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SUB-IDENTITIES:

A HIERARCHICAL IDENTITY MODEL FOR PRACTICAL CONTAINMENT

Abstract

by

Philip Snowberger

The operation of modern security systems demands too much sophistication

from the average user. Further, in the face of increasingly common malware and

spyware, users are not empowered to protect themselves. To address these issues, I

propose sub-identities, a simple abstract identity model for practical containment

in the operating system. In this model, user identities form a hierarchy, and

each user may create sub-identities at any time without the help or approval of

an administrator. While this model does not provide the fine-grained security

available with more intrusive or comprehensive systems, it provides a significant

measure of drop-in security that is more accessible to the average user. In this

work, I demonstrate an implementation of the abstract model of sub-identity in

the form of a user-space toolkit, Pluggable Authentication Module, and user-

space filesystem, as well as several applications of sub-identity and a continuum

of disciplines for using sub-identity.



CONTENTS

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: ABSTRACT MODEL OF SUB-IDENTITY . . . . . . . . . 5
2.1 Operations on identities . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Semantics of the ideal model . . . . . . . . . . . . . . . . . . . . . 7
2.3 Uses of sub-identity . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 3: BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Access control models . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Discretionary access control . . . . . . . . . . . . . . . . . 12
3.1.2 Lattice-based / mandatory access control . . . . . . . . . . 13
3.1.3 Role-based access control . . . . . . . . . . . . . . . . . . . 15

3.2 Operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Privilege separation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Sandboxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Virtual machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 4: TOOLKIT IMPLEMENTATION . . . . . . . . . . . . . . . 22
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Drop-in-ness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Creating sub-identities . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Deleting sub-identities . . . . . . . . . . . . . . . . . . . . 24
4.3.3 Changing file ownership . . . . . . . . . . . . . . . . . . . 25
4.3.4 Assumption of identity . . . . . . . . . . . . . . . . . . . . 26

ii



4.3.5 Data structures . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Potential avenues of attack . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Failures of the toolkit to the abstract model . . . . . . . . . . . . 30

4.6.1 UNIX username namespace paucity . . . . . . . . . . . . . 30
4.6.2 Adding implicit filesystem access . . . . . . . . . . . . . . 31
4.6.2.1 Subidfs performance . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 5: APPLICATIONS OF SUB-IDENTITY . . . . . . . . . . . 38
5.1 Descriptions of the applications . . . . . . . . . . . . . . . . . . . 38

5.1.1 Safe X window . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Safe web browsing . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Untrusted hosted execution . . . . . . . . . . . . . . . . . 41
5.1.4 Securing remote execution . . . . . . . . . . . . . . . . . . 42

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Safe X window exploit test . . . . . . . . . . . . . . . . . . 44
5.2.2 Safe web browsing exploit test . . . . . . . . . . . . . . . . 46
5.2.3 Safe web serving exploit test . . . . . . . . . . . . . . . . . 47
5.2.4 Securing remote execution exploit test . . . . . . . . . . . 47

CHAPTER 6: DISCIPLINES FOR USING SUB-IDENTITY . . . . . . . . 49
6.1 A continuum of disciplines . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Per-application . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Per-task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3 Per-user . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.4 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Per-application . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Per-task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.3 Per-user (UNIX) . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.4 Hybrid disciplines . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Enforcement methods . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.1 Voluntary enforcement . . . . . . . . . . . . . . . . . . . . 55
6.3.2 Automatic enforcement . . . . . . . . . . . . . . . . . . . . 56
6.3.3 Compulsory enforcement . . . . . . . . . . . . . . . . . . . 57

CHAPTER 7: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . 59

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

iii



TABLES

4.1 SYSTEM CALL OVERHEAD INCURRED BY SUBIDFS . . . . 36

4.2 SUBIDFS BONNIE BENCHMARK RESULTS . . . . . . . . . . 37

4.3 TIME REQUIRED TO BUILD CCTOOLS . . . . . . . . . . . . 37

iv



FIGURES

2.1 Example of an Identity Hierarchy . . . . . . . . . . . . . . . . . . 6
2.2 Permissions Granted by the Abstract Model of Sub-Identity . . . 8

5.1 Risk of Information Breach with and without Sub-Identity . . . . 43
5.2 Visually Intuitive Usage of Sub-Identity with a Safe Window . . . 45
5.3 Applying Sub-Identities to Untrusted Web Browsing . . . . . . . . 48

6.1 Sub-Identity Usage Disciplines . . . . . . . . . . . . . . . . . . . . 50

v



ACKNOWLEDGMENTS

I would like to thank my wonderful fiancée, Karen Chan, for providing sup-

port, editing suggestions, and insights; my advisor, Dr. Douglas Thain, for his

guidance and intuitions; and all my friends and family for their constant support

and understanding.

In addition, I would like to thank the National Science Foundation for their

generous grant, number CNS 05-49087, which made this work possible.

vi



CHAPTER 1

INTRODUCTION

Users of modern computer systems find themselves awash in a sea of mal-

ware, macro viruses, Trojan horses, and spyware. Faced with the choice between

a rich experience through downloading and running new programs and a dull

experience through software teetotalism, many users elect the former and suffer

the consequences, perhaps unknowingly. Security breaches occur in many ways;

for instance, poorly-written software can inadvertently or ineptly clobber private

files or expose them to public view, and malicious software can vandalize home

directories or send sensitive documents to remote hosts.

You can’t trust code that you did not totally create yourself. (Es-

pecially code from companies that employ people like me.) No amount

of source-level verification or scrutiny will protect you using untrusted

code. - Ken Thompson [39]

Most users lack the expertise or the time necessary to inspect every line of code

of every piece of software that they run. Consequently, users cannot be assured

of the security of their data unless they take measures to compartmentalize or

contain potentially rogue code.

Any security measure must be simple and intuitive, or it will be seldom used

or used incorrectly [15, 42]. Containment mechanisms are no different; if a user
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configures a containment measure poorly because he doesn’t know how to use it

properly, it should be no surprise that his private data could suddenly become

public knowledge. Comprehensive security systems that provide very powerful

access control models are in no short supply [13, 20, 25, 26, 34]. However, while

quite powerful and a formidable defense when properly deployed, these systems

require a great deal of technical expertise to operate correctly. Few users and sys-

tems need security that would satisfy the United States Department of Defense —

many can achieve an acceptable level of security with a simpler mechanism. Fur-

ther, presenting an unnecessarily complicated interface to the user, programmer,

or administrator is a good way to have it be abused or ignored.

Users are most likely to embrace and effectively use a security system which

presents an intuitive interface. Most users have an intuitive understanding of

the family hierarchy, inasmuch as they have a sense that parents have absolute

control over their children. For instance, parents have the authority and the power

to “snoop” in their children’s rooms, but the reverse is not true. Because users

can identify with this concept, a containment system based on a hierarchy is thus

intuitive. There already exist containment techniques that give some impression of

modeling a hierarchy, such as traditional sandboxing [19] and virtual machines [12,

40], however these approaches require a high level of user sophistication to operate

correctly.

Clearly, something more accessible to the average user is necessary. Users are

already familiar with the concept of accounts, if only because they are required

to log in with a user name and password, both on their home system and on

myriad online services. With this familiarity comes the realization that users

cannot damage or read other users’ private information. How then could a user
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protect his files from a potentially malicious piece of code? He could do so by

creating a new identity in which to run the code, relying on the operating system’s

standard protections that keep users from compromising each other. However,

administrators of conventional operating systems are presented with a conundrum:

because the operation of assuming another identity is a privileged operation, a

user cannot protect himself from an untrusted program unless he becomes the

super-user first, which introduces its own set of risks and complications. Note

especially that, in order to restrict one’s own privilege, one must first be elevated to

maximum privilege, exposing the entire system to risk. This offends the principle

of least privilege [31].

To remedy this situation, I propose an abstract model of sub-identity, and

provide an implementation of the model that can be “dropped in” to existing Unix-

style operating systems. In an operating system that implements the abstract

model of sub-identity, every user can create new protection domains, each of which

can have a meaningful name and can be used to enforce access control, perform

auditing, or simply isolate sub-processes from one another.

This work is organized as follows: Chapter 2 presents the abstract model of

sub-identities as it would be implemented in a hypothetical operating system.

Chapter 3 outlines the place of the abstract model of sub-identity in the con-

text of related work. Chapter 4 explores how sub-identities can be approximated

in existing operating systems with a drop-in identity toolkit. Chapter 5 gives

some applications of the sub-identity model including creating a safe X window,

untrusted web browsing, untrusted web serving, and securing remote execution.

Chapter 6 illustrates a continuum of disciplines for using sub-identity, and how
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various points along the continuum vary in security and convenience. Chapter 7

draws some final conclusions.
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CHAPTER 2

ABSTRACT MODEL OF SUB-IDENTITY

In this chapter I describe an abstract model of sub-identities, assuming that

all aspects of the operating system are open to modification. It should be noted

that the operations presented here for interacting with the model need not be

user-facing; they could also be wrapped in an intuitive graphical metaphor, or

used solely “behind the scenes” by applications to protect the good name of the

application by preventing its subversion. An implementation adapted to an ex-

isting system might deviate from this model in certain ways; Chapter 4 discusses

one such implementation.

In traditional systems, the identity space is flat, or else the identities have a

fixed form to them. For such systems, this model is sufficient, because identities

are only created by an administrator and there is usually no need to create a

hierarchy of identities. A hierarchical model of identity can give users the power

to manage their identity domain in much the same way that they have traditionally

had power over their home directories, a chunk of secondary storage.

Figure 2.1 shows how sub-identities might be used in a Unix-like system. Each

edge indicates the creation of a user, running from the superior user to the inferior

user. In this example, the root of the identity hierarchy is the root user, which

is superior to its three inferior users alice, www, and kerberos. The fully-qualified
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ernest:...
david:...
charles:...

kerberos database

root:alice:browser:webapp
full name is:

root:kerberos:david:browser
full name is:

root

alice

betty browser david

kerberos

browser

arbitrary user at run−time
alice can create any

alice:...

kerberos:...

local database

webapp

charles

www

www:...

web server creates names
corresponding to clients

laptop.cse.nd.edu

webdb

Figure 2.1: Example of an Identity Hierarchy. This figure shows a variety of
users that might be employed on a system with sub-identities. The root user
starts services and accepts ordinary logins, consulting a local user database before
granting access. root:alice creates a variety of identities for her personal use.
root:www is used to run the web server, and safely operates each subsystem in
a sub-identity. root:kerberos also accepts logins and creates new sub-identities
corresponding to users that appear in the remote Kerberos database.

name of betty in the hierarchy depicted in Figure 2.1 is root:alice:betty. This fully-

qualified name also permits distinction between identities in different branches of

the tree: root:alice:browser is distinct from root:kerberos:david:browser.

2.1 Operations on identities

The programmatic interface to sub-identities is simple. A process may obtain

its identity by calling getuser(). A process running as the identity x may call

subuser(y) in order to change the identity of the current process to x:y.

It is important to note that the programmatic interface does not dictate how

superior users make authentication decisions. subuser(x) is roughly analogous

to the setuid system call in Unix; it simply modifies the identity of the current

process. Each level of the hierarchy can have its own authentication method. For
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example, the root user can employ the traditional user database in /etc/passwd in

order to validate passwords and admit new users. This database could be made

to only reflect the users in the second level of the tree, instead of being a global

database of users. The local Kerberos service need not consult /etc/passwd ; it

relies entirely on the remote Kerberos service to decide what users to admit. Other

ordinary users may implement their own authentication schemes and simply invoke

subuser(n) as they see fit. Every inferior process retains the ability to perform

subuser(n), but this is safe because subuser(n) does not allow any process to

elevate its privilege. Note that in any implementation, some kind of limit will need

to be placed on the depth and width of the identity hierarchy so that runaway

processes don’t perform a denial of service on the system.

2.2 Semantics of the ideal model

In the ideal identity model, a superior user is “effectively root” with respect

to its inferior users; a superior user may send signals to its inferiors, debug their

processes, modify their data, and perform any other activity necessary to ensure

the safety and correctness of their operation. Naturally, an inferior user has no

such power with respect to its superiors. A consequence of this is that there is very

little reason for any user to assume the root identity, except perhaps to modify

the operating system kernel or install a device driver. Further, this follows the

principle of least privilege, since users can give up privileges without first gaining

more.
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root

root:bob:browser

root:alice:browser

root:alice

root:bob

X

X

XX
5

7

43

1
2

6

Figure 2.2: Permissions Granted by the Abstract Model of Sub-Identity. This fig-
ure shows the default permissions that the abstract model of Sub-Identity grants.
Users have unrestricted access to files belonging to their sub-identities. In this
figure, callouts 1–3 show the access that is allowed by the abstract model. 4–7
show access patterns that are not affected by the abstract model.

The quality of an identity being “effectively root” to its sub-identities can be

defined as:

An action consisting of a subject, verb, and an object shall succeed if
the owner of object is a descendant of subject in the identity hierarchy.

The verb above corresponds to a system call in a traditional operating system.

subject corresponds to a principal — usually simply called a “user”. An object can

refer to a variety of types, depending on the verb. For instance, the verb chown

expects a file identifier as its object, whereas the verb setuid expects a principal

or user identifier.

Note that the above condition is sufficient but not necessary for an action

to succeed; it allows for actions to fail in cases where the object’s owner is not

a descendant of the subject. For instance, since root:alice is not an ancestor of

root:bob and thus not effectively root to root:bob, the sub-identity hierarchy would
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not grant root:alice the ability to read a file owned by root:bob. Note, however,

that some other access control mechanism could grant such access.

The default permissions for accessing objects are thus largely the same as in

traditional Unix: users have access to all files that they own, as well as all the

files on the system that are marked world-readable. In addition to the traditional

Unix permissions, the abstract model gives users full access to files belonging to

their sub-identities. These additional permissions are illustrated in figure 2.2.

2.3 Uses of sub-identity

A few examples following the Figure 2.2 should serve to illustrate uses of sub-

identities.

Suppose that Alice wants to log into the console on a system that uses the

standard Unix authentication mechanism for the top level of the identity hierarchy.

After consulting /etc/passwd, root creates a new identity alice (if, for example,

this is her first time logging in) to run her programs. Alice then proceeds to work

as normal. If she wishes to run any program that she does not fully trust, she

may create a new sub-identity for that program. For example, if she has a visitor

in the office, Betty, who wishes to use her computer, she may simply create a new

user betty. This new identity protects Alice from any mishap by Betty, but it also

gives Betty a clean workspace and the ability to store data under her own name

and return to it later if needed.

As another example, if Alice browses the web in a traditional operating sys-

tem, she runs the risk of being attacked by malicious software. To defend herself

on a system which implements sub-identity, she may create a new user browser

simply for the purpose of running a web browser. If the browser itself should be
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compromised, it will not be able to directly attack any programs owned by Alice

or superior users. To go even further, the web browser itself could create a sub-

identity webapp in order to protect itself from any helper applications it invokes.

The ability to create sub-identities allows for a multi-layered defense.

A web server can also make good use of sub-identities. Many powerful web

services are implemented by running sub-programs from the web server. These

programs often contain security vulnerabilities [29]. A web server may defend itself

by running each sub-process with a sub-identity. Each sub-identity may employ

a meaningful name that allows it to access selected portions of the filesystem.

For example, a database administrator might deploy data and make it accessible

only by the root:www:webdb user, thus isolating files only pertinent to databases

from other web services. Or, the web server might choose sub-identities based the

name of the host issuing the HTTP request, such as root:www:laptop.cse.nd.edu.

Content developers could then use standard filesystem tools in order to control

access to remote users, or to present special content to previously-registered users,

by having separate htdocs directories that are selected based on authentication.

Finally, consider how sub-identities simplify the administration of a network

authentication service such as Kerberos [35]. A traditional Kerberos installation

has a globally shared user database, but it also requires the creation of local

users in /etc/passwd on each machine, corresponding in name and attributes to

users in the global database. This can be an enormous administration hassle

for large sites. Sub-identities simplify the administration of network logins by

divorcing the user database from the enforcement mechanism. Suppose that the

root user on a workstation creates the necessary processes owned by root:kerberos

to admit Kerberos logins. As users log in with Kerberos credentials, they can
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simply be assigned new sub-identities such as root:kerberos:david. No interaction

or coordination with the local user database is thus needed.
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CHAPTER 3

BACKGROUND

The abstract model of sub-identity relates to several bodies of work.

3.1 Access control models

There is a large body of work that is concerned with access control models,

which are generally broken up into a handful of families:

3.1.1 Discretionary access control

A Discretionary Access Control (DAC) mechanism allows the owner (who is

usually also the creator) of an object to dictate who may have various kinds of

access to the object. A well-known example of DAC is Unix mode bits, which are

9 bits arranged into three sets of three bits, each set of bits determining whether

the object is readable, writable, and executable by each of the owner, the object’s

group, and any user. For example, the /etc/passwd file often has the (octal)

mode bits 0644, signifying that its owner has the read and write permissions and

its group and other users have read permission. Access Control Lists are another

example of DAC.

The sub-identity model is not a form of Discretionary Access Control, but a

DAC mechanism may co-exist with a mechanism that implements the abstract
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model of sub-identity. Like other blends of access control models that include

DAC like Flask [34] and REMUS [5], where the sub-identity model and DAC

disagree, the sub-identity model overrides any permissions specified by the owner

of an object. For instance, if alice:browser sets the Unix mode bits of a file such

that only the owner may read and write the file, the sub-identity model still grants

alice complete access to the file.

The property of implicit access to files belonging to sub-identities could be

encoded in DAC by explicitly giving access to each of the identity’s ancestors, but

it would be on an “at-will” basis, since each identity can remove access to a file

from its ancestors by modifying the mode bits or ACL of the file. That is, the

“effective root-ness” would depend on the goodwill of the sub-identities.

The converse, implementing DAC in terms of sub-identities, does not seem

to make sense, because access control in the sub-identity model is based on the

relative ancestry of the owner of the object, over which the owner has no control.

3.1.2 Lattice-based / mandatory access control

Denning formalized [9] and Sandhu refined [32] a model of Lattice-Based Ac-

cess Control (LBAC), which is a mechanism enabling policies that dictate the

direction in which various types of information in a system may flow. Mandatory

Access Control (MAC), which was developed in order to assure that classified

documents do not flow “down” into a lower classification level, is a special case of

LBAC. The canonical example of MAC is that of a military multi-level security

system involving the security labels “Unclassified”, “Classified”, “Secret”, and

“Top Secret”. Such a system makes strong guarantees about the propagation of

information by enforcing the constraint that if a subject has a given clearance,
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such as “Classified”, then it may not write to any file with a lower classification

level, such as “Unclassified”. Thus, information can not leak “down” the lattice

towards a lower classification label, a very desirable property for sensitive military

applications. These types of access control are considered “mandatory” because

they impose strict limits on the operations that an object can undergo, in terms

of the subjects that act on them. Here, a subject refers to a program, such as a

shell or editor, acting on behalf of a human operator, who is termed a user.

Sub-identity is not concerned specifically with the direction of information

flow in a system, so it does not fall into the realm of LBAC or MAC. However,

note that systems that implement LBAC have relatively static classification levels,

which are typically administered by a single security officer. One of the basic ideas

of the sub-identity model is to give users the power to create protection domains

— this idea could be carried over into LBAC, allowing users to create classification

levels in order to give more fine-grained information flow constraints. Allowing

individuals to add security labels to an LBAC model would not enable any down-

ward motion or “leakage” of information, but would allow individual users to

further compartmentalize information according to organizational concerns, such

as sensitive projects with finer-grained security labels than just “Unclassified”,

“Classified”, and so on.

The sub-identity model could, in the absence of a DAC mechanism, be used to

partially emulate LBAC and thus MAC. The basic idea would be to think of the

sub-identity hierarchy as the lattice. Consider a sub-identity hierarchy consisting

of the identities unclassified (the root of the hierarchy), classified, secret, and

topsecret (the leaf of the hierarchy). In this case, a subject running as the classified

identity would be unable to write to objects owned by unclassified. However,
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the classified identity would also be prevented from reading any objects owned

by unclassified, which contradicts the semantics of LBAC. Further, the lattice

formalism requires there to be a “top” security label as well as a “ground” one,

which means that lattices are represented in general as directed acyclic graphs

(DAGs), which are not supported by the abstract model of sub-identity. So, there

is no robust mapping from sub-identity to LBAC.

Could LBAC be used to emulate the abstract model of sub-identity? First,

most LBAC systems have a fixed or semi-fixed set of security labels that the

administrator or security officer is responsible for maintaining, so unless it were

an LBAC implementation that allowed users to define new security labels, one of

the basic requirements of the sub-identity model would not be satisfied. Second, in

LBAC, subjects are allowed to read objects with a security label “less than or equal

to” their security clearance, and are allowed to write objects with a security label

“greater than or equal to” their security clearance, where “less than”, “greater

than”, and “equal to” are interpreted as comparisons on relative order in the

lattice. Because of this kind of far-reaching permission that extends both up and

down the lattice depending on the operation involved, and because of the inability

to create new security labels, LBAC would be an inappropriate base on which to

approximate the abstract model of sub-identity.

3.1.3 Role-based access control

Compared to DAC and MAC, Role-Based Access Control (RBAC) is a more

recent development, which stemmed from the needs of businesses and commercial

entities. In RBAC, the administrator or security officer defines roles to consist of

sets of permissions on objects. These permissions can allow any sort of access, such
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as appending, modifying a record, sending a message, and so forth. In addition,

the administrator assigns zero or more roles to each user.

A canonical example of the necessity of the separation of duties according to

role is a company that is performing “clean room” reverse engineering. The main

legal concern in such a situation is that the reverse engineering team may only

communicate to the clean room reimplementation team through documentation

produced during the course of reverse engineering. The “reverse engineer” role

would be given full access to files relating to the product being reverse engineered,

as well as read and write access to output documentation files. The “clean room”

role would be given full access to the reimplementation code base, as well as

read access to the reverse engineering documentation files, but no access to the

files relating to the product being reverse engineered. In addition, a constraint

would be created that prevented any user from being assigned to both the reverse

engineer role and the clean room role. This demonstrates how a clean separation

of concerns can be easily implemented in RBAC.

Thus, the roles form an extra layer of abstraction over permissions that ease

administration, since promoting a user’s access can mean merely adding another

role to his set of allowed roles. In [33], Sandhu et al formalize role hierarchies and

also describe a way to apply RBAC to the management of RBAC by formulating

administration tasks as first-class RBAC permissions.

Of the existing access control models, the sub-identity model is closest to an

instantiation of this rich definition of Role-Based Access Control. The abstract

model of sub-identity can be approximated in RBAC as follows: Each identity

in the sub-identity hierarchy can be seen as a role, with full permissions over all

the objects “belonging” to the identity. In addition, each role carries a cardinality
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restriction such that it can only be assigned to a single user, which, for the lifetime

of the role, is the user who created it. When an identity creates a sub-identity,

it can be seen as exercising its administrative permission to create a new role.

Similarly, when an identity destroys a sub-identity, it exercises its administrative

permission to delete that role. The “effectively root” relation of the sub-identity

model naturally derives from the role hierarchy, since roles are defined to have at

least the set union of their sub-roles’ permissions.

The sub-identity model could not be used to approximate RBAC, however,

because of the lack of the role concept.

3.2 Operating systems

The MULTICS operating system [30] provides two security mechanisms that

bear on this work. First, the GE-645 provided eight protection rings, which are a

common feature on modern CPUs. Generally, code running in a given protection

ring can perform any access to any higher-numbered ring, but may only interact

with lower-numbered rings through special gates, such as the trap instruction,

which signals that the process would like to enter a system call. The sub-identity

model could be applied to the operating system and the system software, with

higher-numbered rings representing sub-identities. Second, MULTICS user names

had three parts, of the form user.project.compartment, and its ACLs supported

matching against any or all parts thereof. Thus, if the user managed his ACLs in

an ordered fashion, he could approximate a three-layered user hierarchy.

Recent versions of Microsoft Windows come with a security measure called

User Account Control (UAC), which encourages the use of non-privileged users.

This defense measure increases the security of Windows by reducing the incentive
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to use the Administrator account for daily computing. It also uses a file and

registry virtualization feature that allows legacy applications that assume they

have privilege to run as unprivileged users by providing a copy-on-write “view”

of parts of the registry and filesystem. Although the mechanism is different, this

feature of UAC can fool applications into thinking they have privilege, like a

similar concept in the model of sub-identity. However, while UAC encourages the

use of a two-level hierarchy of users similar to the standard Unix model of “root

over all”, it does not provide individual users with the tools they need to protect

themselves. Specifically, it does not allow users to create protection domains, but

focuses on reducing the inconvenience of using a non-Administrator account.

Finally, several security enhancement projects have targeted Unix, attempting

to cleanly add new forms of access control to existing systems. These projects

usually require modifications to the kernel, whether at the source level or at the

module level. For example, TRON [4] adds capabilities to Unix, Flask [34], RE-

MUS [5], and AppArmor [3] all add MAC, DTE-Unix [2] adds domain and type

enforcement, and SELinux [25] and RSBAC [26] add both MAC and RBAC. All

of these projects seek to enforce some additional access control semantics, without

disturbing the Unix concept of identity. The end result of such efforts is consid-

erable power in the hands of administrators or security officers, but no provision

is made for users to manage their own security situation.

3.3 Privilege separation

Privilege separation [7, 28] is a technique that separates out the part of a

process that requires privilege and runs only that part with privilege. A common

paradigm in modern Unix systems is a process that needs to listen on a low-
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numbered port, requiring privilege to do so, but that immediately forks and drops

privilege once it establishes a connection. Two particular examples of this are

OpenSSH and Apache, which listen on ports 22 and 80, respectively, and which

drop privilege once they’ve forked a process to handle the incoming connection. In

general, a process is started with privilege and forks a copy of itself, whereupon the

privileged process drops into a low-functionality mode that waits for and services

requests from the unprivileged process, whereas the unprivileged process proceeds

as normal except for sending requests for privileged operations to the privileged

process.

However, this facility is usually only available to processes which are started

as the superuser, since that is the only user authorized to perform the setuid

system call, which is necessary in order to drop privilege. The sub-identity model

provides a path for unprivileged processes to further drop privileges. Although

the privileged process in practice typically involves the superuser so that low-

numbered ports can be opened or sensitive configuration files can be read, there

are nonetheless scenarios where it would be useful for a regular user to be able to

drop privilege.

Since the toolkit implementation of the ideal model of sub-identity uses PAM

and the setuid facility, it can additionally be said to employ privilege separation.

3.4 Sandboxing

Sandboxing is a well-researched technique for running untrusted code. A su-

pervisor process is responsible for running an untrusted program while auditing

its external operations via a reference monitor or performing them on the pro-

gram’s behalf via a delegate. The trapping technique may be the debugging

19



interface [18, 27, 38], a kernel module [19], system-call reflection [21], or binary

rewriting [22]. In addition to exploring trapping methods, various sandboxes have

explored containment policies, such as associating rights with programs [1, 8],

with data [20], or by deferring writes into a transaction which can be audited

after execution [24].

While an ideal technique for prototyping new concepts in access control, there

are significant disadvantages to sandboxes. As Garfinkel noted [16], the ptrace

interface between the supervisor and trapped process is extraordinarily complex

and subtle. Trapping system calls for sandboxing incurs a significant performance

penalty, and the interface that a sandbox provides to applications is often in-

complete or unreliable as compared to the native operating system interface. Few

sandboxes support the full range of system calls, and many do not support multiple

processes, multiple threads, or other complex interfaces. Thus, while a valuable

research technique, sandboxing is not an appropriate substitute for an operating

system access control facility.

3.5 Virtual machines

Virtual machines have been applied to isolation of faults for security [17, 23].

They are useful when one wishes to isolate a program or operating system com-

pletely from its surrounding environment. However, they are not an ideal mech-

anism for defining or enforcing access control, because they are relatively heavy-

weight.

A hierarchy of sub-identities could be constructed out of nested virtual ma-

chines, as suggested by Ford et al in [14]. While providing both containment of

malicious code and some level of implicit control over sub-identities depending on
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the exact virtual machine technology used, such an approach is unwieldy at best.

This is because virtual machines are complicated pieces of software that generally

require non-trivial administration skills in order to manage. Consider just the

act of setting up a single virtual machine such as VMWare: one must generate

disk images and install an operating system and system software into the virtual

machine. The creation and management of virtual machines is an activity only

accessible to those already skilled in system administration, and is overkill for

regular users who only wish to create protection domains.
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CHAPTER 4

TOOLKIT IMPLEMENTATION

The abstract model of sub-identity can be approximated in a modern operating

system in many ways. In this chapter I discuss the implementation of the abstract

model as a user-space identity toolkit.

4.1 Motivation

Previous work includes implementation of the abstract model of sub-identity

using user-space sandboxes [37]. Many observations from that work motivated

the implementation of sub-identity as a toolkit. For instance, the correctness

of sandboxes is difficult to verify, and their complexity rivals that of complete

operating systems [16]. In addition, the type of sandbox used in [37] imposes a

large performance penalty, since every system call is interposed upon.

4.2 Drop-in-ness

Since a goal of usable security is to be used, the ability to install a security

measure into a wide variety of already-running systems is appealing. The sub-

identity toolkit was designed with this “drop-in”-ness in mind; It consists of a set

of tools that provide an interface to the operations on sub-identity described in

section 2.1, an optional Pluggable Authentication Module called pam subid.so to
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facilitate some of the operations, and an optional Filesystem in Userspace (FUSE)

filesystem called subidfs that provides implicit filesystem access.

The toolkit can be dropped into a wide variety of systems: The tools themselves

require only that the setuid bit is honored. pam subid.so only requires that

the subsystems that need to perform sub-identity-related authentication decisions

support PAM. This is likely to be the case in any modern Unix-like operating

system. Since pam subid.so is not required, PAM support is not required in

order to install the sub-identity toolkit. Likewise, since subidfs is not required,

FUSE support is not required either.

4.3 Implementation details

The tools maintain /etc/subusers, a secondary identity database that records

the ancestry relationships between users. All of the tools access this database in

order to determine whether requested operations should be permitted.

Each supported sub-identity operation is implemented by an aptly-named tool.

In the following discussion, the user name that calls each tool is denoted caller.

4.3.1 Creating sub-identities

subuseradd [-q] [-h] 〈name〉

Creates a new user, directly inferior to the calling user. When the [-q] option is

given, the 〈name〉 given is interpreted as already fully-qualified. In this way, it is

possible to create sub-users that are at the “top level” of the identity namespace.

When subuseradd is invoked, it gains the effective user ID (euid) of root

through the setuid facility. It needs this euid to add users to the system with

adduser and to write to the file /etc/subusers, which is world-readable but only
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writable by root, like /etc/passwd. It makes sure that the requested user name

does not already exist on the system before creating the new user. The new

account is created in the disabled state so that it is impossible for an attacker

to guess its password. Finally, it amends /etc/subusers, adding the relationship

“caller is the parent of 〈name〉”. Further details on the format of /etc/subusers

are in section 4.3.5.

When the [-h] option is given, the home directory for the new user is created as

a subdirectory of the calling user’s home directory. The [-h] option is thus called

the “home-in-home” switch. This approach of placing home directories inside the

parent’s home directory is more aesthetically pleasing than having a single, flat

/home directory containing every home directory, regardless of identity hierarchy

depth. In addition, if [-h] is forced with a compile-time definition, its presence

eases accounting of disk space and maintenance of quotas.

4.3.2 Deleting sub-identities

subuserdel [-q] 〈name〉

Deletes the user given by 〈name〉, which must be inferior to the calling user. The

[-q] option behaves as before, causing 〈name〉 to be interpreted as a fully-qualified

user name.

subuserdel also attains the euid of root through the setuid facility. It needs

this privilege to remove users from the system with userdel, and also to write to

/etc/subusers. When invoked, subuserdel first determines whether 〈name〉 has

any sub-identities. If so, it prints an error message and exits. If not, it invokes

userdel upon 〈name〉, recursively deletes 〈name〉’s home directory, and removes

〈name〉 from caller ’s list of sub-identities in /etc/subusers.
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4.3.3 Changing file ownership

subuserchown [-q] 〈name〉 (〈file〉)+

Makes 〈name〉 the owner of each 〈file〉 that belongs to caller or any of caller ’s

descendants. The [-q] option behaves as above.

subuserchown requires root ’s euid to successfully invoke the chown system

call on filesystem objects that don’t belong to caller. The first thing it does is

ensure that 〈name〉 either is caller or is a sub-identity thereof. It then simply

loops over all the 〈file〉s, making sure that each one belongs to caller or one of its

sub-identities before invoking the chown system call. Ordinarily, the superuser is

the only user capable of changing file ownership. subuserchown is thus necessary

on a Unix system to give users control over their sub-identities’ files.

To illustrate the necessity of subuserchown, consider a situation where alice

causes her sub-identity alice:browser to download a sensitive file — an export of

her banking information, for instance — into alice:browser ’s home directory. The

operating system prevents alice from accessing the file, unless alice:browser makes

it world-readable. However, doing so for even a short amount of time effectively

“lets the cat out of the bag,” — that is, allows other users access to the file —

so some other method for providing access to a file must exist. Even on a system

with more expressive access controls (such as POSIX ACLs), the user would be

required to manipulate the ACL, which is beyond many users.

Therefore the subuserchown command is necessary to enable superior users

to lay claim to files owned by inferior users. It is able to perform this action

because the setuid bit allows it to straddle the domain between two users. See

also section 4.6.2 for a way this restriction can be lifted.
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4.3.4 Assumption of identity

subusersu [-q] 〈name〉

Invokes 〈name〉’s default shell as that user. The [-q] option behaves as above.

Inheriting root ’s euid allows subusersu to successfully invoke /bin/su with-

out providing the password for 〈name〉. This is important because by default

the accounts of sub-identities are disabled — that is, their password hash in

/etc/passwd is set to a string like “*” or “!”. No password can possibly hash

to one of these strings. subusersu is thus required for users to be able to as-

sume the identity of their sub-identities. Another method for providing access to

sub-identities is through pam subid.so.

On systems that support Pluggable Authentication Modules, pam subid.so

offers a more transparent authentication method since it exposes hooks into the

sub-identity model to the system’s existing authentication scheme. For example,

if pam subid.so is installed and the line

auth sufficient pam subid.so

is added to /etc/pam.d/su, then users can invoke su instead of subusersu.

The way this works is as follows: a user runs a PAM-enabled program such

as su, which is linked against the PAM library libpam. libpam processes each

line in /etc/pam.d/su, following the directives contained therein. Encountering

the line concerning pam subid.so, libpam calls dlopen() on the module and calls

its authentication function. pam subid.so’s authentication function verifies that

the calling user (identifiable through the getuid system call) is an ancestor of

the requested user (given by the libpam function pam get user). If so, it returns

success. Since pam subid.so’s approval is sufficient for the auth authentication
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task type, su proceeds just the same as if the user had successfully authenticated

with a password.

4.3.5 Data structures

While the tools do not alter the format of /etc/passwd, they do add and remove

users and maintain a secondary database in the file /etc/subusers.

This file describes a tree structure as an adjacency list. It consists of lines of

the form

parent:child1,child2,. . . ,childN

This line indicates that child1 through childN are direct descendants of parent.

There can be many such lines for a given parent user.

As in the abstract model, the sub-identity hierarchy is a tree. However, this file

format could describe other topologies, such as singly- or multiply-rooted directed

acyclic graphs or even arbitrary graphs with cycles.

4.4 Special cases

On systems which support sufficiently long user names, the issue of whether

to specify the superuser as the ancestor of every user on the system is an aesthetic

one. In a sense, it could be implied that every identity on the system exists by the

grace of the superuser, so the root: prefix can be dropped from each identity. This

minor asymmetry also lends itself conveniently to traditional filesystem placement

of the superuser’s home directory on a different partition than the one containing

/home.

Another issue is the implementation of the identity deletion operation, sub-

userdel, which carries some additional subtlety. Because files’ ownership is
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recorded in the filesystem with the uid of the owner, once the user is deleted

from /etc/passwd, that uid becomes disassociated from any user name. Another

user could be subsequently created and assigned the now-vacant uid. The new

user would then have access to the files left by the previous holder of the uid.

There are at least two possibilities for dealing with this situation.

The distinction here is one of garbage collection: Should files persist past the

lifetime of the identity that created them? This approach corresponds roughly to

allocating memory on the heap, since such memory remains valid when leaving

the scope where it was allocated.

One solution is to “bubble up” the ownership of the orphaned files; that is, the

subuserdel command could change the owner of each file owned by the moribund

sub-identity to its direct parent. This way, once the sub-identity has outlived its

usefulness and is deleted, the parent user can sift through the remains at his leisure,

without worry that another user will gain access to the files. This approach can

be seen as allocating “on the heap”, since the files persist beyond the life of their

owner.

The other approach involves the files being allocated “on the stack”, such that

the files are deleted when their owner “goes out of scope” — that is, when their

owner is deleted. What this means is that the subuserdel command would be

responsible for deleting all the files belonging to the users it deletes. In the interest

of simplicity, subuserdel favors this approach, simply using the [-r] option of the

system’s userdel command, which deletes the user’s home directory and mail

spool.

However, fully realizing either of these approaches would require locating every

file owned by the user to be deleted. There is ordinarily a fairly small candidate
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set of directories to look in for such files, namely, those that the user has write

access to. However, since the subuserchown command allows the user’s ances-

tors to gives files away to the user, the candidate set becomes the union of all the

directories that the user’s ancestors have write access to. This seemingly compli-

cated problem is easily solvable by deeming that the responsibility to delete files

lies with the identity that has write access to the directory containing them. Even

if a user gives away a file in his home directory to one of his sub-identities, he must

consciously do so, so the burden to either delete the file or reclaim ownership lies

with him.

4.5 Potential avenues of attack

On Unix systems, when filesystems become full, various types of serious wide-

spread breakage can occur. To mitigate this risk, Unix systems often set aside a

certain amount of space on each filesystem for the superuser, so that he has some

breathing room to log in and “un-wedge” the system. subuseradd, which any

user can call, lengthens the files that store ancestry information (/etc/subusers)

and the user database (/etc/passwd). Since these files are owned by root, they

are accounted under root ’s reserved disk space. It is thus possible for a user to

generate sub-identities until disk space is exhausted, creating a denial of service.

To solve this, it would be trivial to add to the toolkit a mechanism for en-

forcing policies provided by the administrator. These policies would allow the

administrator to place limits the depth of subtrees of the sub-identity hierarchy

and also on the fan-out of each node in the tree.
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4.6 Failures of the toolkit to the abstract model

While the toolkit implements the abstract model of sub-identity, it cannot do

so completely. It deviates from the abstract model in the following ways:

4.6.1 UNIX username namespace paucity

First, the hierarchical nature of the namespace is imperfect. In theory, an

implementation could store fully-qualified names such as root:alice:browser. How-

ever, many pre-existing system tools and programs can limit the practical length

of user names, so storing and using fully-qualified names is not always possible.

For instance, in our testing, the adduser command in Debian “sarge” only sup-

ports user names of length 32 characters or less, and group names of length 27

characters or less.

In order to get around this restriction, it is convenient to allow users to cre-

ate sub-identities that are not qualified by their own user name. The toolkit’s

subuseradd command supports an option that allows the caller to create these

“top-level” usernames. subuseradd prevents users from attempting to create the

same sub-identity twice. Thus, although alice is free to create unqualified sub-

identities, she cannot create top-level identities that have already been created.

For instance, if the top-level identity browser exists on the system, no other user

can create it.

Second, the toolkit does not provide implicit privilege over their inferior users.

That is, superior identities are not “effectively root” to their sub-identities. While

the sub-identity toolkit does implement the model of sub-identity, restrictions of

the Unix environment and the requirement that the toolkit be a “drop-in” set of

utilities result in the user needing to explicitly perform certain actions instead of
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having them be implicitly allowed by the operating system. For instance, Unix

semantics prevent signals from reaching processes owned by other identities. So,

if alice wants to send a signal to a process owned by alice:browser, she must

take the extra step of assuming the identity of alice:browser with the subusersu

command.

4.6.2 Adding implicit filesystem access

Since users don’t have implicit access to files belonging to their sub-users, they

must explicitly use the subuserchown command if they want to retrieve such a

file from a sub-user. This extra step distances the toolkit implementation even

further from the abstract model and increases the cognitive load on the user; if at

all possible, users should not have to jump through any extra hoops to gain the

access they should have implicitly.

Implicit control of files by superior users is limited by the access control scheme

supported by the filesystem. While it is possible to encode the “effectively root”

file semantics of the sub-identity hierarchy into filesystem permissions, such an

implementation would be problematic.

Traditional Unix filesystem semantics allow the owner to specify coarse-grained

permissions on their files and directories as a vector of 9 “mode bits”, each bit

determining whether the file or directory is readable, writable, and/or executable

by the owner, the group, and by “other”, meaning anybody. The coarseness of

this discretionary access control mechanism is problematic for some situations,

as it does not allow certain access policies to be expressed without some tricky

manipulations of groups.
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Many modern filesystems support Access Control Lists (ACLs), which allow

the user to enumerate precisely which rights are to be allowed to which users for

each object they own. However, as Zurko and Simon noted:

ACLs are the assembly language of security policy. [43]

This is because each filesystem that supports ACLs implements them in slightly

incompatible, idiosyncratic ways, forcing users to internalize the ACL interpreta-

tion algorithm for each filesystem that they use.

Because the interpretation of ACLs and Unix mode bits is obscure or cumber-

some, even if sub-identity semantics were formulated in terms of ACLs or mode

bits, users would most likely be reluctant to disturb this house of cards. There-

fore, rather than encoding implicit privilege into an existing permissions model, it

is attractive to move the implementation down a layer, into the filesystem itself.

The Filesystem in User Space project (FUSE) empowers Linux users to write their

own filesystems without requiring changes to the kernel. FUSE consists of a ker-

nel module, a userspace-to-kernelspace communication device, and a dynamically

linked library that allow filesystems to be implemented as a userspace process.

Since FUSE can be installed into a running system, it fits the “drop-in” criterion.

The toolkit includes a FUSE filesystem called subidfs that mirrors the root

directory, providing a view of the filesystem with the additional semantics of im-

plicit filesystem privilege over sub-identities. It provides this view on a filesystem

mount point, /mnt/subidfs by default. To grant access to identities on behalf of

their sub-identities, subidfs must be executed as the root user.

Filesystems receive system calls such as chown, chmod, unlink, and so forth.

FUSE exposes to the filesystem process the userid associated with the process that

invoked the system call. subidfs can stat the file that is referred to by the system
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call to determine the userid of the object’s owner. Armed with these two userids,

subidfs can refer to /etc/subusers to determine whether to “short-circuit” the

underlying filesystem’s access control logic and allow the request to proceed. It

can disregard this access control logic because it executes as root.

Thus, through the mirrored mount point, users can freely perform any filesys-

tem operations such as chown, chmod, and unlink on files belonging to their sub-

identities. If the superuser provides a setuid -root utility that chroots to the (well-

defined) mount point of subidfs, then users can use this to chroot into the mount

point so that they no longer have to explicitly operate in /mnt/subidfs. How-

ever, because of the overhead associated with FUSE, the user may elect to not

chroot into the subidfs mount point, and simply access files in /mnt/subidfs when

explicitly necessary. See section 4.6.2.1 for further discussion of this possibility.

This approach to granting implicit privilege in the filesystem is not without

its caveats. Because subidfs does not know about any site-specific access control

mechanisms that may be in place, it may not be suitable for deployment at every

site. Rather than erring on the side of permissibility, subidfs only checks Unix

mode bits and /etc/subusers. The concern is that because subidfs does not

honor any additional access control mechanisms, users of such system, expecting

homogeneity of access on the filesystem, may have an adverse user experience.

However, the same essential functionality is present in the toolkit through the

subuserchown tool.

The toolkit, including the tools, pam subid.so, and subidfs can be down-

loaded from http://cse.nd.edu/~ccl/software/subid. It runs on (at least) De-

bian “sarge” and Red Hat Fedora Core 5.
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4.6.2.1 Subidfs performance

The addition of implicit filesystem control over sub-identities is appealing,

however, lifting the cognitive load from the user must not come at the price of

intolerable performance. If every operation carried out through subidfs were to

incur a noticeable latency, the cumulative annoyance could offset the convenience

of implicit privilege.

Table 4.1 lists several “microbenchmarks” showing the amount of overhead

that is incurred by subidfs through FUSE. These figures are the result of averag-

ing the time required to do each system call repeatedly 10000 times on a 2.8 GHz

Pentium 4, averaged over 10 trials. Even though some operations do not seem to

be overtly influenced, write and open system calls tend to incur a hit of around

an order of magnitude in latency.

Table 4.2 shows the results of the Bonnie benchmark on subidfs and on the

native hardware. These results show that subidfs incurs a performance penalty

of only a factor of two for long periods of sustained operations.

However, such microbenchmarks do not demonstrate whether it is feasible to

do all of one’s work inside of subidfs. To that end, I started a shell as root and

used the chroot system call to set its filesystem root to the subidfs mount point,

and then used that shell for some everyday operations such as running Firefox.

Firefox is responsive and performant while running inside subidfs.

I also measured the time required to build cctools, a distribution of the Coop-

erative Computing Laboratory’s software, inside about outside of subidfs. These

numbers were gathered as follows: a script times the operations of extracting the

cctools archive, running the configure script, running make, and deleting the
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directory with rm -rf, both inside and outside of subidfs. In between test runs,

the script both calls sync and takes advantage of a facility added to the 2.6.16

Linux kernel that flushes the page cache, dentry cache, and inode cache when the

ASCII character 3 is written to /proc/sys/vm/drop-caches. Without this extra

measure, some steps of the test were completing unrealistically quickly because,

for instance, configure always checks the same 20 or so system libraries, and they

were fully cached after the first iteration.

The results of this experiment are shown in Table 4.3. Each step of the build

process takes incrementally longer inside subidfs than on the native filesystem.

However, this overhead is scarcely noticeable.

These results favor the use of subidfs as the preferred method for allowing

implicit sub-identity control in the filesystem.
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TABLE 4.1

SYSTEM CALL OVERHEAD INCURRED BY SUBIDFS

system call native subidfs

getpid 0.1861 ± 0.0012 µs 0.1857 ± 0.0003 µs

write 1 B 1.2687 ± 0.0066 µs 29.4926 ± 0.0956 µs

write 4 KB 2.8549 ± 0.0285 µs 34.9164 ± 0.0938 µs

write 16 KB 19.2197 ± 0.0857 µs 141.7822 ± 0.3382 µs

write 64 KB 19.1968 ± 0.0997 µs 142.0165 ± 0.1683 µs

write 256 KB 19.2795 ± 0.0734 µs 142.0126 ± 0.1363 µs

read 1 B 0.6667 ± 0.0138 µs 0.6195 ± 0.0054 µs

read 4 KB 1.3137 ± 0.0167 µs 1.2549 ± 0.0311 µs

read 16 KB 1.1790 ± 0.4136 µs 1.1317 ± 0.3981 µs

read 64 KB 1.1789 ± 0.4138 µs 1.1316 ± 0.3982 µs

read 256 KB 1.1789 ± 0.4138 µs 1.1316 ± 0.3982 µs

stat 1.5448 ± 0.0103 µs 2.5082 ± 0.0392 µs

open 2.7872 ± 0.1309 µs 39.4873 ± 0.4774 µs
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TABLE 4.2

SUBIDFS BONNIE BENCHMARK RESULTS

Sequential Output Sequential Input Random

Per Char Block Rewrite Per Char Block Seeks

KB/sec KB/sec KB/sec KB/sec KB/sec KB/sec

native 40820 42760 21274 35589 46493 112.4

subidfs 25916 19506 14210 21158 48895 100.7

Results of the Bonnie benchmark both inside subidfs and on the native filesystem
on the same hardware. For sustained, intensive filesystem operations, subidfs is
slower than the native filesystem by only a factor of two.

TABLE 4.3

TIME REQUIRED TO BUILD CCTOOLS

unpack configure make remove

native 0.63 ± 0.017 1.33 ± 0.036 18.51 ± 0.102 0.01 ± 0.002

subidfs 0.79 ± 0.054 1.38 ± 0.105 20.84 ± 0.151 0.06 ± 0.002

Time in seconds required to build the Cooperative Computing Laboratory’s cctools
distribution of tools inside and outside of subidfs. The build is broken up into
four steps: unpacking the distribution, running configure, running make, and
removing the source distribution and the built files with rm -rf.
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CHAPTER 5

APPLICATIONS OF SUB-IDENTITY

Application authors can employ sub-identity to isolate the user or the appli-

cation itself from potentially dangerous operations. Thus, the application author

provides for a better user experience by reducing the potential for compromise

of the user’s private information. In this chapter, I provide some examples of

applications of sub-identity.

5.1 Descriptions of the applications

To demonstrate the power and simplicity of the sub-identity toolkit, I applied

it to four scenarios: a “safe window” nested X server, a web browser, a web server,

and securing remote execution over the network. The nested X server provides a

way to run untrusted X applications, to keep them from accessing the X Windows

protocol stream. The web browser uses sub-identity to safely execute programs

downloaded from untrusted sources. The web server uses sub-identity to safely

execute uploaded scripts. A user may use per-task sub-identities to facilitate

remote automation without risking compromise of his own files. The necessary

code changes to employ sub-identity were minimal in these applications.
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5.1.1 Safe X window

The X Windows protocol stream is essentially a bus that applications can

listen on, acting on events that concern them. Keystroke events are visible to

every application listening to the stream. A malicious application with access to

the X display could sniff keystrokes and send them off to third parties. Here I

provide a mechanism to isolate potentially malicious applications in their own X

server with a separate X protocol stream, nullifying the keystroke sniffing attack.

I adapted a script to take one argument, the name of a sub-user of the caller,

and present the user with a Xnest, or nested X Windows server. The script

generates a “magic cookie” that will allow access to the nested X server to the

bearer and merges it with the sub-user’s X authority file, allowing the sub-user to

connect to the nested X server but not the enclosing one. The window manager

that manages this nested X server runs as the named sub-user, so any applications

that the user starts will run as the named sub-user too. The script gives the nested

X server a distinctive background to provide a visual cue, and sets the title of the

window housing the X server to the name of the sub-user. An example of this

setup is illustrated in figure 5.2. X servers can be recursively nested inside others,

so if a user’s situation demands it, sub-users can run nested servers, until resources

are exhausted.

This visual metaphor fits well with the idea of the user hierarchy, since every-

thing that runs in the window is running as the sub-user.

5.1.2 Safe web browsing

It is a common paradigm to design a computationally expensive application

to be downloaded over the Internet and executed on users’ systems [11, 36] in
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order to distribute load to many clients. However, because the user might not

fully trust the provider of the application, or because the user cannot be assured

that the application has not been tampered with [41], users may want to run such

applications inside a protection domain, so that their systems are not at risk of

compromise. Running the untrusted application as a sub-user provides such a

protection domain.

FlashGot is a Firefox extension that allows a URL to be sent to an arbitrary

command on the local system. I wrote a URL handler wrapper script for this

extension that automatically invokes a sub-user whenever the user clicks on an

executable file. The handler downloads the application from the web page and runs

it as a sub-user corresponding to the name of the remote server. This FlashGot

URL handler wrapper script enables users of Firefox to select “Run as a sub-

user. . . ” from the context menu of any link.

The extension uses the fully qualified domain name of the server the application

was downloaded from as the name of the sub-user. However, if the application

were hosted on a secure web page, the name of the sub-user could be taken from

the X.509 certificate presented during the secure connection negotiation. While

this would be a better solution, because it would make identity spoofing attacks

more difficult, it is not yet implemented. Each time the application is run, if

downloaded from the same server, it runs as the same sub-user. Since files owned

by that user can persist between invocations, the application has access to any

files that it created in the previous invocation. Multiple applications can also

run concurrently as the same sub-user. In total, this application of sub-identity

required writing two dozen lines of code as a wrapper script.
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The question of garbage collection arises when considering this application;

some applications’ performance could benefit from caching downloaded data and

program state locally. This is particularly useful for programs that checkpoint

their own status periodically. In addition, allowing state to be stored locally

can reduce network traffic, so it makes sense to support persistent protection

domains. The question, then, is “when should hard drive space given to a sub-

user be reclaimed?” This is simply a matter of local user policy, much as web

browsers allow the user to control when cached or downloaded files are deleted.

5.1.3 Untrusted hosted execution

Consider the scenario of a web site hosting tutorials on some programming

language. Rather than requiring the users of the site to install an interpreter or

compiler for the programming language, the site could offer a service that allows

visitors to create an account and upload programs that they’ve written. Such

an approach would make it easier for beginners to learn languages that require

environments that are difficult to acquire or compile, such as Haskell or Erlang,

would lower the “barrier to entry” for new language learners, and could increase

adoption of the language.

I wrote a CGI script that provides this kind of service. Using the sub-identity

toolkit, this script accepts uploaded programs, changes their ownership to the

identity associated with the connecting user, and then executes them as that

identity. Since any user can use the toolkit once it is installed, any user can then

run this type of service in their own web server on a high-numbered port. The

toolkit insulates the user running the web server from potential attacks included

in the payload of an uploaded program.
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As an example, the user webserver runs a minimal web server called tiny-

httpd [6], which serves the aforementioned script to a previously-established list

of users. The connecting user enters his authentication information, and also a

listing of a program. Upon submission of the form and successful authentication,

the script saves the contents of the text area into a file, changes its ownership

to that of the connecting user with subuserchown, moves it into the user’s home

directory with /bin/su -c (and thus also pam subid.so), then finally executes it,

also with /bin/su -c. The script then prints the output of the program to the

user’s web browser.

Currently, the script requires that the uploaded content be a script that

doesn’t require compilation, since it merely executes the uploaded file. However,

it wouldn’t be difficult to allow the user to choose from a list of compilers.

One of the traditional reasons for running the web server as the superuser is so

that privilege can be dropped to a minimum-privilege user such as nobody when

serving HTTP requests. This new approach to containment eliminates one reason

to run as the superuser; with the toolkit, users and application developers can

easily create new protection domains.

5.1.4 Securing remote execution

Often, when setting up any sort of automation task among multiple hosts in

a cluster, users set up SSH keys, or store some other secret such as a password in

plaintext, so that they don’t need to interactively type their password. However,

one issue with this method is that it is possible for an attacker to discover or

crack the password protecting the SSH key, or to gain access to the file containing

the password. If that were to happen, the attacker would have unfettered access
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alice

alice:dmake

$
$

$
$

alice

dmake

$

host1

host2

...

hostN

Figure 5.1: Risk of Information Breach with and without Sub-Identity. Here is
shown the decreased risk of information breach in the event of a successful attack
gaining a stored secret or brute-forcing an SSH key. The dollar signs represent
valuable files. They are enclosed with dashed boxes that indicate the limits of
each user’s access. Clearly, if alice:dmake’s account is compromised, the potential
for damage is reduced.

to the user’s account on the various hosts of the cluster until the user discovered

the intrusion and removed the offending key from his SSH authorized keys file or

changed his password.

The problem with this scenario is twofold: first, there’s no way to keep users

from storing their passwords in the clear or allowing access to their accounts

through SSH keys, since doing so fills a very real need. Second, the hapless user

can only give away access to his whole account, not to any subset of his account.

By storing a secret to protect access to his account, the user places the “keys to

the kingdom,” so to speak, at risk.

If the user stores a secret such as a password or uses SSH keys with a key agent

to provide automated network access across a cluster, a successful attack gaining

the secret or brute-forcing the SSH key yields total access to the user’s account.

What is needed is a way to reduce the risk in the event of a successful attack.
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If the sub-identity toolkit were installed on all the hosts on the cluster, the user

could just create a sub-user on each host, and store a secret for access to that

sub-user. Figure 5.1 illustrates this setup. For instance, here alice has created a

sub-identity alice:dmake, which she will use for a distributed build system. Should

an attacker gain access to alice:dmake, he will not be able to access alice’s valuable

files, but will only have access to those files which are world-readable and those

that belong to alice:dmake.

By doing so, the user places the keys to only a controlled subset of the “king-

dom” at risk of being stolen.

5.2 Evaluation

What follows is an assessment of the resiliency of each of the above applications

of sub-identity to attack. Where appropriate, an attack is demonstrated to fail

because of the safeguards employed.

5.2.1 Safe X window exploit test

This application relies on the X Windows security model and the MIT-MAGIC-

COOKIE-1 authentication scheme. In short, an X Windows server using this

authentication scheme either generates or is given a “magic cookie” when it starts,

and connecting to such a server requires presenting this cookie. Thus, controlling

access to an X Windows server consists of controlling access to the cookie.

The script takes care of giving the sub-user the cookie associated with the

nested X Windows server. It does so by generating a new X Authority file with

the xauth command, populating it with a single randomly-generated cookie. The

script runs Xnest, instructing it to use the cookie in this file as its magic cookie.
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Figure 5.2: Visually Intuitive Usage of Sub-Identity with a Safe Window. A nested
X server is shown containing a sub-user’s X session. The callout shows that the
name of the sub-identity is displayed in the title of the nested X server. Since the
window manager is running as the sub-user, every application inside the nested X
server will also run as the sub-user, providing a visual metaphor to the model of
sub-identity. The nested server is shown attempting to read the keystrokes in the
enclosing X server with the xev program, which hooks into an X event stream.

It uses pam subid.so to add the entry from this authority file to the sub-user’s

∼/.Xauthority file and start a window manager in the nested server. This last

action allows the sub-user access to the nested X server.

The key to securing access to the enclosing server’s protocol stream is the

location of the cookie that grant access to the enclosing server. The only place

this cookie exists on disk is in the superior user’s ∼/.Xauthority file, which is

inaccessible by the sub-user because of Unix permissions.

This application is illustrated in Figure 5.2, which shows a prevented attempt

to hook into the enclosing X Windows server’s protocol event stream.
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Note that there is a possibility of loss of containment in this application of

sub-identity, if the superior user turns off access control to the enclosing X server.

In this event, his X server becomes open to a wide variety of attacks, including

keystroke sniffing. However, doing so requires an explicit action on the part of the

user: he must change the arguments given to Xnest in the script. In addition,

the superior user could circumvent the X authority model by explicitly giving the

cookie to the sub-user, whether by typing it in from memory, or granting the

sub-user access to a file containing it.

It should be noted that Xnest was written for testing purposes and it is not

yet widely believed to have airtight security. While this is an open issue with the

implementation of this application, the mechanics of the situation do not detract

from the elegance of the visual metaphor.

5.2.2 Safe web browsing exploit test

Figure 5.3 shows an attempted attack that is prevented because the program

is run inside the protection domain of a sub-identity.

This application of sub-identity gives protection from attacks by creating a

containment area in which to run the downloaded program. When a malicious

application attempts to vandalize the system, the attack fails, because of the

ordinary Unix protection mechanism that keeps users from attacking each other.

Note that normally, these protection mechanisms do little to prevent certain kinds

of denial of service attacks, such as attempting to exhaust the space of process

identifiers, using up as much processing time and I/O bandwidth as possible, and

filling up filesystems. For this reason, the system should also have sensible quotas
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and, if possible, sensible defaults for maximum numbers of processes and so forth

per user in place.

5.2.3 Safe web serving exploit test

This application of sub-identity behaves similarly to the previous one, except

that the potentially malicious content is being “pushed” instead of “pulled”. The

mechanics of the situation are exactly the same, so the above caveats about denial

of service attacks also apply to this application.

5.2.4 Securing remote execution exploit test

Note that this extra measure of security does not make it any more difficult

for a would-be attacker to brute-force an SSH key or password; it is concerned

merely with mitigating the damage caused by such a break-in.

With that said, the situation is again a close parallel to the above situations.

If an attacker should succeed in breaking in, he will find he has access only to

those files that are world-readable on the system as well as those owned by the

cracked sub-identity. It falls on the user controlling the sub-identity to distribute

his “eggs” in his “baskets” appropriately.
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Figure 5.3: Applying Sub-Identities to Untrusted Web Browsing. A modified
Firefox is shown that allows the user to run untrusted programs as a sub-identity.
On the top is Firefox with the FlashGot extension enabled, and the new menu
item highlighted. Clicking the menu item creates the terminal on the bottom,
running the program which was clicked on. In callout A, the program is shown
being downloaded. B shows that the process is running as a sub-user named
www nd edu. C shows a failed attack against the superior user psnowber.
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CHAPTER 6

DISCIPLINES FOR USING SUB-IDENTITY

To further illustrate the practical applicability of sub-identity to the working

habits of users, we now present a continuum of disciplines for using sub-identity.

6.1 A continuum of disciplines

A discipline for using sub-identity is a decision process that a user carries out

to determine what identity a given process will run as. These disciplines are meant

to provide the reader with an intuitive feel for how one might employ sub-identity

in day-to-day computing.

Each point on the continuum represents a trade-off between usability and

process isolation. This trade-off stems from requiring the user to intentionally

push files between identities — a lax discipline will require fewer such extra steps

and will therefore be more convenient, whereas a strict discipline requires more of

these steps but will be more resistant to attack. It is up to the user to determine

a discipline for using sub-identity that best fits his own comfort level.

The continuum of disciplines has various points that are useful to attach labels

to and consider in more detail. Figure 6.1 presents a working example, framed as

two specific points along the continuum of sub-identity use: both alice and bob

receive some documentation as an e-mail attachment, which they edit and then
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alice

outlook editpad gnucash

outlook editpad

gcc.exe iexplore

gnucash

iexplore

gcc

.tex

.ofx

.cpp

.cpp

.tex

.cpp

.ofx

(a) One identity per application

bob

email development finance

editpad

iexplore gnucash

iexploregcc.exe

outlook

.tex

.tex

.cpp

.ofx

(b) One identity per role

Figure 6.1: Sub-Identity Usage Disciplines. Solid arrows represent operations on
files; dashed arrows that cross identity boundaries represent an explicit action that
the user must perform. The discipline in (a) is more secure, while the discipline
in (b) allows more convenience.

reply to with their changes. Also, they both download a .cpp source file from

the Internet, make a few changes to it, compile it with gcc.exe, and then run

it. Last, they both download their latest banking information from their bank’s

website and import it into GnuCash. We term the discipline observed by alice

as the “per-application” discipline, and that observed by bob as the “per-task”

discipline.

The disciplines given here are just two of the many that are possible, given the

flexible control over security that sub-identity gives.

Let us then consider the two disciplines, and how their practitioners alice

and bob fare, if any of the following hypothetical events were to occur: a flaw

is discovered in how GnuCash imports banking data, leading to an exploit that

allows an attacker to execute arbitrary code; the .cpp file the user downloads

also contains a stealthily hidden code payload that acts as a Trojan horse; the
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documentation file that arrives is actually a malicious executable disguised as a

.tex file.

Since this discussion is focused on how a user may use sub-identity to protect

himself, we assume that the host operating system is not itself vulnerable to

privilege-escalation attacks.

6.1.1 Per-application

In this discipline, illustrated in figure 6.1(a), user runs every application as its

own identity.

Note that if any of the malicious content involves “zombifying” the computer

— that is, allowing the machine’s network bandwidth other resources to be used for

unauthorized purposes — then sub-identity will not prevent the attack. Because

of this, it is necessary for users to continue to use anti-virus and anti-spyware

software.

The additional security granted by sub-identity comes at the expense of some

usability; every step in alice’s workflow that involves a file changing hands between

programs becomes a speed bump, since the file must explicitly be transferred

across the identity boundary with subuserchown or subidfs.

6.1.2 Per-task

Many users have more involved workflows involving multiple applications such

as an entire office suite, such that the previous discipline would be cumbersome. In

contrast to application-specific identities, having task-based identities can reduce

the number of times the user needs to explicitly bring a file across an identity

boundary.
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The second discipline gives every “task” or “role” an identity of its own, po-

tentially with some applications being able to run in multiple identities. However,

even though the same application may run in multiple identities, they each store

their configuration and so forth in their respective identities’ file areas or registries.

This discipline is illustrated in figure 6.1(b).

This discipline is more susceptible to the spread of malware and spyware:

When bob causes GnuCash to execute the arbitrary code from the payload of the

compromised banking information, it also has access to the finance identity’s web

browser and could thereafter sniff all keystrokes that are typed into the browser.

In addition, bob’s browsing history could be broadcast to the whole Internet.

When bob runs the compiled program, his compiler, editor, and development ’s

browser files are all equally compromised. Finally, when bob opens the executable

disguised as a documentation file, the same breach occurs, and the whole devel-

opment identity is compromised.

6.1.3 Per-user

It should be noted that the opposite end of the continuum from the “per-

application” discipline could be called the “Unix” discipline: it is the degenerate

discipline in which every application belonging to a given user runs as the same

identity.

6.1.4 Hybrid

Over time, a user who is using one of the above disciplines may grow tired of

the restrictions imposed and create an identity explicitly for bending the discipline

in a specific case:
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If a user using discipline 6.1(a) constantly exchanges a file between a given

set of applications, it may make sense to allow them to run as the same identity.

Conversely, a user who is using discipline 6.1(b) may be alerted to a vulnerability

in an application that is part of his main workflow, causing him to isolate the

offending program in its own identity.

These users are now using a hybrid discipline that involves some application-

specific identities and some role-based or task-based identities; the exact mix of

disciplines will vary depending on the situation, the desired level of security, and

the level of inconvenience that is tolerable in the name of security.

6.2 Evaluation

The following sections detail the ease of use and the resistance to attack of

each of the disciplines for using sub-identity.

6.2.1 Per-application

This discipline is resistant to many forms of malware: when alice makes Gnu-

Cash execute the malicious payload, the gnucash identity is compromised, but the

penetration stops there because the identity has access only to a very restricted

of files. Similarly, when alice runs the compiled program as her sub-identity, it is

unable even to corrupt the compiler. If alice attempts to open the documentation

file, executing the malicious content, her editor and all the files accessible to it be

compromised, but the payload cannot access her email address because it exists

in another identity.

53



6.2.2 Per-task

This discipline is more susceptible to the spread of malware and spyware:

When bob causes GnuCash to execute the arbitrary code from the payload of

the compromised banking information file, it also has access to the finance iden-

tity’s web browser and could thereafter sniff all keystrokes that are typed into

the browser. In addition, bob’s browsing history could be broadcast to the whole

Internet. When bob runs the compiled program, his compiler, editor, and devel-

opment ’s browser files are all equally compromised. Finally, when bob opens the

executable disguised as a documentation file, the same breach occurs, and the

whole development identity is compromised.

6.2.3 Per-user (UNIX)

This discipline provides the least resistance to malware, since there is no mech-

anism protecting users’ private files. A user of this discipline can expect their files

to be completely compromised, if they are not encrypted or otherwise obfuscated.

However, user-applied cryptography is unintuitive for the average user [42]. Users

should therefore be encouraged to make use of sub-identities on systems that

support them.

6.2.4 Hybrid disciplines

Whether the user is conscious of the continuum of sub-identity disciplines or

not, if he chooses to work at some point in between the extremes of the continuum,

the consequences of that decision on his security can be subtle.

When a user chooses to run two applications in the same identity, they may

be conceptually very different programs, such as a text editor and a C compiler,
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or an email program and a spreadsheet application. There is a potential for

the user to forget the way in which he has drawn the lines surrounding each

of his sub-identities. Should this occur, the user could inadvertently suffer a

wider compromise than he expects when his email program is infected by malware

contained in a spreadsheet.

6.3 Enforcement methods

The use of sub-identity discipline can be either a “best-effort” assignment of ap-

plications to identities, or it can be more strictly enforced or made “compulsory”,

perhaps by the operating system itself or by the user interface of the operating

system.

6.3.1 Voluntary enforcement

With the voluntary enforcement method of sub-identity discipline, the user is

tasked with starting each application as the correct identity.

Visual cues given by the safe X window detailed in section 5.1.1 make it easier

for the user to start applications as the correct identity. For command-line appli-

cations, the user could rely on his shell to remind him what identity it is running

as, by changing the default shell prompt to include the user name.

This enforcement method is the least onerous of the ones given here, since

it allows the user to start applications as a given identity without interference.

However, because it doesn’t make any efforts to guide the user, a user who is still

learning to use sub-identities may make a misstep and compromise the integrity

of a trusted identity by running untrusted code as that identity.
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6.3.2 Automatic enforcement

With the “automatic” enforcement method, the user is removed to a certain

degree from deciding which identity each application should run as. This method

of enforcement allows the user to specify the identity each application should run

as, while also taking care of the extra step of explicitly changing identity before

invoking the application.

To implement this method, the operating system’s graphical shell could be

altered such that the first time the user runs an application, the shell asks the user

what identity the application should run as. The shell would then automatically

cause each application to run as the assigned identity.

However, this approach has several usability issues: First, because the identity

change is not caused by an explicit action of the user, the graphical shell would

likely need to provide some consistent visual clue that applications are being run

as a different identity, such as dynamic security skins [10]. Such measures require

some operating system support to prevent the visual clues from being faked by

programs that want to trick the user into thinking that an application is running

with reduced privilege when in fact it is not.

Second, without invasive changes to the graphical shell such as enabling it to

perform binary rewriting or system call interposition to catch exec system calls

performed by the applications it runs, it would not know when applications were

starting other subsidiary applications, so it would not be able to impose the user-

assigned identity upon the subsidiaries. This could result in an application being

run outside the identity that the user has chosen for it. Unless the user is aware

of this, he is likely to assume that his files are safe from compromise by the

application, which would not necessarily be the case.
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This approach would not remove from the user the responsibility for deter-

mining which applications should run as which identities. However, if the above

issues with this enforcement method were addressed, it would ameliorate some of

the danger of inadvertently forgetting to invoke a sub-identity before running an

application. This danger would be reduced because the user would have to decide

which identity to run each application as only once, because thereafter, the shell

could take care of actually invoking the application with the given identity.

6.3.3 Compulsory enforcement

The “compulsory” enforcement method addresses the limitation of the auto-

matic enforcement method that necessitates binary rewriting or system call in-

terposition. While still giving the user the ability to provide a mapping between

applications and identities, this method relies on an operating system change to

enforce the mapping.

The operating system kernel itself could be modified to enable compulsory en-

forcement, by adding code to the exec family of system calls that ensures that the

program is running as the correct identity. Since exec and its relatives represent

a single point of entry for the invocation of applications, modifying them would

suffice to correctly assign each application to its assigned sub-identity.

However, such a mechanism would be intrusive in that the supporting code

would need to span both user space and kernel space, as well as the intersection

between the two. User space code would be required to interact with the user

and to allow the specification of a sub-identity for each application. Kernel space

code would need to be added to add the extra functionality to the exec family
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of system calls. Interfacing code between user space and kernel space would be

necessary to inform the kernel of the user’s application 7→ identity mappings.

This additional code would not be appropriate for the implementation pre-

sented in Chapter 4, because it would violate the “drop-in” requirement. However,

if one were designing a new operating system or an implementation of the sub-

identity without a focus on installability on a running system, this enforcement

method would be more viable.
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CHAPTER 7

CONCLUSION

Sub-identity empowers the ordinary user to take charge of his security envi-

ronment. This work presents an abstract model of sub-identity and described a

working, drop-in implementation of that model in the form of a user-space util-

ity toolkit, Pluggable Authentication Module, and a FUSE filesystem. In addi-

tion, it also demonstrates four applications of sub-identity that were implemented

somewhat trivially with the identity toolkit. Further, it describes a continuum

of disciplines for using sub-identity that can be used as guidelines for personal

use, allowing the individual to strike his own balance between convenience and

compromise isolation.

The experience of implementing sub-identity demonstrates several things. First,

sub-identities are easy to use! A simple user interface added to a web browser is

accessible to nearly any user, unlike many other complex security technologies.

Second, very few code changes were necessary to implement applications that use

sub-identities for protection. Experimentation shows that the implementation of

sub-identities protects superior users from undesired actions by inferior users, such

as unauthorized deleting of files or sniffing of the X Windows protocol stream.

Only by permitting the individual user some control of his own ad-

ministrative environment can one insist that he take responsibility for

his work. - J. Saltzer [30]
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Ultimately, sub-identity gives users the tools necessary to protect themselves

in an undeniably hostile computing environment. In systems that do not give

this power to individual users, each user is a defenseless participant that relies

on the administrator for protection. In a modern, highly-networked computing

environment, this is no longer acceptable; Users must have tools that allow them

to take responsibility for their own safety. Sub-identity is a step towards robustly

providing this capability in an accessible way within the operating system.
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