
A First Look at Reproducibility and Non-Determinism in
CMS Software and ROOT Data

Peter Ivie, Charles Zheng, and Douglas Thain

Technical Report TR-2016-01
10 October 2016

Department of Computer Science and Engineering
University of Notre Dame

ABSTRACT

Reproducibility is an essential component of the scientific
process. Including software and data with a published pa-
per is a good step towards reproducible research. However,
the presence of non-determinism in a scientific workflow can
make validating results very difficult even between two runs
on the same machine, the same day, and using the exact
same command and parameters. But for reproducibility we
should be able to validate results even when the environ-
ment changes, which is even more challenging. We explore
three high level methods for dealing with non-determinism
in general: 1) Domain specific methods; 2) Domain spe-
cific comparisons; and 3) Virtualization adjustments. Us-
ing a complex high energy physics workflow, we use these
methods to prevent, detect, and eliminate sources of non-
determinism. We observe improved determinism using pre-
determined random seeds, hierarchical data comparisons,
and predictable progression of system timestamps. Unfor-
tunately, sources of non-determinism continue to exist de-
spite the combination of all three methods. We conclude
that there is room for improvement in all three methods,
and identify directions that can be taken in each method to
continue progress towards reproducibility.

1. INTRODUCTION
In order to advance scientific discovery we must build on

existing knowledge rather than re-invent the wheel. But for
that to happen, we must both be able to gain confidence in
the discoveries of others, and be able to use those discoveries
as a seed upon which new knowledge can be discovered and
shared. However, the portion of the research that is shared
with others in a scientific publication is rarely reproducible,
or in other words publications are usually insufficiently de-
tailed to be useful for validation by, or as a building block
for other scientists. A publication is normally geared more
towards communicating ideas to researchers, and less to-

This paper is supplementary to a presentation at the Computing in High
Energy Physics (CHEP) conference in 2016.

wards providing concrete instructions that a computer can
understand automatically.

In order to be reproducible, a scientific publication should
include information a computer can understand, not just de-
scriptions designed for other scientists.[5] An article about
computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development
environment and the complete set of instructions. [6] The
environment and full set of instructions used by the com-
puter make it possible to check whether multiple runs of the
same software produce the same result. This may be done
to validate whether a new machine produces correct results
on old software, whether new software produces correct re-
sults on an old machine, or to compare the equality of two
different approaches to the same objective.

Unfortunately, replicating an environment on disparate
computing resources is very challenging due to the wide va-
riety of hardware and software choices. But even based on an
assumption that the environment is unchanging, many addi-
tional technical issues in computing still make it surprisingly
hard to get the same result twice. Non-determinism in both
codes and data[8] can arise unexpectedly from the use of
concurrency, random number sources, real-time clocks, I/O
operations, and other sources[4]. Differences might also be
due to fundamentally different algorithms, or from accidents
of the runtime environment. As a result, one cannot simply
compare objects at the binary level.

In adherence to the philosophy that the generation of ran-
dom numbers is too important to be left to chance, [7] we
attempt to eliminate non-determinism using combinations
of the following three approaches. 1) Domain specific meth-
ods are sometimes available to alleviate some of the non-
determinism. If not, then new methods might be imple-
mented for this purpose. 2) Domain specific comparisons
could be applied to results to sort through results elimi-
nating sources of non-determinism, such as timestamps and
ordering issues. 3) Virtualization adjustments allow the en-
vironment to control sources of non-determinism without
the need for domain specific considerations.

We evaluate a typical CMS workflow used by physicists
at the University of Notre Dame considering the same three
ideas. 1) We tap into domain specific methods in the CMS
software which exposes options such as a random seed set-
ting in the configuration files. 2) We consider an existing
tool for such comparisons on CMS data and introduce a

from IOMC.RandomEngine.RandomServiceHelper import RandomNumberServiceHelper

random_seed = sys.argv[2]

...

helper = RandomNumberServiceHelper(process.RandomNumberGeneratorService)

helper.resetSeeds(random_seed)

Figure 1: Python code for setting all random seeds up front.

new tool called ROOT diff for comparing ROOT files in
CMS and also more generally. The ROOT diff tool also
takes a hierarchical approach to equivalence which helps us
to isolate differenes. 3) We use virtualization adjustments
to search the CMS workflow for possible sources of non-
determinism using strace. While running what should be
an identical task multiple times, a few red flags are identi-
fied, and their possible severity is discussed. Virtualization
adjustments are also employed using the Parrot tool as a vir-
tual environment with various parameters used to eliminate
some non-determinism.

After applying domain specific methods, some sources of
non-determinism still existed in each step of the workflow.
The domain specific comparisons helped us see levels of
equivalence that were not detectable with bitwise or hash
comparisons, so the problem was less about the real results
being unpredictable, and more about non-deterministic ele-
ments being embedded around the real results. Using vir-
tualization adjustments, the Time Warp feature in Parrot
seemed to produce the best results. Using it in tandem with
the other methods, we were able to get deterministic results
for the first step in the workflow as long as we set a maxi-
mum event count of 121.

All three evaluated avenues can be further pursued to
make the validation of CMS workflows or other scientific
workflows more successful. 1) Additional domain specific
methods may be needed to separate significant results from
incidental or transitory meta-data or to ensure predictable
entropy. 2) Continued work on domain specific comparison
tools could enable the detection of more fine grained differ-
ences, such as statistical equivalence, or provide a frame-
work for automating conclusions based on the equivalences
for various situations. 3) More options for virtualization ad-
justment could force the environment to ensure more de-
terministic behavior, such as by adjusting the algorithm
that ‘warps’ time, or detecting other system calls that re-
sult in non-deterministic behavior. Efforts in any and all of
these avenues has the potential to improve the ability for
researchers to gauge the reproducibility of their workflows,
and validate results.

2. DOMAIN SPECIFIC METHODS
There are often parameters or configuration options built

into domain specific tools that enable more deterministic
behavior. Invoking these options can be helpful in avoiding
non-determinism, but might not solve all problems. If iden-
tifiable problems are found for which configuration options
are not yet available, it might be possible to add new options
or otherwise modify the tools to behave more predictably.

Understanding common sources of non-determinism (which
will be discussed later in the Virtualization adjustments sec-
tion) can be helpful in general. But clearly, changes to do-
main specific tools are easier when a specific source of non-

determinism can be clearly identified. So we will start by
observing the specifics of a CMS workflow used by physicists
at the University of Notre Dame before moving on to more
generic observations.

After describing the workflow, we describe the behavior
that we observed when attempting to run the same exact
task twice. In addition, we used a domain specific random
seed parameter to encourage the generation of deterministic
results. The two runs of a given step are compared to see
whether we get bitwise identical results or not.

2.1 CMS workflow description
The following 4 steps make up a chain of tasks used to

simulate possible collision events using models based on the
real events observed in the Large Hadron Collider. Rather
than being a simplified workflow for test purposes, this is a
real workflow used by the high energy physicists at Notre
Dame. The only difference between the workflow we used
for our evaluation and the one used for real research is one
of scale. We simulate relatively few events for the purposes
of our evaluation, but the full complexity of the research is
employed. Each of the 4 steps is described below, and the
output generated from earlier steps is used as the input for
later steps.

2.1.1 Physics Simulation (step #1: LHE)

This is a simulation of the first part of the physics involved
in the collision. There is no attempt to account for the
detector at this stage. The acronym LHE stands for Les
Houches Event [2].

2.1.2 Detector Simulation (step #2: GEN-SIM)

GEN-SIM: For very technical reasons, there is a second
part of simulating the physics of the collision that happens in
this step. After this, the effects of the detector are simulated,
but the data format read out is not the same as what the
detector readout produces.

2.1.3 Reconstruction (step #3: DIGI-RECO)

The next step, DIGI-RECO, is actually broken into two
separate sub-steps that are run sequentially:

DIGI: This takes the simulation file output and changes
it into a format that is identical to what the detector pro-
duces. After this step, no distinction needs to be made in
the software between running on simulated and real data.

RECO: This is the same reconstruction that’s applied to
real data that takes detector signals and figures out which
particles would have made those signals in the detector.

2.1.4 Data Reduction (step #4: MiniAOD)

MiniAOD: This last step takes the output of the RECO
step (which is in a data format known as AOD = Analysis
Object Data), and simplifies it into a reduced data format
that contains the information that almost everyone needs to

do analysis. Some small fraction of analyses actually need
the level of detail in AOD and can’t use MiniAOD, but most
researchers use the MiniAOD data.

2.2 CMS workflow results
In an initial attempt to get deterministic results for each

step in the workflow, the method shown in Figure 1 was used
to force every execution of the step to use the exact same
random seed.

Each step in the workflow was then executed twice on the
same machine, in the same day, with the exact same com-
mand and parameters. The output of the first execution was
even moved to a separate folder so the exact same command
(including the folder name) could be used for the second ex-
ecution immediately. For steps 2-4, where the results from
the previous step are used as input, the result from the first
run of the previous step was used for both runs of the fol-
lowing step.

2.2.1 Physics Simulation (step #1: LHE)

Unfortunately the checksums differ for the ROOT files
generated by each run as shown here:

Run checksums Size
1 b2ed825f... 6,545,067
2 c35bc9c4... 6,545,072

2.2.2 Detector Simulation (step #2: GEN-SIM)

The same is true for step2. The checksums for the two
output files differ from each other.

Run checksums Size
1 a2f8138c... 22,773,369
2 40c5791a... 22,773,362

2.2.3 Reconstruction (step #3: DIGI-RECO)

Step 3 produces 3 ROOT files, but only one of them (File
#1) is used as the input for step 4. File #2 is the output
from the DIGI sub-step and is used as input for the RECO
sub-step. File #3 is the data quality monitoring output.
None of the files appears to be fully deterministic.

File Run checksums Size
#1 1 b8e7810f... 21,320,833
#1 2 f3fb4d9c... 21,320,560
#2 1 81f04953... 38,799,122
#2 2 767237d7... 38,799,120
#3 1 4669be6b... 1,953,306
#3 2 534891a4... 1,953,460

2.2.4 Data Reduction (step #4: MiniAOD)

The final step also exhibits non-deterministic behavior.

Run checksums Size
1 ab202459... 3,384,806
2 0fa6a17a... 3,384,594

For all steps in the workflow, the exact same command
produces results that are bitwise different each time it is run.
Without some domain specific comparison tool or manual
comparison by an expert, it is impossible to know whether
the results are equivalent or if some underlying change in
the environment caused the two results to diverge from each
other in a significant manner.

3. DOMAIN SPECIFIC COMPARISONS
As shown in section 2, simply computing checksums and

comparing them is not enough for validating the success of
reproduction and a more fine-grained comparing algorithm
is required. We use the ROOT framework [3] to process
experiment datasets, and results of a CMS workflow are se-
rialized into ROOT objects and stored in a ROOT file. As
shown in Figure 2, a ROOT file is a sequence of data records
with a well defined format. It consists of a file header that
contains the information of the entire file (i.e. file identifier,
file version, compression level, etc) and a suite of consecu-
tive pairs of object headers and blocks of object data. An
object header holds the object meta data (i.e. object length,
header length, pointer to the object, etc) of the object right
after it in the file and the object data is the binary data that
serialized from a ROOT object.

We can validate successful reproduction of workflow by
comparing the structure and contents of each object in the
ROOT file. If a workflow is reproduced correctly, each ROOT
object it produced should have a matching object from the
result of the original workflow. Based on this observation,
we developed ROOT diff, a domain specific comparator for
scientific workflows that produce ROOT files.

File
Header

Object
Header

Object
Data

...........
Object
Header

Object
Data

fBEGIN fEND

Figure 2: ROOT file Structure

3.1 Comparison procedure
Simulation results of large physics workflows are often

large and contain different intermediate ROOT files from
multiple substages. There exists a tool developed by CMS
for one-to-one EDM object comparison. This is a perfect
tool for domain scientists who want to observe the difference
between the events, particles and variables of two ROOT
files. Since the comparion is conducted at the physics object
level, a more fine-grained analysis of root files is required,
which is time and resource consuming. For comparing a typ-
ical reco file, it launches 180 processes, takes 30 minutes and
creates many files[1]. It is overkill our case and if we apply
this tool, the comparison process will become the bottleneck
of the validation procedure. To verify the success of repro-
duction, we only need to compare the structure and contents
of each data record.

We defined three levels of equivalence: (1) STRUCTURAL-
EQUAL: Two root objects have same object length, cy-
cle number and class name. (2) CONTENT-EQUAL: Two
root objects are structurally equal to each other and have
the same object data content. (3) BITWISE-EQUAL: Two
root objects are content-equal to each other and have same
timestamp. We claim that reproduction is successful, if two
ROOT files are CONTENT-EQUAL to each other.

The comparison procedure of ROOT diff is shown in Fig-
ure 3, Step 1, Scan ROOT file 1, extract the information of
each object and generate an object information list called
objs info lst. Step 2, Compare the structure of each object
in file 2 with every object cached in objs info lst. This step

Get
Object

Info

Obj
Info

......
Root
File 1

Structural
Comparison

Root
File 2

Structurally
Equivalent

Obj
Info

......

Obj
Info

......

<obj_1, obj_1’>

......

<obj_2, obj_2’>

no_match_1

no_match_2

Content
Comparison

Comparison
Log

1

22

3

3

4

44

4

struc_eq_objs

objs_info_lst

Figure 3: The ROOT diff algorithm

ensures that two root files have a different object order but
the same object structure and contents will still be treated
as equivalent. Step 3, If a matched object is found in file
1, then we generate an object information pair that has the
two structurally equivalent objects from each file. All these
pairs are stored in a list called struc eq objs. If every object
in file 1 can find a matching object in file 2, then file 1 is
STRUCTURAL-EQUAL to file 2. Objects with no match
are stored in lists no match 1 and no match 2 respectively
for reporting purposes. Step 4, For each pair of structurally
equivalent objects, the contents of the two objects are com-
pared. If each object in file 1 has a matching object in
file 2 and has the same data content, we say that file 1 is
CONTENT-EQUAL to file 2. If all objects in file 1 have
a CONTENT-EQUAL object in file 2 and share the same
timestamp, then we say file 1 and file 2 BITWISE-EQUAL
to each other.

3.2 Comparator performance
We benchmark the performace of Root diff by conducting

comparison on various sizes of ROOT files produced by Lob-
ster[11]. The running time for comparing ROOT files from
megabytes to gigabytes is shown in Figure 4. We also com-
pare ROOT diff with md5sum and sha1sum. The growth of
the running time is not always linear, because ROOT files
we chosen have different structures. As shown in the fig-
ure, ROOT diff has better performance than md5sum and
sha1sum, when the file size is smaller than 6GB. That is
because ROOT diff does not scan the entire file and ig-
nores objects those are not related to the simulation re-
sults. It only reads the desired object buffer blocks and
will stop comparing when the first different byte is encoun-
tered. When the file size hits the memory limit, ROOT diff
begins to suffer from the overhead caused by random reads,
while md5sum and sha1sum read data sequentially without
much of a decrease in performance.

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000

T
im

e(
S

ec
o

n
d

s)

Size(MB)

Running time for comparing various size of root files

root-diff
md5sum
sha1sum

Figure 4: Performance of ROOT diff

3.3 Comparison results for Lobster workflow
In Table 1, we show the results of comparing ROOT files

generated by two simulation runs with same substages and
seed. ROOT diff ignores some of the objects that are only
related to the structure of the file. Examples of ignored
objects in the lhe stage are in Table 2. Four objects in file
1 named LHEEventProduct exter have no matching objects
in file 2. Four EventAuxiliary objects in file 2 cannot be
matched to any object in file 1.

4. VIRTUALIZATION ADJUSTMENTS
Virtualization is often used as a part of doing reproducible

research. It is most often used as a mechanism to ensure
exact software dependencies or to emulate hardware depen-
dencies. This is one way to resolve many sources of non-
determinism when tasks will be executing on different phys-
ical machines. Virtual machines and containers are popular
options due to both their efficiency and ability to satisfy
exact dependencies.

The unix tool strace is an exploratory form of virtualiza-
tion where system calls are captured and logged to a file.
This log file can then be searched for calls to known sources
of non-determinism such as random number generators pro-
vided by the kernel. While this tool is unlikely to eliminate
non-determinism, we use it with the CMS workflow to iden-
tify some read flags that could be causing non-determinism.

The Parrot tool[10] is a translational form of virtualiza-
tion where system calls are captured and can be modified
before being forwarded to the operating system. If a source
of non-determinism is already known or suspected, Parrot
might be able to trick a program into behaving more de-
terministically[9]. For example, when an task in a workflow
request the current time, it might be preferable to return
predictable and consistent timestamps instead of the actual
time.

4.1 Finding sources of non-determinism
Executing step 1 using strace two times in a row (keeping

random seed, folders, and the machine fixed, as before) pro-
duced two log files that were very similar but had notable
differences. Various categories of red flags appeared in the
strace log files and in comparisons between the two files.

Table 1: Comparison results for different stages of simulation

Stage Name
Same Seed

Number of
Objects

Ignored
Not

Equal
Structural

Equal
Content
Equal

Bitwise
Equal

LHE 605 9 4 592 580 0
GENSIM 717 9 1 707 694 0

DIGI
1 1171 9 1 1161 1158 0
2 6563 9 21 6533 6526 0
3 204 21 7 176 175 0

MINIAOD 2723 9 4 2710 2671 0

Table 2: Ignored and Nonequal objects from LHE stage
Class Name TTree StreamerInfo TTree TTree TTree TTree TTree KeyList FreeSegments

Object Name Metadata StreamerInfo ParameterSets Parentage Events LuminosityBlocks Runs HIG-RunIIWinter15 LuminosityBlocks
Ignored Times 1 1 1 1 1 1 1 1 1

4.1.1 File and Folder names

File and folder names can be a source of non-determinism
if they are later included in any output file that includes data
that should be used as a basis for validation. The system call
‘getcwd’ was used which means that the execution could be
affected by the current directory that it executes in. Exactly
16,356 total filenames were referenced with the same name
in both runs. 23 additional filenames appeared in each run,
but each used (what appeared to be random) file names of
the format /tmp/tmpfjAMpSC.

4.1.2 Concurrency

Both runs included the ‘execve’ system call, which starts
up a child process. This child process could have it’s own
set of issues preventing determinism.

4.1.3 Entropy

A total of 2 bytes were read from ‘/dev/urandom’. This
was one of our primary concerns initially. The read oc-
curred after the randomly named tmp files started being
created, so it was not the seed for that potential source of
non-determinism, at least.

4.1.4 Available Memory

One of the runs used 74 more (about 5% more) ‘madvise’
system calls than the other run. Even with the same avail-
able memory, available block sizes can cause non-deterministic
behavior. Additional system calls allocating memory lead to
additional time spent which can also affect the entropy of
the operating system.

4.1.5 Input/Output

The ‘socket’ system call (and related calls) was used in the
runs which indicates an implicit dependence on some exter-
nal resources. Non-determinism in those resources and the
connection to them can both cause unpredictable behavior
in a task.

4.1.6 Time

Both the initial time and the passage of time due to pos-
sible congestion in the operating system can be an issue.

4.2 Eliminating non-determinism
Parrot was used to capture system calls made by step 1 of

the CMS workflow. Parrot is often already used for high en-

ergy physics because it can translate file system requests for
the CernVM File System (CVMFS) into a network request
when using computing resources that can’t easily mount the
CVMFS file system directly (often due to Unix permission
issues). A few additional flags in Parrot enabled us to trans-
late additional system calls to encourage determinism.

4.2.1 Time-Stop in Parrot

To avoid non-determinism due to differences in the start
time and in the progression of time, our first attempt was
to configure Parrot to return the exact same date and time
every time the current system time is requested. This time-
stop feature in Parrot always returns January 1st, 2000 at
midnight when asked for the current system time.

When using Parrot to run the LHE step from our work-
flow, we hoped to make the results more deterministic with
the time-stop feature turned on. However, the task seemed
to get hung up and we gave up waiting for it to complete
after 70 times more time had passed than when the fea-
ture was turned off. This behavior can be explained if the
program simply tries to sleep for a specific amount of time.
Since that time never comes, the program will perpetually
sleep, expecting time to pass eventually.

4.2.2 Time-Warp in Parrot

In order to overcome the issue with the time-stop feature,
a more intelligent feature called time-warp was used. The
first time reported is January 1st, 2000 at midnight, but for
each additional request, the time is incremented by 1/100th
of a second. When set to a maximum of 1649 events, an
LHE task completed on January 1st, 2001 at 4:18:57 (am).
In other words, with the year 2000 being a leap year the task
requested the time about 31,637,937 times.

This feature in Parrot effected significant improvement
in the determinism of the the task. After running the task
twice, the contents of all structurally equivalent objects were
also bitwise equivalent. But there were still a few objects
that were different.

Scaling down the maximum number of events to only one
actually resulted in identical output files for each LHE task
using time-warp. Executing many pairs of tasks while in-
creasing the maximum number of events (a domain specific
method), we discovered that all pairs generating 121 events
or fewer resulted in bitwise identical results, and all pairs
with 122 or more events generated results where the results

had to be compared using domain specific comparison tools.
Even with two executions producing identical results us-

ing fixed seeds and time-warp, the files with the random
names (/tmp/tmpf06dGhv) still differed between the two
executions. This seems to indicate that something other
than a time based seed was used to generate those tempo-
rary filenames. However, since the results were still bitwise
identical the differing temporary filenames turned out to not
be a source of non-determinism.

4.2.3 Other options in Parrot

When it is known that an application uses /dev/urandom,
Parrot can be configured to redirect /dev/urandom to a im-
mutable file for determinism. Preliminary tests indicate that
this file mapping does not increase determinism for the LHE
step, but could be helpful in other scenarios.

The workflow tasks executed for this paper were performed
by the same user on the same machine. For a multi-user
environment, a virtual user id and group id can be set in
Parrot, also to encourage determinism. There is also a pa-
rameter to specify the hostname if needed.

5. CONCLUSIONS
While the general causes of non-determinism in software

are well known, managing them in a complex piece of soft-
ware with many authors remains a challenge. Our first look
at this issue highlights some of these challenges. CMS codes
produce non-deterministic results, even when a random seed
is set; and ROOT file contain provenance metadata inter-
mixed with physics data. But, we have also shown that
these effects can be mitigated through the use of system call
interception, and more complex data comparison techniques.
We expect that adding concurrency in the form of processes,
threads, and accelerators will reveal new challenges.

Going forward, our aim is to modify or augment physics
codes to achieve deterministic execution, and then to cre-
ate techniques and tools to assist developers with managing
non-determinism within the development process. By com-
bining reproducibility of the execution environment with
non-deterministic codes, we aim to improve both the pro-
ductivity and reliability of computational science.

Acknowledgements

We gratefully acknowledge Kevin Lannon and Michael Hil-
dreth for assistance with the CMS software stack.

This work was supported in part by the National Science
Foundation under grants PHY-1247316 and OCI-1148330,
and the Department of Education under grant P200A120206.

6. REFERENCES
[1] A tool for one-to-one comparison of edm objects.

https:

//twiki.cern.ch/twiki/bin/view/CMSPublic/

SWGuidePhysicsToolsEdmOneToOneComparison.
Accessed: September 28, 2016.

[2] J. Alwall, A. Ballestrero, P. Bartalini, S. Belov,
E. Boos, A. Buckley, J. M. Butterworth, L. Dudko,
S. Frixione, L. Garren, et al. A standard format for les
houches event files. Computer Physics
Communications, 176(4):300–304, 2007.

[3] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup,
R. Brun, N. Buncic, P. Canal, D. Casadei, O. Couet,
V. Fine, et al. Root - a c++ framework for petabyte
data storage, statistical analysis and visualization.
Computer Physics Communications,
182(6):1384–1385, 2011.

[4] A. Bánáti, P. Kacsuk, and M. Kozlovszky. Four level
provenance support to achieve portable reproducibility
of scientific workflows. In Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), 2015 38th International
Convention on, pages 241–244. IEEE, 2015.

[5] A. Barker and J. Van Hemert. Scientific workflow: a
survey and research directions. In International
Conference on Parallel Processing and Applied
Mathematics, pages 746–753. Springer, 2007.

[6] J. B. Buckheit and D. L. Donoho. Wavelab and
reproducible research. Springer, 1995.

[7] R. R. Coveyou. Random number generation is too
important to be left to chance. Applied Probability and
Monte Carlo Methods and modern aspects of
dynamics. Studies in applied mathematics, 3:70–111,
1969.

[8] S. B. Davidson and J. Freire. Provenance and
scientific workflows: challenges and opportunities. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1345–1350.
ACM, 2008.

[9] H. Meng, M. Wolf, P. Ivie, A. Woodard, M. Hildreth,
and D. Thain. A Case Study in Preserving a High
Energy Physics Application with Parrot. In Journal of
Physics: Conference Series (CHEP 2015), 2015.

[10] D. Thain and M. Livny. Parrot: An Application
Environment for Data-Intensive Computing. Scalable
Computing: Practice and Experience, 6(3):9–18, 2005.

[11] A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar,
P. Donnelly, P. Ivie, K. H. Anampa, P. Brenner,
D. Thain, et al. Scaling data intensive physics
applications to 10k cores on non-dedicated clusters
with lobster. In 2015 IEEE International Conference
on Cluster Computing, pages 322–331. IEEE, 2015.

