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Abstract

FEucalyptus, OpenNebula and Nimbus are three ma-
jor open-source cloud-computing software platforms.
The overall function of these systems is to manage the
provisioning of virtual machines for a cloud providing
infrastructure-as-a-service. These various open-source
projects provide an important alternative for those who
do not wish to use a commercially provided cloud.

We provide a comparison and analysis of each of
these systems. We begin with a short summary com-
paring the current raw feature set of these projects.
After that, we deepen our analysis by describing how
these cloud management frameworks relate to the many
other software components required to create a func-
tioning cloud computing system. We also analyse the
overall structure of each of these projects and address
how the differing features and implementations refiect
the different goals of each of these projects. Lastly, we
discuss some of the common challenges that emerge in
setting up any of these frameworks and suggest avenues
of further research and development. These include the
problem of fair scheduling in absence of money, evic-
tion or preemption, the difficulties of network configu-
ration, and the frequent lack of clean abstractions.

1 Introduction

In recent years, due to the high demand for com-
puting resources for processing jobs that require hun-
dreds or even thousands of cores, different paradigms
have been developed for harnessing the computational
power of large groups of processors. Depending on the
computational setting and the problem being solved,
different approaches are being taken, including batch
job systems such as SGE [11], cycle scavenging with
Condor [27], or virtual machine spawning with Ama-
zon’s EC2 cloud [2].

The various definitions of cloud, grid or distributed
computing are open to some debate. [29] We will con-
fine ourselves to considering the idea of infrastructure-

as-a-service, accomplished by providing virtual ma-
chines to users. Amazon’s EC2 cloud is arguably one
of the best examples of this paradigm. [2] Of course,
this is not to minimize vast varieties of system config-
urations that can be referred to as “clouds”. We also
point out that Amazon is not the only player in cloud
computing market, as Sun (Sun Cloud), IBM (Blue
Cloud), Microsoft (Azure), and many others have their
own systems as well. [7] [13] [21]

In the setting we are considering, a cloud is a group
of machines configured in such a way that an end-user
can request any number of virtual machines (VMs) of
a desired configuration. The cloud will spawn these
VMs somewhere on the physical machines that it owns.
The word “cloud” in this context is meant to convey
the semi-ethereal nature of these VMs. The end-user
neither knows nor cares where exactly these VMs are
physically located or the configuration of the underly-
ing hardware, so long as they can access their bank of
properly configured VMs. This kind of setup is ideal
for applications where a specific hardware configura-
tion is needed or users only occasionally need the high
compute capacity.

However, commercial cloud services charge, by the
hour, for CPU time. In some settings, such as a large
organization with many users, it might be more cost
effective for the organization to purchase hardware to
create its own private cloud. This is where open-source
cloud frameworks such as Eucalyptus,[3] OpenNebula
[5] and Nimbus [4] enter the picture. These software
products are designed to allow an organization to set
up a private group of machines as their own cloud. In
this work, we analyze these three open-source cloud
frameworks. We selected these three because they rep-
resent three different points of interest in the design
space of this particular type of open-source cloud.

In this analysis, we will first briefly address the pre-
vious comparisons which have been made of these cloud
architectures. These previous works largely focused on
the feature set of these clouds. We will briefly summa-
rize that work. In this analysis, however, we wish to go
beyond feature comparisons. We will discuss how these



software frameworks act as managers that stand in the
middle of a number of other software components. Un-
derstanding how these pieces fit together is critical for
understanding any cloud framework. Next, we will an-
alyze how core decisions in the basic architecture and
overall structure of Eucalyptus, OpenNebula and Nim-
bus impact the kind of settings and applications for
which each framework is most suitable. Third, we will
identify several opportunities for improving these soft-
ware stacks by identifying some of the challenges that
are common to all three.

2 Previous Work

In looking for comparisons between Eucalyptus,
OpenNebula and Nimbus, we found several papers
which, in some manner, gave comparisons of some as-
pects of at least some of these systems. [17], [21], [12],
[8], [23], [9] Most of this previous work focused on the
feature set of these software projects. In Table 1, we
summarize the basic feature comparisons from these
prior works.

The open source projects developing Nimbus, Open-
Nebula and Eucalyptus are all rapidly expanding. Pre-
vious work as recent as 2009 does not include some of
the new features developed by these projects. For ex-
ample, the Nimbus project has recently added support
for KVM hypervisors, which is not noted in some of the
aforementioned citations. In such cases, we update the
table to as recently as possible. However, we we fully
expect any table of features, including ours, to become
obsolete. This is especially the case with regard to sup-
port for standard API (such as EC2). Moreover, the
standard API themselves often change, rendering prior
support obsolete. Nevertheless, for features, Table 1
is the starting point of our comparison.

3 The Cloud Computing Stack

Before delving into the structures that make Euca-
lyptus, OpenNebula and Nimbus unique, we will make
a quick overview of the entire cloud computing software
stack. These three cloud infrastructures only make
up part of the software stack needed to make a cloud
computing system work. In many ways, software such
as Eucalyptus, OpenNebula and Nimbus stand in the
middle a large number of other components. Further-
more, there are often many options for these compo-
nents. We include an overview of the software pieces
in Figure 1.

In a generic open-source cloud computing system,
we can identify six basic components. First, we have
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Figure 1. Abstract Cloud Architecture

The layout of the different parts of a generic cloud com-
puting system. Note that the role of the cloud control
software is to coordinate all of these pieces and to pro-
vide sufficient abstraction so that a user can simply
request VMs with minimal concern for how these com-
ponents must interact. The numbers in this diagram
correspond to the components as we list them in this
section.

hardware and operating systems that are on the vari-
ous physical machines in the system. While these must
be set up properly for any software system, we make
especial note of the physical hardware and the base op-
erating system for two reasons. First, if the processors
of the physical nodes do not have the needed hardware
extensions to run pure virtualization, this limits the
system to paravirtualization only. While such a cloud
system can be setup, it greatly limits both the speed of
the VMs and the flexibility available in choosing soft-
ware components for the system. Second, open-source
frameworks, unlike commercial frameworks, must be
flexible enough to work with many underlying systems.
(Whereas, commercial clouds only need their system to
work with the hardware that they have.)

The second component is the network. This includes
the DNS, DHCP and the subnet organization of the
physical machines. It also includes virtual bridging of
the network that is required to give each VM a unique
virtual MAC address. This bridging is accomplished
using programs such as bridge-utils, iptables or
ebtables. Moreover, in addition handling the physi-
cal nodes, DHCP and DNS processes must be config-
ured, in concert with the cloud framework, to handle
the MAC and IP addresses of virtual nodes as well.



Table 1. Cloud Architectures Compared

Eucalyptus OpenNebula Nimbus
Disk Image Options Options set In private cloud, Depends on
by admin most libvirt options left open. configuration

Walrus, which
imitates Amazons S3

Disk Image Storage

by default NFS, or SCP

A shared file system, Cumulus (recent

update from GridFTP)

Hypervisors Xen, KVM (VM Ware

in non-open source)

Xen, KVM, VMware Xen, KVM

Unique Features User management

web interface

Nimbus context
broker

VM migration
supported

The actual setup of these components depends heavily
on whether one is using OpenNebula, Nimbus or Euca-
lyptus, as these systems can have different expectations
for both physical and virtual network configuration.

The third component is the virtual machine hyper-
visor, (also known as a Virtual Machine Monitor or
VMM). Popular VMMs include Xen and KVM, which
are open-source, VirtualBox, which has an open-source
version, and VMware, which is commercial. These
programs provide a framework which allows VMs to
run. In addition to the actual VMM itself, each of
these cloud frameworks relies on a library called libvirt,
which is designed to provide a facility for controlling
the start and stop of VMs. However, the abstraction
is not perfect, as each VMM has unique options that
must be set. As such, the inputs to libvirt can dif-
fer slightly depending on the VMM (and VMM version
used) used. For this and other reasons, the different
cloud frameworks support different subsets of the hy-
pervisors.

The fourth component is an archive of VM disk im-
ages. In order to usefully run VMs, a virtual hard drive
must be available. In cases where one is simply creat-
ing a single VM on a single physical machine, a blank
disk image is created and the VM installs an operating
system and other software. However, in a cloud frame-
work, where it is expected that hundreds of VMs will be
constructed and torn down in a short amount of time,
it is impractical to do a full OS install on each one. For
this reason, each cloud system has a repository of disk
images that can be copied and used as the basis for
new virtual disks. In any given cloud, we must make a
distinction between template disk images and runtime
disk images. The template disk images are those stored
in a disk image repository to be used for multiple VMs.
When a VM is spawned, one of those templates copied
and is packaged into a disk image appropriate for the
given hypervisor. Usually, this involves adding a swap
partition and padding the disk image to the appropri-
ate size. It is the actual runtime image that is used by
the virtual machine.

The fifth component is the front-end for users.
There must be some interface for users to request vir-
tual machines, specify their parameters, and obtain
needed certificates and credentials in order to log into
the created VMs. Some front-ends perform various
types of scheduling by giving users an allotment of re-
sources which they are not allowed to exceed. Other
front-ends implement standard API such as EC2. We
note that the front-end is one of the most customizable
pieces of the entire system.

The last component is the cloud framework it-
self, where Eucalyptus, OpenNebula and Nimbus are
placed. This framework processes inputs from the
front-end, retrieves the needed disk images from the
repository, signals a VMM to set up a VM and then sig-
nals DHCP and IP bridging programs to set up MAC
and IP addresses for the VM.

4 Recurring Themes

Before proceeding with our comparison, we wish
highlight four main ideas that consistently reoccur
when looking at these programs. First, is the above
idea of a complete cloud computing software stack. A
cloud control system sits in the middle of a huge num-
ber of other components. Indeed, the actual cloud con-
troller is only a small part of the overall system. Hav-
ing such a high number of software interactions makes
compatibility a constant issue. We are also lead, by
this, to our second major theme, which is customiz-
ability. This idea is to be expected, given that these
are open-source projects. Part of the appeal of setting
up a private cloud, as opposed to using a commercial
one, is that the administrator can have more control
over the system. One of the most important ques-
tions to be asked about each of these frameworks is
the degree to which customization is allowed for both
administrators and users. Most notably, support for
standard API interfaces is often one of these customiz-
able components. For example, OpenNebula permits a
front-end that uses a subset of the EC2 interface as an



option, but also lends itself to customized web front-
ends, through its XML-RPC interface.

From this, we reach our third idea, which is the de-
gree of transparency in the user interface. One of the
hallmarks of the cloud idea in the commercial setting is
the “black-box” nature of the system. The individual
user, in a “pure cloud” is not aware of, or cares, where,
physically, his VMs are running. In a more custom-
made open-source setting, however, opportunities ex-
ist for a greater degree of explicit management with
regard to the underlying configuration of physical ma-
chine and the location of VMs on them. The degree to
which users can be permitted to examine and work on
these underlying components varies among these sys-
tems and can often be fine tuned by administrators
who customize the front-end.

Lastly, we note that open-source software frame-
works, in many settings, allow for a much closer in-
teraction between users and owners of computational
resources. The users of a small to medium-sized com-
pany with its own cloud are far more likely to know
and interact with the cloud administrator then if they
were using a commercial cloud. This allows for users
to be granted a certain level of trust that cannot be
extended to commercial users. The level of trust al-
lowed to users is a key distinction between clouds. We
also note, however, that this is another example of a
customizable component of some these systems.

5 Open Source Clouds

Earlier we quickly described some of the current
features of Eucalyptus, OpenNebula and Nimbus, and
more such features can be found by checking the doc-
umentation of these programs. We will now analyze
the primary differences in the overarching structure
and guiding philosophy of these frameworks. This is
to achieve two things. First, the feature sets of these
pieces of software change frequently. It is more inter-
esting to examine the aspects of these projects that will
not change as rapidly. Second, we wish to shed some
light on the kinds of settings in which each of these
frameworks is more suitable. (In cases in which a com-
mercial version of the relevant cloud product exists, we
are referring only to the open-source version.)

Eucalyptus

Eucalyptus is designed to be an open-source answer
to the commercial EC2 cloud. Eucalyptus, for its front-
end for users, includes a program called euca2o00ls,
which is very similar to Amazon’s EC2 front-end pro-
grams. However, some versions of EC2 itself, as well as
Rightscale are also compatible front-ends. The overall
design specification of the cloud have been published,
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Figure 2. Eucalyptus

The steps for constructing a virtual machine in a con-
figuration of Eucalyptus: 1) A user uses the eucaZools
front-end to request a VM. 2) The VM template disk
image is pushed to a compute node. 3) This disk image
is padded to the correct size and packaged for use by the
hypervisor on the compute node. 4) The compute node
sets up network bridging to provide a virtual NIC with
a virtual MAC. 5) On the head node the dhcp is set
up with the MAC/IP pair. (Note: Technically this is
STATIC mode. But other modes are similar.) 6) VM
is spawned on the VMM. 7) The user can now SSH
directly into the VM.

[20], along with an overview of the most recent ver-
sion, [26] and much of the feature documentation is
available online. [3] In figure 2, we give the steps taken
in spawning a VM in a typical installation.

With regard to the overall philosophy underlying
Fucalyptus, the system is very much designed for the
corporate enterprise computing setting, a fact con-
firmed by the language used on its website and in its
documentation. [20] All told, the structure of Euca-
lyptus confirms this focus. First, there is a very strong
separation from user-space and admin-space. Root ac-
cess is required for everything done by the adminis-
trator on the physical machines themselves. Users are
only allowed to access the system via a web interface
or some type of front-end tools. (The default is for this
Eucalyptus’ own euca2ools) With few exceptions, Eu-
calyptus attempts to protect users from as many of the
complexities of the underlying systems as possible. For
authentication of the euca2ools, users download a zip
file with the needed keys and follow short instructions



on how to load them. Once included scripts set up
certain environment variables, the euca2ools will work.
Similarly, rather then expose the complexity of disk
configurations available under libvirt, the administra-
tor sets 5 configurations for available processors, mem-
ory and hard drive space, and the user must choose
one of these sizes for each of their VM. In this way,
users can be more easily protected from the complex
underlying systems.

The software configuration also leans more toward
decentralizing resources, insofar as possible. The sys-
tem allows for multiple clusters, such that while there
is a single head node for handling user interfaces, there
can be multiple cluster controllers. This works partic-
ularly well if groups of machines in the cloud are phys-
ically separated from each other. Furthermore, Euca-
lyptus implements a distributed storage system called
Walrus which is designed to imitate Amazon’s S3 dis-
tributed storage. Essentially, users are assigned a cap
for the amount of Walrus storage they are allowed to
use. The storage is separated into structures which, if
needed, can be distributed throughout the cloud. Each
VM’s running disk image, however, is stored locally on
the compute node. This storage mode further increases
the decentralization by allowing VMs, once started, to
run independently of all other machines.

Fucalyptus also assumes that the administrators of
the machines have some leeway to configure the net-
work in accordance with the expectations of one of the
network configurations of Eucalyptus. For example, if
the administrator is using “SYSTEM”, it is assumed
that the external network is configured to accept new
random MAC addresses and will assign IP addresses to
them. Not all networks, especially secured ones, will
necessarily do this. The other configurations assume
that the cluster controller is allowed to operate its own
DHCP server. Again, not all network setups will like
this. Moreover, all these components must be config-
ured with address ranges that are all in agreement with
each other. As such, network configuration can present
a real challenge in many network settings. Eucalyptus
works best when each cluster is its own subnet, with
its own reserved address range on the wider network.

The highly decentralized design of Eucalyptus,
with multiple clusters, distributed storage, and locally
stored running virtual disks, lends itself to a large num-
ber of machines. Second, as far as possible, the inter-
nal technical details are hidden from users, catering to
persons whose primary focus might not be computer
science. The web administration interface caters to set-
tings where there is a large number of users to adminis-
ter, including built in “signup” features in which users
of the cloud might not know the administrator. In-

ternal maintenance assumes undisputed root access to
cloud machines. Optimal network configuration incor-
porates the ability to carefully control network address
spaces, and most optimally, setup a dedicated subnet
for Eucalyptus machines. All these features lend them-
selves to conditions which are more likely available in
a corporate enterprise setting.
OpenNebula

OpenNebula tends to a greater level of centraliza-
tion and customizability (especially for end-users). The
steps for spawning a VM are shown in Figure 3. The
configuration in this figure is the default configuration
which is documented on their website. [5] However,
there is a huge amount of customizability that is per-
mitted in OpenNebula. Specifically, the idea of Open-
Nebula is a pure private cloud, in which users actually
log into the head node to access cloud functions. This
interface is a wrapper around an XML-RPC interface,
which can also be used directly. We note that a front-
end interface, such as EC2, can be appended to this
default configuration.

The customization available in OpenNebula affects
both users and administrators. From the administra-
tor’s perspective, the most striking customization avail-
able is in the shared file system used to store all of
OpenNebula’s files. OpenNebula, by default, uses a
shared file system, typically NFS, for all disk images
files and all files for actually running the OpenNebula
functions. (We note that it can also use simple SCP to
transfer files.) The advantage of this is that it exposes
more of the underlying features of libvirt to the cloud
users and administrators. This most notably includes
things such as live VM migration. In practice, we also
found that this centralization made the system easier
to administer.

The customization of OpenNebula also is made
available to users if one stays with the default idea of
a private cloud. In order to spawn a VM, the user pro-
vides a configuration file containing parameters which
would be fed into the VMM command line. This allows
for memory, processor, network and disk resources to
be requested for essentially any configuration. How-
ever, the downside to this kind of customizability is
that it is easy for the user to make a mistake. This is
especially the case if the underlying VMM configura-
tion is in any way unusual or the network has special
MAC or IP configuration requirements.

OpenNebula is also very centralized, especially in
its default configuration with an NFS filesystem. The
compute nodes do not need a large amount of hard
disk resources. However, the NFS, can constitute a
bottleneck for resources and requires a large amount of
disk space. At the time of this writing, the OpenNebula
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Figure 3. OpenNebula

The steps for constructing a VM in a configuration of
OpenNebula: 1) A user uses ssh to login to the head
node. 2) The user uses the onevm command to request
a VM. 8) The VM template disk image is copied and
a copy is padded to the correct size and configuration
within the NFS directory on the head node. 4) The oned
process on the head node uses ssh to log into a compute
node. 5) The compute node sets up network bridging
to provide a virtual NIC with a virtual MAC. 6) Files
needed by the VMM on the compute node will be pulled
to the compute node via the NFS. 7) VM is spawned on
the VMM. 8) The user can now SSH directly into the
VM. *) Typically, the dhcp server is handled separately
from the OpenNebula configuration.

documentation recommended 1TB of disk space in the
shared file system per 64 cores in the cloud. Of course,
NFS can be made more efficient by devoting resources
to the head node. However, this has a potential to get
expensive, which might not be appropriate for settings
relying on open-source software.

We point that customization can affect security. Of
course, NFS does not encrypt any of its traffic. This
can be a serious problem if the network is open to
packet sniffing. Of particular note is the fact that
OpenNebula relies on the administrator user of the
cloud (default is called oneadmin) to be able to cleanly
ssh into any compute node. To insure this, public and
private keys are placed within the shared NFS direc-
tory. Of course, there are multiple network settings
which can deal with this, such as using another shared
or distributed file system, using the SCP option in-
stead, tunneling the NFS connections or arranging a

subnet that outside computers can’t snoop. Neverthe-
less, the default arrangements more or less assume a
fairly trusted setting, such as a private LAN.

All of these design ideas combine to form as sys-
tem that (in its default configuration) is most con-
ducive to a small to medium sized set of reasonably
trusted users. Moreover, the level of customization
available to administrators and users means that this
kind of system works best when for users who know
what they are doing from a technical perspective and
can, therefore, take advantage of the added available
features. Alternatively, the administrator can use an
optional front-end like EC2 to protect the users. How-
ever, this still requires an administrator be able to cus-
tomize the system for it. We also note that this level of
customizability is suitable for researchers of computer
science who wish to experiment with combining cloud
systems with other technologies, such as SGE or Con-
dor. Other available, non-standard, customizations in-
clude scheduling front-ends [25] [24] and sending over-
flow cloud requests to Amazon’s EC2 [19].

Nimbus

The Nimbus project explicitly advertises itself as a
“science” cloud solution. [4] [15] [14] Nimbus is also
affiliated with the Globus Project and uses Globus cre-
dentials for the authentication of users. Until recently,
Nimbus relied on GridFTP (a Globus project) to be
used as a disk image repository. In their newest ver-
sion, they are shifting to Cumulus, a system, like Eu-
calyptus’ Walrus, compatible with S3. [30] Like Open-
Nebula, Nimbus is incredibly customizable. Figure 4
shows the steps in spawning a VM in a “typical” con-
figuration.

The customization available in Nimbus, however,
has a slightly different focus. One reasonable, al-
beit imperfect generalization, is that a large number
of the customizations available in OpenNebula per-
tain directly to the underlying technical details of VM
creation, whereas for Nimbus these details are more
protected. OpenNebula basically allows for switch-
ing nearly every component, including the underlying
file system, the DHCP, the front-end. Moreover, in
the default configuration, much of the customization
is available to users and administrators. Nimbus, on
the other hand, leaves most of the customization to
the administrator and not to the user and has several
more components which are constants. These compo-
nents include the image storage, (previously GridFTP
and now Cumulus), the use of Globus credentials for all
user authentication, and the requirement that the run-
ning Nimbus process can cleanly SSH into all compute
nodes. Similarly, while Nimbus is very flexible in the
number and types of virtual networks that can be set
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The steps for constructing a virtual machine in a con-
figuration of Nimbus. 1) A user uses cloud-client to
request a VM. 2) Nimbus will ssh into a compute node.
3) The VM template disk image is pushed to the com-
pute node. (In the newest versions of Nimbus, this will
be done using a distributed storage similar to S3 and
Walrus.) 4) On the compute node, the disk image is
padded to the correct size and configured. 5) The com-
pute node sets up network bridging to provide a virtual
NIC with a virtual MAC. 6) A dhcp server on the com-
pute node is configured with a MAC/IP pair. 7) VM
is spawned on the VMM. 8) The user can now SSH
directly into the VM.

up [16], the underlying physical mechanism for doing so
is much less flexible, (at least as of this writing), and
involves a DHCP server on each compute node with
Nimbus choosing a random MAC address.

Lastly, among these three pieces of software, Nimbus
is the one which probably pays the most attention to
capacity allocation and capacity overflow. The ability
to give different users different lease limits as a means
of scheduling comes standard with Nimbus, whereas it
is an add-on for the other two. Second, the idea of
allowing EC2 or another cloud the ability to pick up
excess demand is heavily researched with Nimbus. [18]
[10] This capacity is similar to previous research into
“federated” clouds. [22]

Given all of these ideas, Nimbus sits somewhat in
the middle of Eucalyptus and OpenNebula on the cus-
tomization chain. There are a large number of options
for user and administrators in deploying the cloud, but

fewer of those options pertain to the nitty-gritty of the
underlying software stack. The security level is slightly
higher then in OpenNebula, due to the required inte-
gration of Globus certificate credentials. A facility is
incorporated into the system for sharing capacity be-
tween clouds, if desired. However, Nimbus is not so
open as OpenNebula, which exposes large amounts of
the underlying software in the default “private cloud”
configuration. Nimbus‘ level of openness is ideal for the
scientific community, which would be most conducive
to sharing cluster time, but most users probably do
not want to contend with the oddities of the underly-
ing software configuration.

Summary

Generally speaking, Eucalyptus is geared toward a
private company that wants their own cloud for their
own use and wants to protect themselves from user
malice and mistakes. OpenNebula is geared toward
persons interested in the cloud or VM technology as
it own end. Such persons would want a VM sand-
box so they can try new and interesting things on the
computational side. OpenNebula is also ideal for any-
one that wants to stand up just a few cloud machines
quickly. Nimbus looks toward the more cooperative
scientific community that might be less interested in
the technical internals of the system, but has broad
customization requirements. Such a community would
be more likely to be familiar with the Globus Toolkit
and would be more conducive to sharing excess cloud
time. Table 2 summaries some of the general trends
identified.

Of course, these are generalizations. However, we
believe that they succinctly capture the overall philos-
ophy of these projects, if one is aware of their dynamic
nature, as well as the many options available. These
factors make the situation a little more complex with
regard to assessing performance, however. Therefore,
the generalization above is for philosophy rather then
performance of each of these projects.

6 Future Opportunities

In addition to analyzing the kind of settings in which
each of these projects is most appropriate for cloud
management, we wish to identify three opportunities
that exist for all of these frameworks.

Scheduling Our first opportunity for research is in
the area of VM scheduling. We note that OpenNebula
and Eucalyptus, as of this writing, in their default con-
figurations, do not do any real form of scheduling, in
the sense of negotiating priority for processors. (To be
precise, Eucalyptus does give each users a cap for space
in the Walrus distributed storage.) Rather, if the re-



Table 2. Summary of Results

Eucalyptus OpenNebula Nimbus
Philosophy Mimic Amazon Private, highly Cloud resources tailored
EC2 customizable cloud to scientific researchers
Customizability Some for admin, Basically everything Many parts except for image
less for user storage and globus credentials
DHCP On cluster controller Variable On individual compute node
Internal Security Tight. Root required Looser, but can be Fairly tight, unless deploying
for many things. made more tight if needed. a fully private cloud.
User Security Users are given custom credentials | User logs into head (unless Users x509 credential
via a web interface optional front-end used) is registered with cloud
An Ideal Setting Large group of machines for Smaller group of machines Deploy for less to semi-
bunch of semi-trusted users for highly trusted users trusted users familiar with x509
Network Issues dhcpd on cluster controller Admin must set manually dhepd on every node
but has many options and Nimbus assigns MAC

sources for a requested VM are available, it is allocated,
if not, not. Nimbus allows for user to be given a cap on
the number and size of VMs which they are allowed to
create. Requests that exceed a particular user’s limit
are not honored. Of course, a simple front-end doing
the same thing could easily be added to Eucalyptus
and OpenNebula. In the case of OpenNebula, we note
an active project that does this. [25]

This idea presents a interesting algorithmic problem
for open-source clouds that is not present in commer-
cial clouds. For a commercial cloud the variable of
price can be used to simplify the idea of user prior-
ity. A user simply has the resources that they will pay
for. If the demand for resources changes, then the price
can be raised or lowered. For example, Amazon.com
allows users to buy “spot instances” which allow users
to specify a price they are willing to pay. When the
demand reaches a low enough point, Amazon.com will
start instances at that price. [1]

However, private clouds do not have the same type
of price variable. Rather, there is a set of users that
have, for some reason or another, access to the system,
between which resources must be negotiated. Further-
more, this problem is further complicated by the fact
that eviction is not an available option. This is in con-
trast to high-throughput engines such as Condor. [27]
For Condor, the basic mechanism for resolving resource
conflicts it to evict a job. For most grid engines, the
mechanism is to delay the onset of a job. However,
with these cloud systems, the expectation is that the
VMs requested will be available for the duration of the
scheduler’s lease. A threat that the VM would dis-
appear makes the whole system useless. Also, many
applications (such as MPI jobs) require groups of VMs
and it does little good to delay a part of them. As such,
the mechanism for private cloud scheduling is the de-
cision, yes or no, for a particular requested lease. This

is an online algorithm problem, since the decision must
be made upon the request, without knowledge of future
requests. Furthermore, preemption is usually not an
option, because a VM lease, once granted, is assumed
granted for the duration of the lease.

This sets up an intriguing algorithmic problem.
What online algorithm can schedule the requests for
VM resources, in absence of money, such that com-
putational resources remain available for high priority
users, but resources are also not left idle unnecessarily?
This becomes more of an issue the more that users are
expected to be given access to the private cloud. Fur-
thermore, the classic methods of eviction and preemp-
tion, used for grids and Condor, do not apply in the
same way.

Networking When networking is discussed in the
context of private clouds, it is usually referring to the
virtual networking of the VM. Nimbus, in particular,
has great interest in “One-click clusters,” or groups of
VMs, spawned all at once, complete with a virtual net-
work between them. We briefly note the similarity to
previous work on “virtual clusters” [28]. However, an
important contrast is that the virtual clusters are de-
signed to run on grids. As such, the physical resources
given to the virtual cluster are not constant and can
be “pulled” into use more dynamically. A “one-click
cluster” in a cloud system is a static group of VMs.
This underlies the concept of clouds providing leases
to VMs, rather then job scheduling. There is another
aspect of networking, however, the interaction between
the virtual and physical networks upon which the cloud
is run. While all three of these cloud systems do a rea-
sonably good job of providing users with the option of
creating interesting and useful virtual network config-
urations, the assumptions made regarding the physical
network configuration, often outside the cloud admin-
istrator’s control, varied greatly. While, as mentioned



briefly before, the best solution is to give the cloud
administrator full control of the network space where
the cloud exists, (for example, by providing a separate
subnet) this is not always practical. In practice, we
found that the most frustrating aspect, in every case,
of setting up these programs was configuring the cloud
controller to cooperate with network parameters that
were not entirely under our control.

Briefly, each of the clouds handles assigning IP ad-
dresses to VMs slightly differently. Eucalyptus either
relies totally on the external network to assign IPs to
any random MAC address (“SYSTEM” mode) or han-
dles the assigning of IP addresses through a DHCP
server that is on the cluster controller node. Open-
Nebula relies on the cloud administrator to set up their
own DHCP server that will know what to do with the
MAC address ranges for which OpenNebula is config-
ured. Nimbus has each compute node run a DHCP
server on that compute node for all VMs on that node.
This DHCP server is configured by Nimbus such that
the desired IP is assigned to the matching MAC ad-
dress just randomly produced.

It is easy to see the conflicts that can ensue if the
network administrator and the cloud administrator are
not the same person. In Eucalyptus, if the routers are
configured to filter traffic that is not to certain IP ad-
dresses, the router tables must be coordinated with Eu-
calyptus’ IP/MAC lists. In OpenNebula, the cloud ad-
ministrator must be allowed to set up their own DHCP
server and know what IP and MAC address combina-
tions will not conflict with the rest of the network. For
Nimbus, there is the same filtering problem as in Euca-
lyptus, as well as issues that can arise if MAC address
filtering is used. (Nimbus only creates random MAC
addresses.) Also, these problems are for the default
cloud configurations. The more the cloud customizes,
the more one can expect conflicts.

As such, all of these cloud frameworks have the po-
tential problem of network conflicts if they are not the
only thing in their own subnets. There are many prob-
able solutions to this. First and most simple is, in
the case of enterprise level deployments, only use des-
ignated cloud subnets. A second idea is to make the
cloud controller programs more flexible, not only with
regard to available virtual networks, but also with re-
gard to potential interactions with an externally ad-
ministered physical network. In any case, making this
problem easier would remove one of the major obsta-
cles to widening the community of users for each of
these products.

Leaky Abstractions As we stated before, one of
the main considerations of these three cloud frame-
works is the degree to which they separate the user

from the nitty-gritty of the underlying software imple-
mentation. However, the case of the VMM is one key
way in which this abstraction is not perfectly main-
tained. Specifically, for each of these cloud frameworks,
it is necessary to know which VMM (And, in some set-
tings, which version of the VMM) is being used in order
to properly configure a VM instance. Even in Euca-
lyptus, the sample disk images supplied by Eucalyptus
contain alternate kernels for Xen or KVM.

Additionally, problems can exist because VMM con-
figuration details can vary between underlying operat-
ing systems. Libvirt, while serving as a suitable com-
mon interface for constructing and monitoring VM,
does not abstract out these configuration variations
between VMM types. As such, users must be made
aware of some aspects of the underlying configuration
in order to properly configure VMs. This is more of
the problem in OpenNebula then in Eucalyptus, since
(again, under the default configuration) OpenNebula
requires users to supply more of the details of the VM.
In Eucalyptus, many, but not all, of these details must
be set for all users by the administrator.

Practically speaking, these issues can be separated
into two aspects. First, is the difficulty of constructing
disk images. However, this is not a tremendous issue,
given that, basically, the user must know to include a
xen-enabled kernel in their configuration if they are us-
ing xen. Also, the disk image construction difficulty ex-
tends beyond the underlying VMM and includes much
more interesting issues related to producing a soft-
ware stack that is both useful and of reasonable size.
There is plenty of prior research on this though, one
highly successful attempt to resolve these issues is the
CernVM. [6] The second difficulty is, in practice, more
centered on the abstraction issue. Simply put, when
underlying details of the system affect the configura-
tion of higher-up components, it makes it more likely
the user or the cloud administrator will make mistakes.
It is this difficulty that presents a challenge of finding
a better abstraction for the libvirt layer, so that com-
mands to the hypervisor can truly be the same format
from cloud setup to cloud setup. A start to such a
solution might include making the libvirt layer more
intelligent with regard to translating generic VM in-
structions into hypervisor specific instructions. This
would, however, require separate libvirt implementa-
tions for each hypervisor/OS combination. However,
such a layer would make it easier to configure systems
with heterogeneous hardware/hypervisor setups.



7 Conclusion

In analyzing these various open-source cloud com-
puting frameworks, we find that there are salient philo-
sophical differences between them regarding the overall
scheme of their design. While the huge amount of cus-
tomization possible, as well as the ongoing feature de-
velopment of these tools, makes it difficult to make ac-
curate absolute statements about them, we have, how-
ever, identified certain strong tendencies in the focus of
each of these products. Moreover, we have pointed out
several opportunities for improving these frameworks.
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