Practice and Experience on Advanced Research
Computing, pages 1–8. 2018.

[8] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue + Python:
A Framework For Scalable Scientific Ensemble Applications. In Workshop on
Python for High Performance and Scientific Computing (PyHPC) at the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage,
and Analysis (Supercomputing) , 2011.

[9] B. Bzeznik, O. Henriot, V. Reis, O. Richard, and L. Tavard. Nix as hpc package
management system. In Proceedings of the Fourth International Workshop on
HPC User Support Tools, HUST’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[10] E. DOLSTRA, A. LÖH, and N. PIERRON. Nixos: A purely functional linux
distribution. Journal of Functional Programming, 20(5-6):577–615, 2010.

[11] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,
and S. Futral. The spack package manager: Bringing order to hpc software chaos.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15, New York, NY, USA, 2015. Association
for Computing Machinery.

[12] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa, J. Porter, and
V. Tsulaia. Shifter: Containers for hpc. In Journal of physics: Conference series,
volume 898, page 082021. IOP Publishing, 2017.

[13] D. M. Jacobsen and R. S. Canon. Contain this, unleashing docker for hpc. Pro-
ceedings of the Cray User Group, pages 33–49, 2015.

[14] J. Kinnison, N. Kremer-Herman, D. Thain, and W. Scheirer. SHADHO: Massively
Scalable Hardware-Aware Distributed Hyperparameter Optimization. In IEEE
Winter Conference on Applications of Computer Vision, pages 1–10, 2018. doi:
10.1109/WACV.2018.00086.

[15] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific containers for
mobility of compute. PloS one, 12(5):e0177459, 2017.

[16] Mamba. https://github.com/mamba-org/mamba: The fast cross-platform package
manager.

[17] D. Merkel et al. Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239):2, 2014.

[18] R. Priedhorsky and T. Randles. Charliecloud: Unprivileged containers for user-
defined software stacks in hpc. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’17, New
York, NY, USA, 2017. Association for Computing Machinery.

[19] M. Rocklin. Dask: Parallel computation with blocked algorithms and task sched-
uling. In Proceedings of the 14th python in science conference, volume 130, page
136. Citeseer, 2015.

[20] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, and
M. Vázquez. Containers in hpc: A scalability and portability study in produc-
tion biological simulations. In 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 567–577, 2019.

[21] T. Shaffer, K. Chard, and D. Thain. An Empirical Study of Package Dependencies
and Lifetimes in Binder Python Containers. In IEEE International Conference on
e-Science, 2021.

[22] T. Shaffer, N. Hazekamp, J. Blomer, and D. Thain. Solving the Container Explosion
Problem for Distributed High Throughput Computing. In International Parallel
and Distributed Processing Symposium, 2020. doi: 10.1109/IPDPS47924.2020.00048.

[23] N. Smith, L. Gray, M. Cremonesi, B. Jayatilaka, O. Gutsche, A. Hall, K. Pedro,
M. Acosta, A. Melo, S. Belforte, et al. Coffea columnar object framework for
effective analysis. In EPJ Web of Conferences, volume 245, page 06012. EDP
Sciences, 2020.

[24] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes,
and J. Labarta. Pycompss: Parallel computational workflows in python. The
International Journal of High Performance Computing Applications, 31(1):66–82,
2017.

	Abstract
	1 Introduction
	2 Distributed Python Apps
	2.1 Background
	2.2 Challenges

	3 The PONCHO Toolkit
	4 Example Applications
	5 Evaluation
	5.1 Environment Creation
	5.2 Unpacking and Activating
	5.3 Invocations

	6 Related Work
	7 Conclusion
	References

