
Qthreads: An API for Programming with Millions of Lightweight Threads

Kyle B. Wheeler
University of Notre Dame
South Bend, Indiana, USA

kwheeler@cse.nd.edu

Richard C. Murphy
Sandia National Laboratories∗

Albuquerque, New Mexico, USA
rcmurphy@sandia.gov

Douglas Thain
University of Notre Dame
South Bend, Indiana, USA

dthain@cse.nd.edu

Abstract

Large scale hardware-supported multithreading, an at-
tractive means of increasing computational power, benefits
significantly from low per-thread costs. Hardware support
for lightweight threads is a developing area of research.
Each architecture with such support provides a unique in-
terface, hindering development for them and comparisons
between them. A portable abstraction that provides basic
lightweight thread control and synchronization primitives
is needed. Such an abstraction would assist in exploring
both the architectural needs of large scale threading and
the semantic power of existing languages. Managing thread
resources is a problem that must be addressed if massive
parallelism is to be popularized. The qthread abstraction
enables development of large-scale multithreading applica-
tions on commodity architectures. This paper introduces
the qthread API and its Unix implementation, discusses re-
source management, and presents performance results from
the HPCCG benchmark.

1. Introduction

Lightweight threading primitives, crucial to large scale
multithreading, are typically either platform dependent or
compiler-dependent. Generic programmer-visible multi-
threading interfaces, such as pthreads, were designed for
“reasonable” numbers of threads—less than one hundred or
so. In large-scale multithreading situations, the features and
guarantees provided by these interfaces prevent them from
scaling to “unreasonable” numbers of threads (a million or
more), necessary for multithreaded teraflop-scale problems.

Parallel execution has largely existed two different
worlds: the world of the very large, where program-
mers explicitly create parallel threads of execution, and the

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

world of the very small, where processors extract paral-
lelism from serial instruction streams. Recent hardware ar-
chitectural research has investigated lightweight threading
and programmer-defined large scale shared-memory paral-
lelism. The lightweight threading concept allows exposure
of greater potential parallelism, increasing performance via
greater hardware parallelism. The Cray XMT [7], with the
Threadstorm CPU architecture, avoids memory dependency
stalls by switching among 128 concurrent threads. XMT
systems support between over 8000 processors. To maxi-
mize throughput, the programmer must provide at least 128
threads per processor, or over 1,024,000 threads.

Taking advantage of large-scale parallel systems with
current parallel programming APIs requires significant
computational and memory overhead. For example, stan-
dard POSIX threads must be able to receive signals, which
either requires an OS representation of every thread or re-
quires user-level signal multiplexering [14]. Threads in a
large-scale multithreading context often need only a few
bytes of stack (if any) and do not require the ability to re-
ceive signals. Some architectures, such as the Processor-in-
Memory (PIM) designs [5, 18, 23], suggest threads that are
merely a few instructions included in the thread’s context.

While hardware-based lightweight threading constructs
are important developments, the methods for exposing such
parallelism to the programmer are platform-specific and
typically rely either on custom compilers [3, 4, 7, 10, 11,
26], entirely new languages [1, 6, 8, 13], or have archi-
tectural limitations that cannot scale to millions of threads
[14, 22]. This makes useful comparisons between archi-
tectures difficult. With a standard way of expressing par-
allelism that can be used with existing compilers, compar-
ing cross-platform algorithms becomes convenient. For ex-
ample, the MPI standard allows a programmer to create a
parallel application that is portable to any system provid-
ing an MPI library, and different systems can be compared
with the same code on each system. Development and study
of large-scale multithreaded applications is limited because
of the platform-specific nature of the available interfaces.
Having a portable large-scale multithreading interface al-

lows application development on commodity hardware that
can exploit the resources available on large-scale systems.

Lightweight threading requires a lightweight synchro-
nization model [9]. The model used by the Cray XMT and
PIM designs, pioneered by the Denelcor HEP [15], uses ful-
l/empty bits (FEBs). This technique marks each word in
memory with a “full” or “empty” state, allows programs
to wait for either state, and makes the state change atomi-
cally with the word’s contents. This technique can be imple-
mented directly in hardware, as it is in the XMT. Alterna-
tives include ADA-like protected records [24] and fork-sync
[4], which lack a clear hardware analog.

This paper discusses programming models’ impact
on efficient multithreading and the resource management
necessary for those models. It introduces the qthread
lightweight threading API and its Unix implementation.
The API is designed to be a lightweight threading standard
for current and future architectures. The Unix implementa-
tion is a proof of concept that provides a basis for develop-
ing applications for large scale multithreaded architectures.

2. Recursive threaded programming models
and resource management

Managing large numbers of threads requires managing
per-thread resources, even if those requirements are low.
This management can affect whether multithreaded appli-
cations run to completion and whether they execute faster
than an equivalent serial implementation. The worst conse-
quence of poor management is deadlock: if more threads
are needed than resources are available, and reclaiming
thread resources depends on spawning more threads, the
system cannot make forward progress.

2.1. Parallel programming models

An illustrative example of the effect the programming
model on resource management is the trivial problem of
summing integers in an array. A serial solution is trivial:
start at the beginning, and tally each sequential number un-
til the end of the array. There are at least three parallel ex-
ecution models that could compute the sum. They can be
referred to as the recursive tree model, the equal distribu-
tion model, and the lagging-loop model.

A recursive tree solution to summing the numbers in an
array is simple to program: divide the array in half, and
spawn two threads to sum up both halves. Each thread does
the same until its array has only one value, whereupon the
thread returns that value. Thread that spawned threads wait
for their children to return and return the sum of their values.
This technique is parallel, but uses a large amount of state.
At any point, most of the threads are not doing useful work.
While convenient, this is a wasteful technique.

The equal distribution solution is also simple: divide
the array equally among all of the available processors and
spawn a thread for each. Each thread must sum its segment
serially and return the result. The parent thread sums the
return values. This technique is efficient because it matches
the needed parallelism to the available parallelism, and the
processors do minimal communication. However, equal
distribution is not particularly tolerant of other load imbal-
ances: execution is as slow as the slowest thread.

The lagging-loop model relies upon arbitrary workload
divisions. It breaks the array into small chunks and spawns
a thread for each chunk. Each thread sums its chunk and
then waits for the preceding thread (if any) to return an an-
swer before combining the sum and returning its own total.
Eventually the parent thread will do the same with the last
chunk. This model is more efficient than the tree model,
and the number of threads depends on the chunk size. The
increased number of threads makes it more tolerant of load
imbalances, but has more overhead.

2.2. Handling resource exhaustion

These methods differ in the way resources must be man-
aged to guarantee forward progress. Whenever new thread
is requested, one of four things can be done:

1. Execute the function inline.
2. Create a new thread.
3. Create an record that will become a thread later.
4. Block until sufficient resources are available.

In a large enough parallel program, eventually the resources
will run out. Requests for new threads must either block un-
til resources become available or must fail and let the pro-
gram handle the problem.

Blocking to wait for resources to become available af-
fects each parallel model differently. The lagging loop
method works well with blocking requests, because the
spawned threads don’t rely on spawning more threads.
When these threads complete, their resources may be
reused, and deadlock is easily avoided. The equal distri-
bution method has a similar advantage. However, because
it avoids using more than the minimum number of threads,
it does not cope as well with load imbalances.

The recursive tree method gathers a lot of state quickly
and slowly releases it, making the method particularly sus-
ceptible to resource exhaustion deadlock, where all run-
ning threads are blocked spawning more threads. In order
to guarantee forward progress, resources must be reserved
when threads spawn and threads must execute serially when
reservation fails. The minimum state that must be reserved
is the amount necessary get to the bottom of the recursive
tree serially. Thus, if there are only enough resources for a
single depth-first exploration of the tree, recursion may only

occur serially. If there are enough resources for two serial
explorations of the tree, the tree may be divided into two
segments to be explored in parallel, and so forth. Once re-
source reservation fails, only a serial traversal of the recur-
sive tree may be performed. Thus, blocking for resources
is a poor behavior for a recursive tree as forward progress
cannot be assured.

Such an algorithm is only possible when the maximum
depth of the recursive tree is known. If the depth is un-
known, then sufficient resources for a serial execution can-
not be reserved. Any resources reserved for a parallel execu-
tion could prevent the serial recursive tree from completing.

It is worth noting that a threading library can only be re-
sponsible for the resources necessary for basic thread state.
Additional state required during recursion has the potential
to cause deadlock and must be managed similarly.

3. Application programming interface

The qthread API provides several key features:

• Large scale lightweight multithreading support
• Access to or emulation of lightweight synchronization
• Basic thread-resource management
• Source-level compatibility between platforms
• A library-based API, forgoing custom compilers

The qthread API maximizes portability to architectures
supporting lightweight threads and synchronization prim-
itives by providing a stable interface to the programmer.
Because architectures and operating systems supporting
lightweight threading are difficult to obtain, initial analysis
of the API’s performance and usability studies commodity
architectures such as Itanium and PowerPC processors.

The qthread API consists of three components: the core
lightweight thread command set, a set of commands for
resource-limit-aware threads (“futures”), and an interface
for basic threaded loops. Qthreads have a restricted stack
size, and provide a locking scheme based on the full/empty
bit concept. The API provides alternate threads, called “fu-
tures”, which are created as resources are available.

One of the likely features of machines supporting
large scale multithreading is non-uniform memory access
(NUMA). To take advantage of NUMA systems, they must
be described to the library, in the form of “shepherds,”
which define memory locality.

3.1. Basic thread control

The API is an anonymous threading interface. Threads,
once created, cannot be controlled by other threads. How-
ever, they can provide FEB-protected return values so that
a thread can easily wait for another. FEBs do not require

polling, which is discouraged as the library does not guar-
antee preemptive scheduling.

Threads are assigned to one of several “shepherds” at
creation. A shepherd is a grouping construct. The number
of shepherds is defined when the library is initialized. In
an environment supporting traveling threads, shepherds al-
low threads to identify their location. Shepherds may corre-
spond to nodes in the system, memory regions, or protection
domains. In the Unix implementation, a shepherd is man-
aged by at least one pthread which executes qthreads. It is
worth noting that this hierarchical thread structure, partic-
ular to the Unix implementation (not inherent to the API),
is not new but rather useful for mapping threads to mobility
domains. A similar strategy was used by the Cray X-MP
[30], as well as Cilk [4] and other threading models.

Only two functions are required for creating threads:
qthread init (shep), which initializes the library with shep
shepherds; and qthread fork(func,arg, ret), which creates a
thread to perform the equivalent of ∗ret = func(arg). The
API also provides mutex-style and FEB-style locking func-
tions. Using synchronization external to the qthread library
is not encouraged, as that prevents the library from making
scheduling decisions.

The mutex operations are qthread lock(addr) and
qthread unlock(addr). The FEB semantics are more
complex, with functions to manipulate the FEB state
in a non-blocking way (qthread empty(addr) and
qthread fill (addr)), as well as blocking reads and

blocking writes. The blocking read functions wait for
a given address to be full and then copy the contents of
that address elsewhere. One (qthread readFF()) will leave
the address marked full, the other (qthread readFE()) will
then mark the address empty. There are also two write
actions. Both will fill the address being written, but one
(qthread writeEF()) will wait for the address to be empty
first, while the other (qthread writeF()) won’t. Using the
two synchronization techniques on the same addresses at
the same time produces undefined behavior, as they may be
implemented using the same underlying mechanism.

3.2. Futures

Though the API has no built-in limits on the number of
threads, thread creation may fail due to memory limits or
other system-specific limits. “Futures” are threads that al-
low the programmer to set limits on the number of futures
that may exist. The library tracks the futures that exist,
and stalls attempts to create too many. Once a future ex-
its, a future waiting to be created is spawned and its parent
thread is unblocked. The futures API has its own initializa-
tion function (future init (limit)) to specify the maximum
number of futures per shepherd, and a way to create a future
(future fork (func,arg, ret)) that behaves like qthread fork() .

3.3. Threaded loops and utility functions

The qthread API includes several threaded loop inter-
faces, built on the core threading components. Both C++-
based templated loops and C-based loops are provided.
Several utility functions are also included as examples.
These utility functions are relatively simple, such as sum-
ming all numbers in an array, finding the maximum value,
or sorting an array.

There are two parallel loop behaviors: one spawns a
separate thread for each iteration of the loop, and the
other uses an equal distribution technique. The func-
tions that provide one thread per iteration are qt loop ()
and qt loop future () , using either qthreads or futures, re-
spectively. The functions that use equal distribution are
qt loop balance() and qt loop balance future () . A variant
of these, qt loopaccum balance(), allows iterations to return
a value that is collected (“accumulated”).

The qt loop () functions take arguments start , stop,
stride , func, and argptr. They behave like this loop:

unsigned i n t i ;
for (i = s t a r t ; i < stop ; i += s t r i d e) {

func (NULL, a r g p t r) ;
}

The qt loop balance() functions, since they distribute the
iteration space, require a function that takes its iteration
space as an argument. Thus, while it behaves similar to
qt loop () , it requires that its func argument point to a func-
tion structured like this:

void func (q th read t ∗me, const s i z e t s t a r t a t ,
const s i z e t s topat , void ∗arg) {

for (s i z e t i = s t a r t a t ; i < s topa t ; i ++)
/∗ do work ∗ /

}

The qt loopaccum balance() functions require an accu-
mulation function so that return values can be gathered. The
function behaves similar to the following loop:

unsigned i n t i ;
for (i = s t a r t ; i < stop ; i ++) {

func (NULL, argp t r , tmp) ;
accumulate (r e t v a l , tmp) ;

}

Similar to the qt loop balance() function, it uses the
equal distribution technique. The func function must store
its return value in tmp, which is then given to the accumulate
function to gather and store in retval .

4. Performance

The design of the qthread API is based around two
primary goals: efficiency in handling large numbers of
threads and portability to large-scale multithreaded archi-
tectures. The implementation of the API discussed in this
section is the Unix implementation, which is for POSIX-
compatible Unix-like systems running on traditional CPUs,

such as PowerPC, x86, and IA-64 architectures. In this
environment, the qthread library relies on pthreads to al-
low multiple threads to run in parallel. Lightweight threads
are created as a processor context and a small (4k) stack.
These lightweight threads are executed by the pthreads.
Context-switching between qthreads is performed as nec-
essary rather than on an interrupt basis. For performance,
memory is pooled in shepherd-specific structures, allowing
shepherds to operate independently.

Without hardware support, FEB locks are emulated via
a central hash table. This table is a bottleneck that would
not exist on a system with hardware lightweight synchro-
nization support. However, the FEB semantics still allow
applications to exploit asynchrony even when using a cen-
tralized implementation of those semantics.

4.1. Benchmarks

To demonstrate qthread’s advantages, six micro-
benchmarks were designed and tested using both pthreads
and qthreads. The algorithms of both implementations are
identical, with the exception that one uses qthreads as the
basic unit of threading and the other uses pthreads. The
benchmarks are as follows:

1. Ten threads atomically increment a shared counter one
million times each

2. 1,000 threads lock and unlock a shared mutex ten thou-
sand times each

3. Ten threads lock and unlock 1 million mutexes
4. Ten threads spinlock and unlock ten mutexes 100 times
5. Create and execute 1 million threads in blocks of 200

with at most 400 concurrently executing threads
6. Create and execute 1 million concurrent threads

Figure 1 illustrates the difference between using qthreads
and pthreads on a 1.3Ghz dual-processor PowerPC G5 with
2GB of RAM. Figure 2 illustrates the same on a 48-node
1.5Ghz Itanium Altix with 64GB of RAM. Both systems
used the Native Posix Thread Library Linux Pthread imple-
mentation. The bars in each chart in Figure 1 are, from left
to right, the pthread implementation, the qthread implemen-
tation with a single shepherd, with two shepherds, and with
four shepherds. The bars in each chart in Figure 2 are, from
left to right, the pthread implementation, the qthread imple-
mentation with a single shepherd, with 16 shepherds, with
48 shepherds, and with 128 shepherds.

In Figures 1(a) and 2(a), using pthreads is outperformed
by qthreads because qthreads uses a hardware-based atomic
increment while pthreads is forced to rely on a mutex. Be-
cause of contention, additional shepherds do not improve
the qthread performance but rather decrease it slightly.
Since the qthread locking implementation is built with
pthread mutexes, it cannot compete with raw pthread mu-
texes for speed, as illustrated in Figures 1(b), 2(b), 1(c),

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30
35
40

P

Q1
Q2 Q4

(a) Increment

Ex
ec

ut
io

n
Ti

m
e

0
20
40
60
80

100
120

P
Q1

Q2 Q4

(b) Lock/Unlock

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30

P

Q1

Q2 Q4

(c) Mutex
Chaining

Ex
ec

ut
io

n
Ti

m
e

0
50

100
150
200
250
300
350 P

Q1 Q2 Q4

(d) Spinlock
Chaining

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30
35
40
45 P

Q1
Q2 Q4

(e) Thread
Creation

Ex
ec

ut
io

n
Ti

m
e

0
20
40
60
80

100
120
140
160
180 Q1

Q2 Q4

(f) Concurrent
Threads

Figure 1: Microbenchmarks on a dual PPC

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25
30
35
40
45
50 P

Q1 Q16 Q48Q128

(a) Increment

Ex
ec

ut
io

n
Ti

m
e

0
50

100
150
200
250

P Q1

Q16
Q48

Q128

(b) Lock/Unlock

Ex
ec

ut
io

n
Ti

m
e

0
5

10
15
20
25

P

Q1

Q16 Q48Q128

(c) Mutex
Chaining

Ex
ec

ut
io

n
Ti

m
e

0
0.2
0.4
0.6
0.8

1
1.2

P

Q1

Q16 Q48
Q128

(d) Spinlock
Chaining

Ex
ec

ut
io

n
Ti

m
e

0
50

100
150
200
250

P

Q1
Q16 Q48Q128

(e) Thread
Creation

Ex
ec

ut
io

n
Ti

m
e

0
20
40
60
80

100

Q1

Q16 Q48
Q128

(f) Concurrent
Threads

Figure 2: Microbenchmarks on a 48-node Altix

and 2(c). This is a detail that would likely not be true on a
system that had hardware support for FEBs, and would be
significantly improved with a better centralized data struc-
ture, such as a lock-free hash table. Because of the qthread
library’s simple scheduler, it outperforms pthreads when us-
ing spinlocks and a low number of shepherds, as illustrated
in Figure 1(d). The impact of the scheduler is demonstrated
by larger numbers of shepherds (Figure 2(d)).

The pthread library was incapable of more than several
hundred concurrent threads—requesting too many threads
deadlocked the kernel (Figures 1(f) and 2(f)). A benchmark
was designed that worked within pthreads’ limitations by al-
lowing a maximum of 400 concurrent threads. Threads are
spawned in blocks of 200, and after each block, threads are
joined until there are only 200 outstanding before spawning
a new block of 200 threads. In this benchmark, Figures 1(e)
and 2(e), pthreads performs more closely qthreads—on the
PowerPC system, it is only a factor of two more expensive.

5. Application development

Development of software that realistically takes advan-
tage of lightweight threading is important to research, but
difficult to achieve due to the lack of lightweight threading
interfaces. To evaluate the performance potential of the API
and how difficult it is to integrate into existing code, two

representative applications were considered. First, a paral-
lel quicksort algorithm was analyzed and modified to fit the
qthread model. Secondly, a small parallel benchmark was
modified to use qthreads.

5.1. Quicksort

Portability of an API does not free the programmer com-
pletely from taking the hardware into consideration when
designing an algorithm. There are features of alternative
threading environments that the qthread API does not emu-
late, such as the hashed memory design found in the Cray
MTA-2. Memory addresses in the MTA-2 are distributed
throughout the machine at word boundaries. When dividing
work amongst several threads on the MTA-2, the boundaries
of the work regions can be fine-grained without significant
loss of performance. Conventional processors, on the other
hand, assume that memory within page boundaries are all
contiguous. Thus, conventional cache designs reward pro-
grams that allow an entire page to reside in a single pro-
cessor’s cache, and limit the degree to which tasks can be
divided among multiple processors without paying a heavy
cache coherency penalty.

An example wherein the granularity of data distribution
can be crucial to performance is a parallel quicksort algo-
rithm. In any quicksort algorithm, there are two phases:
first the array is partitioned into two segments around a
“pivot” point, and then both segments are sorted indepen-
dently. Sorting the segments independently is relatively
easy, but partitioning the array in parallel is more complex.
On the MTA-2, elements of the array to be partitioned can
be divided up among each thread without regard to the lo-
cation of the elements. On conventional processors, how-
ever, that behavior is very likely to result in multiple pro-
cessors transferring the same cache-line or memory page
between processors. Constantly sending the same memory
back and forth between processors prevents the parallel al-
gorithm from exploiting the capabilities of multiple proces-
sors.

The qthread library includes an implementation of the
quicksort algorithm that avoids contention problems by en-
suring that work chunks are always at least the size of a
page. This avoids cache-line competition between proces-
sors while still exploiting the parallel computational power
of all available processors on sufficiently large arrays. Fig-
ure 3 illustrates the scalability of the qthread-based quick-
sort implementation, and compares its performance to the
libc qsort () function. This benchmark sorts an array of
one billion double-precision floating point numbers on a 48-
node SGI Altix SMP with 1.5Ghz Itanium processors.

Available Processors
1 2 4 8 16 32 48

Ex
ec

ut
io

n
Ti

m
e

0
200
400
600
800

1000
1200
1400
1600
1800

libc’s qsort() qutil_qsort()

Figure 3: qutil qsort() and libc’s qsort()

5.2. High performance computing conjugate
gradient benchmark

The qthread API makes parallelizing ordinary serial
code simple. As a demonstration of its capabilities, the
HPCCG benchmark from the Mantevo project [20] was par-
allelized with the Qloop interface of the qthread library.
The HPCCG program is a conjugate gradient benchmark-
ing code for a 3-D chimney domain, largely based on code
in the Trilinos[21] solver package. The code relies largely
upon tight loops where every iteration of the loop is es-
sentially independent of every other iteration. With simple
modifications to the code structure, the serial implementa-
tion of HPCCG was transformed into multithreaded code.
As illustrated in Figure 4, the parallelization is able to scale
well. Results are presented using strong scaling with a uni-
form 75x75x1024 domain on a 48-node SGI Altix SMP.
The SGI MPI results are presented to 48 processes, or one
process per CPU, as further results would over-subscribe the
processors, which generally underperforms with SGI MPI.

Processes/Shepherds
1 2 4 8 16 32 48 64 128

Ex
ec

ut
io

n
Ti

m
e

0

50

100

150

200

Serial qthread MPI

Figure 4: HPCCG on a 48-Node SGI Altix SMP

One of the features of the HPCCG benchmark is that it
comes with an optimized MPI implementation. The MPI
implementation, using SGI’s MPI library, is entirely dif-

ferent from the qthread implementation and does not use
shepherds. The qthread and MPI implementations scale ap-
proximately equally well up to about sixteen nodes. Beyond
sixteen nodes however, MPI begins to behave very badly. At
the same time, the qthread implementation’s execution time
does not change significantly.

Upon analysis of the MPI code, the poor performance of
the MPI implementation is caused by MPI Allreduce() in one
of the main functions of the code. While this takes almost
18.9% of execution time with eight MPI processes, it takes
84.1% of the execution time with 48 MPI processes. While
it is tempting to simply blame the problem on a bad imple-
mentation of MPI Allreduce(), it is probably more valid to
examine the difference between the qthread and MPI imple-
mentations. The qthread implementation performs the same
computation as the MPI Allreduce(), but rather than require
all nodes to come to the same point before the reduction
can be computed and distributed, the computation is per-
formed as the component data becomes available from the
threads returning, the computational threads can exit, and
other threads scheduled on the shepherds can proceed. The
qthread implementation exposes the asynchronous nature of
the whole benchmark, while the MPI implementation does
not. This asynchrony is revealed even though the Unix im-
plementation of the qthread library relies upon centralized
synchronization, and would likely provide further improve-
ment on a real massively parallel architecture.

6. Related work

Lightweight threading models generally fit one of two
descriptions: they either require a special compiler or they
aren’t sufficiently designed for large-scale threading (or
both). For example, Python stackless threads [28] provide
extremely lightweight threads. Putting aside issues of us-
ability, which is a significant issue with stackless threads,
the interface allows for no method of applying data paral-
lelism to the stackless threads: a thread may be scheduled
on any processor. Many other threading models, from nano-
threads [26] to OpenMP [11], lack a sufficient means of al-
lowing the programmer to specify locality. This becomes
a significant issue as machines get larger and memory ac-
cess becomes non-uniform [31]. Languages such as Chapel
[8] and X10 [6], or modifications to existing languages such
as UPC [13] and Cilk [4], that require special compilers are
interesting and allow for better parallel semantic expressive-
ness than approaches based in adding library calls to exist-
ing languages. However, such models not only break com-
patibility with existing large codebases but also do not pro-
vide for strong comparisons between architectures. Some
threading models, such as Cilk, use a fork-and-join style of
synchronization that, while semantically convenient, does
not allow for as fine-grained control over communication

between threads as the FEB-based model, which allows in-
dividual load and store instructions to be synchronized.

The drawbacks of heavyweight, kernel-supported
threading such as pthreads are well-known [2], leading to
the development of a plethora of user-level threading mod-
els. The GNU Portable Threads [14], for example, allow a
programmer to use user-level threading on any system that
supports the full C standard library. It uses a signal stack
to allow the subthreads to receive signals, which limits its
ability to scale. Coroutines [29] are another model that al-
low for virtual threading even in a serial-execution-only en-
vironment, by specifying alternative contexts that get used
at specific times. Coroutines can be viewed as the most ba-
sic form of cooperative multitasking, though they can use
more synchronization points than just context-switch barri-
ers when run in an actual parallel context. One of the more
powerful details of coroutines is that generally one routine
specifies which routine gets processing time next, which
is behavior that can also be obtained when using continu-
ations [19, 27]. Continuations, in the most broad sense, are
primarily a way of minimizing state during blocking oper-
ations. When using heavyweight threads, whenever are a
thread does something that causes it to stop executing, its
full context—local variables, a full set of processor regis-
ters, and the program counter—are saved so that when the
thread becomes unblocked it may continue as if it had not
blocked. A continuation allows the programmer to spec-
ify that when a thread blocks it exits, and that unblock-
ing causes a new thread to be created with specific argu-
ments, thus requiring the programmer to save any neces-
sary state to memory while any unnecessary state can be
disposed of. Protothreads [12, 17] and Python stackless
threads [28], by contrast, assert that outside of CPU context
there is no thread-specific state (i.e. “stack”) at all. This
makes them extremely lightweight but limits the flexibility
(at most, only one of them can call a function), which has
repercussions for ease-of-use. User-level threading models
can be further enhanced with careful kernel modification
[25] to enable convenient support of many of the features
of heavyweight kernel threads, such as signals, advanced
scheduling conventions, and even limited software interrupt
handling.

The problem of resource exhaustion due to excessive
parallelism was considered by Goldstein et. al. [16]. Their
“lazy-threads” concept addresses the issue that most thread-
ing models conflate logical parallelism and actual paral-
lelism. This semantics problem often requires that program-
mers tailor the expression of parallelism to the available par-
allelism, thereby forcing programmers to either require too
much overhead in low-parallelism situations or forgo the
full use of parallelism in high-parallelism situations.

The qthread API combines many of the advantages of
other threading models. The API allows parallelism to be

expressed independently of the parallelism used, much like
Goldstein’s lazy-thread approach. However, rather than re-
quire a customized compiler, the qthread API does this
within a library that uses two different categories of threads:
thread workers (shepherds) and stateful thread work units
(qthreads). This technique, while convenient, has overhead
that a compiler-based optional-inlining method would not:
every qthread requires memory. This overhead can be lim-
ited arbitrarily through the use of futures, which is a power-
ful abstraction to express resource limitations without lim-
iting the expressibility of inherent algorithmic parallelism.

7. Future work

Much work still remains in development of the qthread
API. A demonstration of how well the API maps to the
APIs of existing large scale architectures, such as the Cray
MTA/XMT systems, is important to reinforce the claim of
portability. Custom implementations for other architectures
would be useful, if not crucial.

Along similar lines, development of additional bench-
marks to demonstrate the potential of the qthread API and
large-scale multithreading would be useful for studying the
effect of large-scale multithreading on standard algorithms.
The behavior and scalability of such benchmarks will pro-
vide guidance for the development of new large-scale mul-
tithreading architectures.

Thread migration is an important detail of large scale
multithreading environments. The qthread API addresses
this with the shepherd concept, but the details of mapping
shepherds to real systems requires additional study. For ex-
ample, shepherds may need to have limits enforced upon
them, such as CPU-pinning, in some situations. The ef-
fect of such limitations on multithreaded application per-
formance is unknown, and deserving of further study.

8. Conclusions

Large scale computation of the sort performed by com-
mon computational libraries can benefit significantly from
low-cost threading, as demonstrated here. Lightweight
threading with hardware support is a developing area of re-
search that the qthread library assists in exploring while si-
multaneously providing a solid platform for lighter-weight
threading on common operating systems. It provides basic
lightweight thread control and synchronization primitives
in a way that is portable to existing highly parallel architec-
tures as well as to future and potential architectures. Be-
cause the API can provide scalable performance on existing
platforms, it allows study and modeling of the behavior of
large scale parallel scientific applications for the purposes
of developing and refining such parallel architectures.

References

[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress
Language Specification. Sun Microsystems, Inc., 1.0β edi-
tion, March 2007.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler activations: Effective kernel support fot the
user-level management of parallelism. ACM Transactions
on Computer Systems, 10(1):53–79, 1992.

[3] A. Begel, J. MacDonald, and M. Shilman. Picothreads:
Lightweight threads in java.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: an efficient multithreaded
runtime system. SIGPLAN Not., 30(8):207–216, 1995.

[5] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge.
A low cost, multithreaded processing-in-memory system.
In WMPI ’04: Proceedings of the 3rd workshop on Mem-
ory performance issues, pages 16–22, New York, NY, USA,
2004. ACM Press.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing.
In OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object oriented programming, systems,
languages, and applications, pages 519–538, New York,
NY, USA, 2005. ACM.

[7] Cray XMT platforrm.
http://www.cray.com/products/xmt/index.html, Octo-
ber 2007.

[8] Cray Inc., Seattle, WA 98104. Chapel Language Specifica-
tion, 0.750 edition.

[9] H.-E. Crusader. High-end computing needs radical program-
ming change. HPCWire, 13(37), September 2004.

[10] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. Tama compiler controlled threaded abstract ma-
chine. Journal of Parallel and Distributed Computing,
18(3):347–370, 1993.

[11] L. Dagum and R. Menon. OpenMP: An industry-standard
api for shared-memory programming. IEEE Computational
Science & Engineering, 5(1):46–55, 1998.

[12] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Pro-
tothreads: Simplifying event-driven programming of
memory-constrained embedded systems. In SenSys ’06:
Proceedings of the 4th International Conference on Embed-
ded Networked Sensor Systems, pages 29–42, New York,
NY, USA, 2006. ACM Press.

[13] T. El-Ghazawi and L. Smith. Upc: unified parallel c. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Su-
percomputing, page 27, New York, NY, USA, 2006. ACM.

[14] R. S. Engelschall. Portable multithreading: The signal stack
trick for user-space thread creation. In ATEC’00: Proceed-
ings of the Annual Technical Conference on 2000 USENIX
Annual Technical Conference, pages 20–20, Berkeley, CA,
USA, 2000. USENIX Association.

[15] M. C. Gilliland, B. J. Smith, and W. Calvert. Hep - a
semaphore-synchronized multiprocessor with central con-
trol (heterogeneous element processor). In Summer Com-
puter Simulation Conference, pages 57–62, Washington,
D.C., July 1976.

[16] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy
threads: Implementing a fast parallel call. Journal of Paral-
lel and Distributed Computing, 37(1):5–20, 1996.

[17] B. Gu, Y. Kim, J. Heo, and Y. Cho. Shared-stack cooper-
ative threads. In SAC ’07: Proceedings of the 2007 ACM
symposium on Applied Computing, pages 1181–1186, New
York, NY, USA, 2007. ACM Press.

[18] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper,
J. LaCoss, J. Granacki, J. Brockman, A. Srivastava,
W. Athas, V. Freeh, J. Shin, and J. Park. Mapping ir-
regular applications to DIVA, a PIM-based data-intensive
architecture. In Supercomputing ’99: Proceedings of the
1999 ACM/IEEE conference on Supercomputing (CDROM),
page 57, New York, NY, USA, 1999. ACM Press.

[19] C. T. Haynes, D. P. Friedman, and M. Wand. Continuations
and coroutines. In LFP ’84: Proceedings of the 1984 ACM
Symposium on LISP and Functional Programming, pages
293–298, New York, NY, USA, 1984. ACM Press.

[20] M. Heroux. Mantevo.
http://software.sandia.gov/mantevo/index.html, December
2007.

[21] M. Heroux, R. Bartlett, V. Hoekstra, J. Hu, T. Kolda,
R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger,
et al. An overview of trilinos. Technical Report SAND2003-
2927, Sandia National Laboratories, 2003.

[22] Institute of Electrical and Electronics Engineers. IEEE
Std 1003.1-1990: Portable Operating Systems Interface
(POSIX.1), 1990.

[23] P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pur-
suing a petaflop: Point designs for 100 TF computers using
PIM technologies. In Proceedings of the 1996 Frontiers of
Massively Parallel Computation Symposium, 1996.

[24] C. D. Locke, T. J. Mesler, and D. R. Vogel. Replacing
passive tasks with ada9x protected records. Ada Letters,
XIII(2):91–96, 1993.

[25] B. D. marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos.
First-class user-level threads. In SOSP ’91: Proceedings of
the thirteenth ACM symposium on Operaing Systems Prin-
ciples, pages 110–121, New York, NY, USA, 1991. ACM
Press.

[26] X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. A
library implementation of the nano-threads programming
model. In Euro-Par, Vol. II, pages 644–649, 1996.

[27] A. Meyer and J. G. Riecke. Continuations may be unreason-
able. In LFP ’88: Proceedings of the 1988 ACM Conference
on LISP and Functional Programming, pages 63–71, New
York, NY, USA, 1988. ACM Press.

[28] Stackless python. http://www.stackless.org, January 2008.
[29] S. E. Sevcik. An analysis of uses of coroutines. Master’s

thesis, 1976.
[30] F. Szelényi and W. E. Nagel. A comparison of parallel pro-

cessing on Cray X-MP and IBM 3090 VF multiprocessors.
In ICS ’89: Proceedings of the 3rd international conference
on Supercomputing, pages 271–282, New York, NY, USA,
1989. ACM.

[31] J. Tao, W. Karl, and M. Schulz. Memory access behavior
analysis of NUMA-based shared memory programs, 2001.

