
Sub-Identities: Toward Operating System Support
for Distributed System Security

Phil Snowberger and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame

Abstract

We propose sub-identities, a new model for protection domains in the operating system. In this model,
user identities are arranged in a hierarchy, allowing each user to create arbitrarily named sub-identities
at runtime without the help or approval of an administrator. This model gives users control over their
own environment and also simplifies the interaction of distributed systems with local operating systems.
The abstract model of sub-identity can be approximated by three implementations that vary in fidelity and
complexity: user-level sandboxes, a username toolkit, and kernel modifications. We implement one method
— user-level sandboxes — and demonstrate how sub-identities can be applied to the problems of secure
login and untrusted web browsing.

1 Introduction

Distributed systems rely on operating systems to provide basic mechanisms of security and resource
management. Without sufficient mechanisms on local systems, it is difficult or impossible for a distributed
system to provide strong guarantees [28, 3]. An excellent example of this is the problem of containment.
If a distributed system is to protect one user from another, it must have a method of containing processes
on each local node. Without an effective method of containment on each node of a system, no amount of
sophistication in the distributed system will protect a user’s programs or data on a single node.

Unfortunately, the mechanisms available for containment in today’s operating systems are limited. In
both the Unix and Windows families of operating systems, there are only two levels of privilege: ordinary
users and the super-user (root or Administrator.) Ordinary users are contained: they cannot affect each
other’s programs or data without the permission of the owner. Only the super-user has the ability to perform
containment by creating processes owned by distinct users. In addition, the super-user must also maintain a
list of all users authorized to access the system.

This simple model of identity is poorly suited for supporting distributed systems. A computing envi-
ronment today consists of a potentially unbounded set of users. Non-technical users commonly download
and run programs written by remote and possibly anonymous authors. Ordinary people communicate with
hundreds of web servers, many identified by strong public key credentials. A large web site might accept
thousands of new user identities in a day. A grid computing system [15] might facilitate the interaction of
hundreds of scientists, along with their affiliated students, colleagues, and administrators. In all of these
cases, there is no global super-user, nor can one generate a static list of users for any one machine.

Consider the user that wishes to download a program from the web and run it on his personal machine.
Because the program is not fully trusted, the user would like to run within a protection domain so that it

1

DRAFT October 31, 2005 2

cannot read or write his personal data. Most users are well aware that operating systems support multiple
identities, if only by virtue of the fact that they are required to login with a name and password. The obvious
thing to do is run the program with a new user identity, perhaps simply as a user named webapp. This
allows the operating system to accept responsibility for protecting the user from the untrusted program.
The program would be unable to read the supervising user’s designated data, and unable to write new data,
except perhaps in a private directory. Even better, the identity of the program’s creator, such as JoeHacker or
BigSoftwareCorp, may already have been established via an exchange of credentials. If this identity could
be attached to the program, its actions could be audited and traced back to the responsible party.

Ordinary users are unable to do this because they cannot create new identities, and thus cannot create
new protection domains. Even if a user could become the super-user on his personal machine, it makes little
sense to run a large, complex, and possibly untrusted program such as a web browser as the super-user. A
vulnerability in the browser itself would put the entire system at risk. Either way, the user runs untrusted
programs at his own peril. Thus, users of conventional operating systems are presented with a catch-22. A
user cannot protect himself from an untrusted program unless he becomes the super-user first. But, running
as the super-user introduces its own set of risks and complications. That is, in order to restrict one’s own
privilege, one must first be elevated to maximum privilege, exposing the entire system to risk. This offends
common sense, as well as the principle of least privilege [36].

We propose to remedy this situation by introducing sub-identities into the operating system. Using sub-
identities, every ordinary user can create new protection domains on the fly. Each new domain has a mean-
ingful name and can be used to enforce access control, perform auditing, or simply isolate sub-processes
from one another. Sub-identities also simplify the mapping of identities in distributed systems into pro-
tection domains on operating systems. In this paper, we present an abstract model of sub-identities as it
would be implemented in a hypothetical operating system. We also describe how sub-identities can be ap-
proximated with varying degrees of fidelity and complexity by employing user-level sandboxes, a username
toolkit, and a full-blown kernel implementation. We describe our experiences with the first implementation
using sandboxes, and apply it to the problem of untrusted web browsing and a secure login server.

2 An Abstract Model of Sub-Identities

We begin by describing an abstract model of sub-identities, assuming that all aspects of the operating
system are open to modification. We recognize that an implementation adapted to an existing system might
deviate from this model in certain ways, but we defer that discussion until later. Figure 1 shows how sub-
identities might be used in a Unix-like system. Each edge indicates the creation of a user, running from
the superior user to the inferior user. In this example, the root of trust is the root user, which is superior to
its three inferior users alice, www, and kerberos. We assume that the root user is responsible for accepting
console logins and for starting service processes, much as in Unix.

The programming interface to sub-identities is simple. A process owned by user x may call subuser(n) in
order to change the identity of the current process to x:n. A process may create a new user identity without
abandoning its own by invoking fork() before subuser(n). This naming convention reflects the hierarchical
nature of user identities. For example, the full name of betty in Figure 1 is root:alice:betty. This full name
also permits distinction between identities in different branches of the tree: root:alice:browser is distinct
from root:kerberos:david:browser. A process may obtain its identity by calling getuser().

It is important to note that the programming interface does not dictate how superior users make authen-
tication decisions. subuser(x) is roughly analogous to setuid(n) in Unix; it simply modifies the identity of
the current process. Each level of the hierarchy has its own authentication method. For example, the root
user can employ the traditional user database in /etc/passwd in order to validate passwords and admit new
users. This database only reflects the users in the second level of the tree: it is no longer a global database
of users. The local Kerberos service need not consult /etc/passwd. It relies entirely on the remote Kerberos

DRAFT October 31, 2005 3

ernest:...
david:...
charles:...

kerberos database

root:alice:browser:webapp
full name is:

root:kerberos:david:browser
full name is:

root

alice

betty browser david

kerberos

browser

arbitrary user at run−time
alice can create any

alice:...

kerberos:...

local database

webapp

charles

www

www:...

web server creates names
corresponding to clients

laptop.cse.nd.edu

webdb

Figure 1. Example of Sub-Identities
This figure shows a variety of users that might be employed on a system with sub-identities. The root user
starts services and accepts ordinary logins, consulting a local user database before granting access. alice
creates a variety of identities for her personal use. www is used to run the web server, and safely services
each incoming request with a sub-identity. kerberos also accepts logins and creates new sub-identities
corresponding to users that appear in the remote Kerberos database.

service to decide what users to admit. Other ordinary users simply invoke subuser(n) as they see fit. Every
inferior process retains the ability to perform subuser(n), but this is safe because subuser(n) does not allow
any process to elevate its privilege.

A superior user is effectively root to its inferior users. A superior user may send signals to its inferiors,
debug their processes, modify their data, and perform any other activity necessary to ensure the safety and
correctness of their operation. Naturally, an inferior user has no such power with respect to its superior. This
means there is very little reason for any user to assume the root identity. Of course, there are a few cases
where root is still needed, such as to modify kernel structures or install device drivers.

A few examples following the figure above should serve to illustrate uses of sub-identities.
Suppose that Alice attempts to log into the console. After consulting /etc/passwd, root creates a new

identity alice to run her programs. Alice then proceeds to work as normal. If she wishes to run any program
that she does not fully trust, she may create a new sub-identity for that program. For example, if she has a
visitor in the office, Betty, that wishes to use her machine, she may simply create a new user betty. This new
identity protects Alice from any mishap by Betty, but it also gives Betty a clean workspace and the ability
to store data under her own name and return to it later if needed. If Alice is browsing the web, she runs the
risk of being attacked by malicious software. To defend herself, she may create a new user browser simply
for the purpose of running a web browser. If the browser itself should be compromised, it will not be able
to directly attack any programs owned by Alice or superior users. To go even further, the web browser itself
might create an inferior user webapp in order to defend itself from any subprograms that are downloaded
and run locally. The ability to create sub-identities allows for a multi-layered defense.

A web server can also make good use of sub-identities. Many powerful web services are implemented
by running sub-programs from the web server. These programs are often hastily composed scripts and thus
contain many security weaknesses [34]. A web server may defend itself by running each sub-process with a
sub-identity. Each sub-identity may employ a meaningful name that allows it to access selected portions of

DRAFT October 31, 2005 4

passwd file

browser:105:...
alice:23:...

(B) Sub−Identities via a Toolkit

sandbox user:

firefox

sandbox calls

sh
process owner:

23 (alice)

process owner:
23 (alice)

file
file owner:
23 (alice)

(A) Sub−Identity via Sandboxing

subuser

sh

firefox

subuser file
0 parent of 23
23 parent of 105

105 (browser)

0 (root)

23 (alice)

file owner:
105 (browser) file

process owner:

process owner:

process owner:
root:alice:browser

root:alice:browser

firefox

sh

filefile owner:

process owner:

root:alice
process owner:

fork()
subuser("browser")

exec("firefox")

(C) Sub−Identities in the Kernel

no implicit
privilege

privilege
implicit

privilege
implicit

ACL

system
trapped

root:alice:browser

Figure 2. Three Implementations of Sub-Identity Compared
Three methods of implementing sub-identities are shown. (A) A sandbox can be used to emulate sub-
identities in the kernel. More complex access controls are added to the filesystem by way of auxiliary
ACL files. (B) A toolkit with setuid privileges can create and delete sub-accounts at run-time. This is more
reliable than a sandbox, but has less flexible access control. (C) Kernel modifications allows for a reliable
implementation with flexible access control.

the filesystem. For example, a database administrator might deploy data and make it accessible only by the
root:www:webdb user, thus preventing access by other web applications. Or, the web server might choose
sub-identities based the name of the host issuing the HTTP request, such as root:www:laptop.cse.nd.edu.
Content developers could then use standard filesystem tools in order to control access to remote users. Most
importantly, the web server no longer needs to run as the root user. If the web server itself is compromised,
the entire system is not lost. The use of sub-identities defends servers from malicious clients, but it also
defends the entire system from compromised servers.

Finally, consider how sub-identities simplifies the administration of a network authentication service such
as Kerberos [39]. A traditional Kerberos installation has a globally shared user database, but it also requires
the creation of local users in /etc/passwd on each machine, corresponding in name and attributes to users in
the global database. This is an enormous administration hassle for large sites. Sub-identities simplify the
administration of network logins by divorcing the user database from the enforcement mechanism. Suppose
that the root user on a workstation creates the necessary processes owned by root:kerberos to admit Kerberos
logins. As users log in with Kerberos credentials, they are simply assigned new sub-identities such as
root:kerberos:david. No interaction or coordination with the local user database is needed.

3 Implementation Choices

There are many possible ways of approximating this abstract model of sub-identity. In this section, we
discuss how sub-identity could be implemented with a user-level sandbox, with a username toolkit, or within
the kernel itself. Each of the techniques varies in semantics and implementation quality. Figure 2 shows
how these three techniques differ on a common example. In each case, the user alice creates a sub-identity
browser in order to run the web browser process firefox.

Sandbox Implementation. Sub-identities can be approximated by using user-level sandboxes. In a
sandbox, an untrusted application is run under the control of a supervisor process that traps and examines all

DRAFT October 31, 2005 5

of its system calls, typically through the debugging interface. The supervisor may then accept or reject the
attempted actions according to some security policy. Typically, the user must provide a mandatory access
control (MAC) list that specifies the objects that the untrusted program is allowed (or not allowed) to access.
By necessity, much of this specification deals with access to system files and libraries that the user may not
be familiar with. This can be a significant burden for users that are not technically inclined.

A sandbox can be adapted to provide sub-identities by changing the policy controls within the supervisor
process. Instead of consulting a MAC list, the sandbox is modified to carry a free-form identity string with
the contained processes. This identity string is then used to enforce discretionary access control (DAC) on
file system objects. This technique is known as identity boxing, and is described in futher detail in an earlier
paper [40]. To create an identity box, the user simply invokes the sandbox with the desired identity and the
program to be run. The identity may be any free-form string and need not correspond to any existing user
name. Figure 2(A) shows how this works for Alice: she simply invokes sandbox browser firefox.

A process running inside the identity box is treated as if it possesed an identity completely distinct from
the superior user. It cannot access files or manipulate processes owned by the superior user. It may only
access files where given explicit permission by the filesystem. Unfortunately, Unix-like filesystems do not
allow for sophisticated access control, so the identity box looks for files named . acl in the filesystem
to express more detailed policies on a per-directory basis. For example, Alice might put the following in
˜/.firefox/. acl in order to allow root:alice:browser to read, write, and list files in the directory.

root:alice:browser rwl

Of course, we cannot expect that the entire file system will be retrofitted with ACL files to support sub-
identities. If a new directory is created within the identity box, it inherits the ACL (if any) of the parent
directory. Where there is no ACL, the contained process is given access only to objects that are world-
readable or world-writable. This also has the pleasant side effect that standard system files and libraries are
accessible to sub-identities without any special handling.

Note that the isolation of a process in a sandbox is not symmetric. A superior user has implicit privilege
over processes within a sandbox, and is able to send signals, modify address spaces, and directly manipu-
late files owned by the sub-identity. The only restriction is that an external process cannot debug a process
within the identity box, as the debugging interface is controlled by the supervisor. Otherwise, the host op-
erating system has no direct knowledge of the sub-identities and does not prevent superiors from modifying
inferiors. This is consistent with the rules of the abstract model.

Toolkit Implementation. Alternatively, sub-identities may be approximated within a Unix-like operating
system by employing a toolkit capable of modifying the local user database in /etc/passwd. A secondary
database in /etc/subusers would record the relationship between users. The various tools would gain root
privilege via the setuid facility as needed. Key commands in the toolkit would be:

subuseradd <name> Create a new inferior user by modifying /etc/passwd and /etc/subusers.

subuserdel <name> If the named user is inferior to the current user and has no inferior users of its own,
then delete the entries in /etc/passwd and /etc/subuser.

subuser <name> <command> Run a command as the named inferior user.

subown <name> <file> Change the ownership of files to and from inferior users.

Figure 2(B) shows how this would work for Alice. She simply invokes the command line subuser browser
firefox. The subuser command verifies that the browser user exists and is inferior to alice. Gaining root
privileges via the setuid bit, it modifies the current userid to browser and executes firefox.

DRAFT October 31, 2005 6

Fidelity to Abstract Model Implementation Quality
Names Access Controls Implicit Deployment Code Perf.

Technique Allowed in File System Privilege? Difficulty Complexity Penalty
Sandbox arbitrary acls yes user applied high per syscall
Toolkit limited unix mode bits no root install low per user
Kernel arbitrary acls yes kernel changes medium none

Figure 3. Implementation Techniques Compared

A toolkit implementation would deviate from the abstract model in three important ways. First, the
hierarchical nature of the namespace is imperfect. Although alice is free to create sub-identities, she must
choose identities that have not already been created. If browser exists anywhere in the identity tree, no other
sub-identity browser can be created. In theory, the implementation could store fully-qualified names such
as root:alice:browser in the databases. In practice, various system tools limit user names to 8 characters.
Second, a user does not have implicit privilege over her inferior users. alice cannot directly manipulate
processes and files owned by browser. She must use the subuser and subown commands to manipulate
inferiors, although she is free to run arbitrary commands as sub-users, including administrative tools such
as kill or gdb. Third, the filesystem access controls are very limited. Due to the limited expression of Unix
mode bits, Alice cannot grant root:www:laptop.cse.nd.edu read access to certain files without copying them
or giving away ownership entirely. Even if she could, such access controls could not be expressed until
root:www had created the user laptop.cse.nd.edu and assigned it an integer user ID.

Kernel Implementation. To address the limitations of the sandbox and the toolkit, we may implement
sub-identities within an operating system kernel. The limitations of the toolkit are closely related the use of
integers to represent identities in the kernel, relying on an external user database to map numbers to names.
A kernel implementation would abandon the use of integers and instead use free-form strings to represent
identity in the kernel. For kernel-level permission checks – such as before sending a signal to another process
– implicit privilege would be granted if the requesting user name was equal or superior to the target user
name. Thus, root and root:alice and root:alice:browser would be allowed to manipulate processes owned
by root:alice:browser. root:alice:betty would be denied access.

Figure 2(C) again shows how this works for Alice and her web browser. To create a child process with
the sub-identity browser, the shell must fork a new process and then call subuser(browser). This causes
browser to be appended to the identity string of the current process.

To support this, filesystems would require adjustment to store free-form strings instead of integers in file
access control entries. This would be particularly disruptive to traditional Unix filesystem designs, which
rely on the identity to be a small data item that can fit into each inode structure. However, several recent
filesystems have added support for “extended attributes” that allow larger data structures to be attached to
files and directories. These structures may be used to added long identity strings and complex access control
lists. Likewise, administrative tools would require modification to support the new identity format.

Comparison. Figure 3 summarizes the the properties of each technique.
The sandbox offers a close approximation to the desired semantics because it makes all system calls

available for modification. Arbitrary sub-identities may be associated with processes, and complex access
controls may be placed on directories. In addition, unprivileged users may install and apply the sandbox
while retaining implicit privilege over sub-processes. However, as others have observed [18], the correct
implementation of a sandbox is no small matter, rivaling an operating system kernel in subtlety and com-
plexity. Despite the best intentions of its designers, it is difficult to believe that the code quality of a sandbox
will receive the same scrutiny and achieve the same quality as kernel code. In addition, the sandbox imposes
a performance penalty on each system call due to the numerous added context switches.

DRAFT October 31, 2005 7

The toolkit technique falls short of the abstract model in several ways. The namespace is restricted, users
are constrained by Unix access controls, and implicit privilege is not provided on sub-processes. In addition,
a toolkit must be installed by the local administrator. However, a toolkit would be the simplest of the three
techniques and could be small enough to be scrutinized and widely trusted. The toolkit only interposes on
user changes and thus does not impose the performance penalty of the sandbox.

A full-blown kernel implementation would allow precise adherence to the abstract model without the
implementation difficulties or performance overhead of a sandbox. However, it would also require the
greatest implementation effort and present a significant obstacle to user adoption.

Considering these tradeoffs, we have chosen to first implement and explore sub-identity using the sandbox
technique because it allows for the greatest fidelity to the abstract model while preserving compatibility with
existing systems. By modifying an existing sandbox, we are able to quickly provide the desired semantics
and explore how real applications may take advantage of sub-identities. Implementation quality is of less
concern for a research prototype. A later paper will explore a toolkit implementation, which provides lower
fidelity but higher implementation quality.

4 Applications of Sub-Identity

To demonstrate the power and simplicity of the sub-identity model, we applied it to two distributed
computing tools: a web browser and a secure login server. The web browser uses sub-identity to safely
execute programs downloaded from untrusted sources. The secure login server uses sub-identities in order
to simplify integration with a distributed authentication system. In both cases, the necessary code changes
to employ sub-identity were minimal.

We have chosen the sandbox technique for these experiments for two reasons. First, we are familiar with
an existing sandbox, Parrot, which we have used for a variety of purposes in grid computing [40, 25, 41].
Modifying Parrot to support identity boxing only required 407 lines of new code. Second, the sandbox
technique allows us to experiment with arbitrary semantics without requiring any special privilege.

Briefly, Parrot works as follows. It runs the processes to be contained as children and traps their system
calls through the ptrace interface. As each system call is captured, it is executed on behalf of the calling
application, much as in Ostia [20]. Whenever a filesystem object is accessed by name, Parrot looks for a
. acl file and implements the access control described above. If a system call must be denied, the caller’s
registers are modified to return an error result. (Parrot is implemented on Linux, where this is possible.
Some operating systems do not allow this.) To run a program in an identity box via Parrot, one simply
invokes Parrot with an extra command-line argument indicating the identity to be used.

4.1 Untrusted Web Browsing

It is a common paradigm to design a computationally expensive application to be downloaded over the
internet and executed on users’ systems. However, because of lack of trust between the user and the host,
or between the user and the medium, users want to run such applications inside a protection domain, so
their systems are not compromised. Running the untrusted application as a sub-user inside an identity box
provides such a protection domain.

We extended a web browser to automatically create a sub-user in an identity box when the user clicks on
an executable file. The application is then downloaded from the web page and run as the subuser. Each time
the application is run, if downloaded from the same server, it is run as the same sub-user. Since files owned
by that user persist between invocations, the application has access to any files that it created in the previous
invocation. They can also support multiple applications concurrently accessing the identity box.

We chose to extend the Firefox web browser, which is particularly well-suited to being extended, since
the designers took pains to implement the entire user interface as markup that is interpreted at runtime.

DRAFT October 31, 2005 8

Figure 4. Applying Sub-Identities to Untrusted Web Browsing
We have modified Firefox to allow the user to run untrusted programs with a sub-identity. On the left is
Firefox with the DownloadWith extension enabled, and the new menu item highlighted. Clicking the menu
item creates the terminal on the right, running the program which was clicked on. In callout A, the program
is shown being downloaded. B shows that the process is running as a sub-user named www.nd.edu. C
shows a failed attack against the superior user psnowber.

Extensions are able to easily modify the user interface by adding buttons or menu items that call Javascript
functions when activated. DownloadWith1 is an extension that allows a clicked-on URL to be sent to an
arbitrary command on the local system. Using this extension, we enabled users of Firefox to select “Run in
an identity box. . . ” from the context menu of any link. In total, this application of identity boxing required
writing two dozen lines of code as a wrapper script.

We take the fully qualified domain name of the server the application was downloaded from as the name
of the sub-user. However, if the application were hosted on a secure web page, the name of the sub-user
should be taken from the X.509 certificate presented during the secure connection negotiation. This would
be a better solution, because it would make identity spoofing attacks more difficult.

This solution gives protection from potential attacks by blocking access to resources the untrusted appli-
cation shouldn’t have access to. As shown in Figure 4, when a malicious application attempts to vandalize
the system, the identity box it is running inside prevents the attack from succeeding. This is accomplished
by checking every file access against the ACL file; if there is no ACL file in the directory containing the
accessed file, then the identity box interprets the file’s “other” UNIX permissions bits.

The question of garbage collection arises when considering this application: some applications’ perfor-
mance could benefit from cacheing downloaded data and program state locally to ease network traffic, so
it makes sense to support persistent protection domains. This support exists trivially in our identity boxing
solution by merely not deleting the space associated with the sub-user. The question, then, is “when should
hard drive space given to a sub-user be reclaimed?” This is an open question, subject to policy based on
resouce availability of the local system as well as the needs of individual applications. Our implementation
does not automatically reclaim space, instead leaving the task to the user.

1downloadwith.mozdev.org

DRAFT October 31, 2005 9

GSI certificate
/O=ND/CN=Joe

GSI certificate
/O=ND/CN=Joe

auth policy
allow
/O=ND/CN=*

file
system

file
system

/O=ND/CN=Joe rwlax
/O=ND/CN=Bob rwl
/O=ND/* rl

Directory ACLs

root

/O=ND/CN=Joe

passwd

gridmap

sshd sshd

sandbox user:
/O=ND/CN=Joe

sh

sandbox

sh

(B) SSH with GSI and Sub−Identities(A) Conventional SSH with GSI

means "jnd"

jnd:32:...

jnd

group=users
rights=rwxr−xr−x

Unix Permissions
owner=jnd

moe

Figure 5. Comparison of Secure Login With and Without Sub-Identities
(A) Without sub-identities, a local administrator must create local accounts corresponding to all possible
remote users. GSI credentials such as /O=NotreDame/CN=Joe are mapped to local accounts such as
jnd. The server must run as root and users are constrained to the Unix permission model. (B) With
sub-identities, a simple policy states the set of users to be admitted. Sub-identities corresponding to remote
username are generated on the fly. Directory ACLs with meaningful names are used to share data.

4.2 Secure Login with GSI Credentials

Grid computing, broadly speaking, is the concept that large scale computing power should be as easy to
access as the electrical grid [15]. Today, several large scale computing grids exist and provide thousands of
CPUs to hundreds of scientific users [17, 5]. These systems rely upon the GSI toolkit to identify each user
with a globally unique name like /O=NotreDame/CN=Joe [16]. However, each site must maintain a local
gridmap file that maps GSI identities to local usernames [11]. Maintaining this file for all machines and all
users is an enormous hassle and has led to the old insecure standby of sharing accounts between users [17].
Sub-identities can be used to simplify the administration of such systems, as well as simplify the interactions
between users. We demonstrate this by employing sub-identities with a GSI-enabled secure shell server.

Upon receiving a connection, this modified sshd verifies the GSI certificate, creates a sub-user inside an
identity box, and then starts up a shell as that sub-user, and hands control of it to the connecting user. The
name of the sub-user is derived from the subject contained in the certificate presented by the connecting
party, transposing characters that aren’t valid or are inconvenient in a UNIX filesystem to benign characters.
(i.e. slashes or equal signs become underscores.) The potential for collisions exists, but is extremely small:
a pair of Distinguished Names would have to differ only in special characters. Determining the sub-user
name from the subject also allows entities to return to their sub-user, enabling them to leave temporary files
and caches behind, saving network bandwidth. The problem of garbage collection of sub-users reappears
here. Again, our implementation leaves the garbage collection up to the user running the daemon. In our
example, Alice might decide to delete all her sub-users that have not been accessed in the last year.

This system would be little more than a curiosity if it allowed just anybody with a GSI identity to connect,
since anybody can start their own certifying authority and mint certificates. However, by simply adding a
mechanism to accept or deny connections based on properties of the connecting client’s certificate, the user
running the sshd is given flexible and powerful control over who may consume their resources. Using
this mechanism, it would be possible to define and enforce policy as general as accepting or denying any
connections from clients with certificates signed by certain certifying authorities to as specific as allowing a

DRAFT October 31, 2005 10

(A) system call overhead (B) application overhead
syscall unmodified w/sandbox appl unmodified w/sandbox
getpid 0.36 ± 0.01 µs 13.15 ± 0.10 µs

stat 2.04 ± 0.21 µs 49.79 ± 1.17 µs gzip 18.89 ± 0.06 s 19.33 ± 0.12 s
open/close 4.68 ± 0.33 µs 68.66 ± 1.47 µs tar 0.18 ± 0.05 s 1.90 ± 0.09 s
read 1B 1.17 ± 0.49 µs 23.01 ± 0.93 µs make 3.58 ± 0.01 s 5.51 ± 0.01 s
read 8KB 2.61 ± 0.35 µs 25.88 ± 0.81 µs encode 17.28 ± 0.11 s 17.57 ± 0.59 s
write 1B 6.33 ± 1.14 µs 32.43 ± 1.13 µs acroread 0.66 ± 0.04 s 1.25 ± 0.07 s
write 8KB 13.28 ± 0.57 µs 41.59 ± 1.14 µs

Figure 6. Overhead of Sandbox Implementation
The table on the left show that individual system calls are slowed by an order of magnitude, due to the
large number of context switches caused by the ptrace interface. The table on the right show the impact on
real applications. CPU-bound codes such as gzip and oggenc are barely impacted, while system-intensive
applications are more heavily affected. The toolbox and kernel implementations would have less overhead.

trusted subject to connect.
This version of the SSH daemon can and should be run without privilege; only a normal user account is

required to run it. The ability to run it without privilege comes directly from giving normal users the power
to create sub-users. If two users on a system were to run this modified sshd, the sub-users’ storage would
be set up in independent namespaces, as subdirectories of /tmp with names based on their user ids. Because
of this, two users can run the daemon on separate ports, and if the same client connects to each, the client is
given access to two distinct sub-users, for instance root:userA:Name and root:userB:Name. In essence, all
the connecting and authorized clients are granted access to sub-users that are subordinate to the user running
the daemon.

This approach eliminates administrator involvement in the creation of users. Holders of GSI credentials
are able to log in even without knowledge of the administrator. To the nervous system administrator, this
may seem like it allows for abuse of system resources. However, any user can run their own telnet server on
any UNIX system and invite their colleagues to use their account. It is up to the user running the modified
daemon to enact policy to determine who is to be granted access. This allows the user control over the safety
of his own account.

Because the name of the sub-user is derived from the subject of the connecting party, as long as every
installation of the modified sshd agrees on how they derive the name, then the holder of a certificate can
be guaranteed that he will have the same user name on every server he connects to, rather than potentially
having a different user name everywhere and being forced to remember them.

4.3 Performance

Overhead is expected in any sandboxing system. In the case of identity boxing, the additional security
gained by inspection of system calls is earned with a performance compromise. Each system call inspected
incurs at least six context switches. This overhead adds up across many system calls, reducing the perfor-
mance of certain applications.

In order to determine the overhead incurred on a real system by using identity boxing for various applica-
tions, we used a benchmark that timed 100 cycles of 10,000 iterations of various system calls on a 2.8 GHz
Intel Pentium 4 running Linux 2.6.9. To ensure that disk latency is not a factor, the files touched by each
system call are read from the disk in their entirety so that they are cached in main memory. As we can see
from Figure 6(A), overhead slows system calls down by an order of magnitude or worse.

DRAFT October 31, 2005 11

To get a better idea of whether this system call overhead disqualifies identity boxing as a protection
mechanism in real systems, we ran some applications inside and outside an identity box, and collated the
results into Figure 6(B). The tests ran were: gzip, which compressed a 200 MB file using GNU gzip; tar,
which built a tape archive of the Linux 2.6.12 kernel tree; encode, which encoded a WAV file into Ogg
Vorbis; acroread, which measured the time necessary to start the Acrobat Reader on [40]; and make, which
built GNU gzip from source. Our results show that there is minimal performance impact on CPU-bound
workloads. There is, however, a marked increase in the time it takes to run the make benchmark, because of
the large number of system calls GNU make uses to decide whether to rebuild a target. Identity boxing can
therefore be seen as providing excellent protection at a measureable cost for varied workloads. For instance,
Adobe Acrobat Reader, despite being noticeably slower at startup, is perfectly useable while running inside
an identity box.

5 Related Work

The concept of sub-identities is inspired by the use of hierarchical name spaces in many systems, includ-
ing the domain name system [30], Lampson’s authentication framework [26], and in public key infrastruc-
tures [7], just to name a few. But to our knowledge, this concept has not been proposed as an enforcement
mechanism within an operating system. The closest system might be SubOS [22], which allows for a single
level of sub-identity to be attached to objects; processes then run with the minimum privilege of the objects
they access. However, a variety of other work is relevant.

Operating Systems. Two mechanisms in MULTICS [35] inspire this work. First, the GE-645 pro-
vided protection rings allowing each program to manipulate data in high numbered rings at will and ma-
nipulate lower numbered rings only through well-defined call gates. Sub-identities could be thought of
as protection rings with names and branches. Second, MULTICS has tripartite user names in the form of
user.project.compartment that would be called user, group, and role in today’s terminology. The freedom to
change roles and compartments could be used to approximate a 3-level hierarchy.

Unix has been the target of several efforts to integrate new access control methods while retaining the
existing user names. This generally involves adding a new reference monitor into the kernel and providing
a sufficient database of access controls. For example, TRON [4] adds capabilities to Unix, Flask [38]
and REMUS [6] add mandatory access control, DTE-Unix [2] adds domain and type enforcement, and
SELinux [31] adds both mandatory and role-based access control. In all of these cases, the existing notion
of user identity is preserved, while the method of access control changes. The result is that the system
administrator is given powerful new ways of controlling users, but the users themselves gain no ability to
manage their own security environment.

Privilege Separation [33, 8] is a technique for giving a process the minimum administrative rights nec-
essary to run. A common example is the need for a login server to call setuid. With privilege separation,
the server process runs as an untrusted user, calling out to a security kernel when a privileged operation is
required. The security kernel performs it on behalf of the server, if allowed. The toolkit implementation of
sub-identities is an example of privilege separation.

Sandboxing is a common research technique for running untrusted programs. A supervisor process is
responsible for running an untrusted program while checking its external operations via a reference monitor.
The trapping technique may be the debugging interface [32, 20, 41], a kernel module [21], system-call
reflection [23], or binary rewriting [24]. In addition to exploring trapping methods, various sandboxes
have explored containment policies, such as associating rights with programs [10, 1], with data [22], or by
deferring writes into a transaction which can be audited after execution [29].

Sandboxing is an excellent technique for prototyping and developing new concepts in access control.
However, for production use, it is no replacement for a containment facility within the operating system.
As we (and many others) have shown, there is a significant performance penalty to sandboxing by trapping

DRAFT October 31, 2005 12

system calls. More importantly (and less well known,) is that sandboxing mechanisms rarely achieve the
completeness and reliability of an operating system kernel. As Garfinkel has noted [18], the ptrace interface
between the supervisor and trapped process is extraordinarily complex and subtle. For these reasons, few
sandboxes support the full range of system calls, and many do not support multiple processes, multiple
threads, or other complex interfaces. Thus, we consider sandboxing a valuable research technique, but not a
substitute for an operating system facility.

Virtual Machines. Various applications of virtual machines have been used for distributed computing,
including process migration [37, 42], service construction [13, 9], service composition [14, 22, 12], and
isolation for security[19, 27]. The virtual machine is a valuable technique to apply when one wishes to run
a program (or an entire system) in complete isolation from the calling process.

One could approximate sub-identities with a hierarchy of nested virtual machines. This technique is sug-
gested by Ford et al [14]. Although this would provide containment, it would not be very usable. First,
creating a virtual machine is a non-trivial administrative activity: one must generate disk images, setup user
databases, and install software within the virtual machine itself. Effectively, the creation and management
of virtual machines is an activity only accessible to those already skilled in system administration. This
prevents our target audience — the ordinary user — from creating new protection domains for their own
purposes. Second, the virtual machine inhibits sharing entirely: users that run untrusted programs generally
want those programs to interact with the system in a limited way, by manipulating the filesystem, communi-
cating with other processes, or using the network. A kernel implementation of sub-identities would combine
the assurance of the virtual machine model with the usability of a simple process model.

6 Conclusion

Only by permitting the individual user some control of his own administrative environment
can one insist that he take responsibility for his work. - J. Saltzer [35]

Sub-identity allows the ordinary user to take charge of his security environment. We have presented an
abstract model of sub-identity and described three possible implementations of that model, each varying in
fidelity and complexity. We have also demonstrated that one implementation of sub-identity using user-level
sandboxes is feasible, although it comes at some cost in performance.

Our experience in implementing sub-identity in concert with a web browser and a secure login system
demonstrates several things. First, sub-identities are easy to use! A simple user interface added to a web
browser is accessible to nearly any user, unlike many other complex security technologies. Second, very
few code changes were necessary to implement these facilities. By experiment, we have demonstrated that
our implementation of sub-identities protects superior users from undesired actions by inferior users, such
as unauthorized deleting of files. In a distributed system, sub-identity allows both users and administrators
to express complex sharing policies. In fact, users can now also be administrators! Finally, sub-identity
simplifies distributed systems by allowing users to employ their global identities as local identifiers.

Our next step is to explore alternate implementations of the sub-identity concept. We intend to build a
username toolkit as described above. This will provide a simpler, less powerful model of sharing, but will
be an implementation more agreeable to traditional Unix and will have little or no performance overhead.
We will deploy this toolkit with a variety of applications and users and instrument it to understand how real
users take advantage of this facility in practice. Armed with this experience, we will proceed toward a full
blown kernel implementation.

Ultimately, sub-identity allows users to protect themselves in a potentially dangerous environment. In
conventional systems, the user is an innocent participant that relies on the administrator for protection.
In a networked environment, this is no longer acceptable. Users must have tools that allow them to take

DRAFT October 31, 2005 13

responsibility for their own safety. Sub-identity is step towards providing this capability within the operating
system.

References

[1] A. Acharya and M. Raje. MAPbox: Using parameterized behavior classes to confine applications. Technical
Report UCSB TRCS99-15, University of California at Santa Barbara, Computer Science Department, 1999.

[2] L. Badger, D. F. Sterne, D. L. Sherman, and K. M. Walker. A domain and type enforcement UNIX prototype.
Computing Systems, 9(1):47–83, 1996.

[3] A. Bavier, S. Karlin, S. Muir, L. Peterson, T. Spalink, M. Wawrzoniak, M. Bowman, B. Chun, T. Roscoe, and
D. Culler. Operating system support for planetary scale network services. In Networked Systems Design and
Implementation, 2004.

[4] A. Berman, V. Bourassa, and E. Selberg. TRON: Process-specific file protection for the unix operating system.
In USENIX Technical Conference, 1995.

[5] F. Berman. From TeraGrid to knowledge grid. Communications of the ACM, 44(11):27–28, 2001.

[6] M. Bernaschi, E. Grabrielli, and L. Mancini. REMUS: A security-enhanced operating system. ACM Transactions
on Information and System Security, 5(1):36–61, February 2002.

[7] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In IEEE Symposium on Security and
Privacy, May 1996.

[8] D. Brumley and D. Song. Privtrans: Automatically partitioning programs for privilege separation. In USENIX
Security Symposium, August 2004.

[9] J. Chase, L. Grit, D. Irwin, J. Moore, and S. Sprenkle. Dynamic virtual clusters in a grid computing environment.
In High Performance Distributed Computing, June 2003.

[10] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor. Subdomain: Parsimonious server
security. In USENIX Systems Administration Conference, 2000.

[11] T. A. DeFanti, I. Foster, M. E. Papka, and R. Stevens. Overview of the I-WAY: Wide area visual supercomputing.
International Journal of Supercomputer Applications, 10(2/3):121–131, 1996.

[12] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R. Neugebauer. Xen and
the art of virtualization. In Symposium on Operating Systems Principles, 2003.

[13] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for grid computing on virtual machines. In International
Conference on Distributed Computing Systems, May 2003.

[14] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Microkernels meet recursive virtual
machines. In Operating Systems Design and Implementation, 1996.

[15] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kauf-
mann, 1998.

[16] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational grids. In ACM
Conference on Computer and Communications Security Conference, 1998.

[17] R. Gardner and et al. The Grid2003 production grid: Principles and practice. In IEEE Symposium on High
Performance Distributed Computing, 2004.

[18] T. Garfinkel. Traps and pitfalls: Practical problems in in system call interposition based security tools. In
Network and Distributed Systems Security Symposium, February 2003.

[19] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In Symposium on Operating Systems Principles, 2003.

[20] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegating architecture for secure system call interposition.
In Symposium on Network and Distributed System Security, 2004.

DRAFT October 31, 2005 14

[21] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for untrusted helper applications.
In USENIX Security Symposium, San Jose, CA, 1996.

[22] S. Ioannidis and S. M. Bellovin. Sub-operating systems: A new approach to application security. In SIGOPS
European Workshop, February 2000.

[23] M. Jones. Interposition agents: Transparently interposing user code at the system interface. In 14th ACM
Symposium on Operating Systems Principles, pages 80–93, 1993.

[24] V. L. Kiriansky. Secure execution environment via program shepherding. In USENIX Security Symposium,
August 2002.

[25] S. Klous, J. Frey, S.-C. Son, D. Thain, A. Roy, M. Livny, and J. van den Brand. Transparent access to grid
resources for user software. Concurrency and Computation: Practice and Experience, to appear.

[26] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems: Theory and practice.
ACM Transactions on Computer Systems, 10(4), November 1992.

[27] M. Laureano, C. Maziero, and E. Jamhour. Intrusion detection in virtual machine environments. In EUROMICRO
Conference, September 2004.

[28] J. Lepreau, B. Ford, and M. Hibler. The persistent relevance of the local operating system to global applications.
In SIGOPS European Workshop, 1996.

[29] Z. Liang, V. Venkatakrishnan, and R. Sekar. One-way isolation: An effective approach for realizing safe execu-
tion environments. In ISOC Network and Distributed System Security, 2005.

[30] P. Mockapetris and K. Dunlap. Development of the domain name system. In Proceedings of SIGCOMM,
volume 18, pages 123–133, April 1988.

[31] National Security Agency. Security enhanced linux. http://www.nsa.gov/selinux, 2005.

[32] N. Provos. Improving host security with system call policies. In USENIX Security Symposium, August 2004.

[33] N. Provos and M. Friedl. Preventing privilege escalation. In USENIX Security Symposium, August 2003.

[34] A. Rubin, R. Geer, and M. Ranum. Web Security Sourcebook. John Wiley and Sons, 1997.

[35] J. H. Saltzer. Protection and the control of information sharing in multics. Communications of the ACM,
17(7):388–402, July 1974.

[36] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proc of IEEE, 69(9):1278–
1308, September 1975.

[37] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosenblum. Optimizing the migration of
virtual computers. In Symposium on Operating Systems Design and Implementation, 2002.

[38] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask security architecture:
System support for diverse security policies. In USENIX Security Symposium, August 1999.

[39] J. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication service for open network systems. In
USENIX Winter Technical Conference, pages 191–200, 1988.

[40] D. Thain. Identity boxing: A new technique for consistent global identity. In International Conference for High
Performance Computing and Communications (Supercomputing), November 2005.

[41] D. Thain and M. Livny. Parrot: Transparent user-level middleware for data-intensive computing. In Workshop
on Adaptive Grid Middleware, New Orleans, September 2003.

[42] A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight virtual machines for distributed and networked
applications. In USENIX Annual Technical Conference, June 2002.

