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ABSTRACT
Task characteristics estimations such as runtime, disk space,
and memory consumption, are commonly used by scheduling
algorithms and resource provisioning techniques to provide
successful and efficient workflow executions. These methods
assume that accurate estimations are available, but in pro-
duction systems it is hard to compute such estimates with
good accuracy. In this work, we first profile three real sci-
entific workflows collecting fine-grained information such as
process I/O, runtime, memory usage, and CPU utilization.
We then propose a method to automatically characterize
workflow task needs based on these profiles. Our method es-
timates task runtime, disk space, and memory consumption
based on the size of tasks input data. It looks for correla-
tions between the parameters of a dataset, and if no correla-
tion is found, the dataset is divided into smaller subsets by
using a clustering technique. Task behavior estimates are
done based on the ratio parameter/input data size if they
are correlated, or based on the mean value. However, task
dependencies in scientific workflows lead to a chain of esti-
mation errors. To correct such errors, we propose an online
estimation process based on the MAPE-K loop where task
executions are constantly monitored and estimates are up-
dated accordingly. Experiment results show that our online
estimation process yields much more accurate predictions
than an offline approach, where all task needs are estimated
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1. INTRODUCTION
Scientific workflows have been widely used by computa-

tional scientist communities to run complex simulations and
analyses [1]. They allow users to easily express multi-step
computational tasks, for example retrieve data from an in-
strument or a database, reformat the data, and run an analy-
sis. A successful and efficient workflow execution mainly de-
pends on how tasks are planned and executed. Task schedul-
ing is known to be an NP-complete problem [2], thus several
heuristics have been developed to address this problem. For
instance, classical heuristics such as Min-min, Max-min [3],
and HEFT [4], or recent ones [5, 6, 7], have demonstrated
good performance and improvements on task scheduling. In
contrast, they share the same assumption that they have
an accurate estimate of tasks needs such as execution and
communication times, disk space, or memory usage. In pro-
duction systems, it is hard to compute such estimates online
and with good accuracy. Currently, scheduling algorithms
use task estimation techniques that are not very accurate [8],
or estimates are obtained from some distribution [9].

In addition, resource provisioning techniques may ben-
efit from accurate task estimation to determine the num-
ber and characteristics of resources required to perform a
computation. For instance, when a researcher uses a cloud
infrastructure for processing scientific computations, accu-
rate task needs estimates have direct impact on the cost of
the computation and resource utilization [10], i.e. the user
should request a number of resources so that the resource
utilization is highest and the cost is minimal.
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In our previous work [11], we presented workflow charac-
terization from the point of view of the performance of the
individual workflow components and overall workflows. Pro-
filing tools were developed to collect and summarize perfor-
mance metrics of workflow applications. These tools collect
fine-grained profile data such as process I/O, runtime, mem-
ory usage, and CPU utilization. In this work, we use these
tools to profile three real scientific workflow executions, and
we propose, as our first contribution, a method to automati-
cally characterize workflow task needs such as runtime, disk
usage, and memory consumption based on the workflow exe-
cution profiles. Our method assumes that these parameters
can be estimated according to the input data size, because
this is a parameter that could be known in advance, and the
application execution time is usually dependent of the input
data. Thus, it looks for correlations between the input data
and the parameters. If no correlation is detected, execution
datasets are divided into sub-datasets by a density cluster-
ing technique. Smaller datasets may have higher correlation
coefficient, or lower standard deviation of the mean value.

Task estimation for scientific workflows differs from the
general case of task estimation [12, 13] because of the de-
pendencies between tasks. For instance, a bad estimation for
a task output data, implies in poor estimations for depen-
dent tasks, i.e. tasks where input data are dependent on the
output data from the previous task. In a pipeline, estima-
tion errors are propagated sequentially, however, in a work-
flow, estimation errors may be propagated successively. To
address this issue, we propose an online estimation process
based on the MAPE-K loop (Monitoring, Analysis, Plan-
ning, Execution, and Knowledge) [14] where task executions
are constantly monitored and estimations are updated upon
task completion.

We characterize three real scientific workflows using ex-
ecution profiles obtained through workflow runs using the
Pegasus workflow management system (WMS) [15] with the
Kickstart profiling tool [16].

Our main contributions are summarized as:

1. an automated method that characterizes scientific work-
flow executions;

2. fine-grained characterization of three real scientific work-
flows;

3. an online estimation process to predict fine-grained
task needs.

This paper is organized as follows. Section 2 presents
the description of the scientific workflows used in this work.
In Section 3, we present execution profiles of these work-
flows, and we introduce our automated method to charac-
terize workflow executions. Our online task estimation pro-
cess is presented in Section 4, and evaluated in Section 5.
Section 6 presents the related work, and Section 7 concludes
this paper.

2. SCIENTIFIC WORKFLOWS
A scientific workflow describes the dependencies between

tasks. In most cases, the workflow is described as a directed
acyclic graph (DAG), where the nodes are tasks and the
edges denote task dependencies. This model is supported
by several workflow management systems (WMS), such as
Pegasus [15], Makeflow [17], Askalon [18], and Taverna [19].

In this work, we use the following real scientific workflows:

Montage.
The Montage workflow [20] was created by the NASA/IPAC

Infrared Science Archive as an open source toolkit that can
be used to generate custom mosaics of the sky using input
images in the Flexible Image Transport System (FITS) for-
mat. During the production of the final mosaic, the geome-
try of the output image is calculated from the input images.
The inputs are then re-projected to have the same spatial
scale and rotation, the background emissions in the images
are corrected to have a uniform level, and the re-projected,
corrected images are co-added to form the output mosaic.
Figure 1 illustrates a small (20 node) Montage workflow.
The size of the workflow depends on the number of images
used in constructing the desired mosaic of the sky. The
structure of the workflow changes to accommodate increases
in the number of inputs, which corresponds to an increase
in the number of computational tasks.

mProjectPP mDiffFit mConcatFit mBgModel mBackground

mImgtbl mAdd mShrink mJPEG

Figure 1: A small (20 node) Montage workflow.

Epigenomics.
The USC Epigenome Center1 is currently involved in map-

ping the epigenetic state of human cells on a genome-wide
scale. The Epigenomics workflow (Figure 2) is a highly par-
allel application with multiple pipelines operating on inde-
pendent chunks of data in parallel. The size of the workflow
depends on the partitioning factor used on the input data.

Periodogram.
The Periodogram workflow2 searches for extra-solar plan-

ets, either by detecting “wobbles” in the radial velocity of
a star, or dips in the starÕs intensity. In either case, the
workflow searches for repeating variations over time in a

1http://epigenome.usc.edu
2https://portal.futuregrid.org/projects/77
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fastQSplit

filterContams

sol2sanger

fastq2bfq

map

mapMerge

maqIndex

pileup

Figure 2: Epigenomics workflow.

sub-set of the light curves released by the Kepler project.
Currently, three algorithms are available for computing peri-
odograms from light curves: Lomb-Scargle (LS), Box-fitting
Least Squares (BLS), and Plavchan. Figure 3 shows an il-
lustration of a Periodogram workflow. The workflow can be
seen as a bag-of-tasks of periodogram_wrapper tasks where
each task can execute one of the available algorithms.

periodogram_wrapper

...

Figure 3: Periodogram workflow.

3. WORKFLOW CHARACTERIZATION
In this section, we characterize execution profiles for the

three scientific workflows described in the previous section.

3.1 Workflow execution profiling
We profiled the three workflows by using the Kickstart [16]

profiling tool, and the Pegasus WMS3 for workflow execu-
tion. Kickstart monitors and records task execution in scien-
tific workflows. It captures fine-grained profiling data such
as process I/O, runtime, memory usage, and CPU utiliza-
tion. Pegasus is a workflow management system that bridges
the scientific domain and the execution environment by au-
tomatically mapping high-level abstract workflow descrip-
tions onto distributed resources. It manages data on behalf
of the user: infers the required data transfers, registers data
into catalogs, and captures performance information while

3http://pegasus.isi.edu

maintaining a common user interface for workflow submis-
sion.

Three runs of each workflow were performed with differ-
ent data sets. Workflows were executed on a 16-core clus-
ter, composed by 5 Dual core MP OpteronTM Processor
250 2.4GHz with 8GB of RAM, and 3 Dual core MD AMD
OpteronTM Processor 275 2.2 GHz with 8GB of RAM.

Table 1 shows the execution profile for 3 runs of the Mon-
tage workflow. Some tasks have small standard deviation
values compared to the mean, thus task estimation could
be based on their mean values. However, for high stan-
dard deviation values of the mean, as for runtime of mDiff-
Fit, and I/O write of mBackground, task estimation based
on the average may lead to significant estimation errors.
In particular, resource underestimation yields task failures
while resource overestimation reduces resource utilization.
Similarly, in the execution profile of the Epigenomics work-
flow (Table 2) pileup runtime values could be estimated
based on the average, while mapMerge values would have
more than 100% of estimation error if the average is used.
This high estimation error case is also valid for the peri-

odogram_wrapper task as shown in Table 3.

3.2 Automatic workflow execution character-
ization

We propose a method to characterize workflow tasks based
on their estimation capability. We assume that task needs
such as runtime, I/O write, and memory peak, can be esti-
mated based on the I/O read parameter. Commonly, input
data is read into memory, therefore there is a correlation
between memory use and input size. Similarly, output data
size may be correlated to the input data size, for example,
when a task performs an image segmentation, or it may have
a constant size, when the output data is a value. Experiment
results presented in Section 5 support this assumption.

For each parameter that will be estimated, the method
generates a dataset per task type containing information
about the I/O read parameter and the actual parameter.
Then, correlation statistics are enforced to the datasets to
identify statistical relationships between parameters. Ta-
ble 4 shows correlation (ρ) and standard deviation (σ) val-
ues for each task type for the three workflows, respectively.
We consider that two parameters are correlated if their cor-
relation value ρ is greater than 0.8. The threshold value of
0.8 was selected arbitrarily based on common sense. Cor-
related parameters, highlighted in the table, yield accurate
estimations and no further analysis is required for them.

However, most correlation measures are sensitive to the
data distribution. Therefore, density-based clustering [21] is
performed to identify groups of high-density areas in datasets
where no correlations were identified (e.g. Figure 4-top).
Smaller datasets may increase the correlation coefficient, or
lower standard deviation of the mean value.

Density-based clustering.
We use DBSCAN [22] (density-based spatial clustering of

applications with noise) as the clustering algorithm. The
choice of DBSCAN was because it is one of the most com-
mon density-based clustering algorithm used in the scien-
tific literature. DBSCAN’s definition of a cluster is based
on the notion of density reachability, i.e. a point q is di-
rectly density-reachable from a point p if the distance be-
tween them is smaller than a given distance ε, and p is sur-
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Task Count
Runtime I/O Read I/O Write Memory Peak

Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev.
mProjectPP 7965 2.59 0.69 4.24 0.19 16.20 0.80 9.96 0.40
mDiffFit 23733 1.25 0.92 24.08 5.76 1.35 1.11 5.32 0.90
mConcatFit 3 122.04 5.27 2.70 0.01 3.15 0.01 7.26 0.01
mBgModel 3 2008.08 88.50 4.14 0.04 0.27 0.00 14.41 0.01
mBackground 7965 2.14 1.68 13.67 6.78 13.05 6.44 11.75 5.78
mImgtbl 51 4.65 2.04 22.64 4.61 0.25 0.05 6.37 0.13
mAdd 51 47.69 14.03 2191.76 560.39 1574.22 383.86 21.66 3.40
mShrink 48 11.53 2.25 835.57 0.31 1.00 0.00 3.05 0.01
mJPEG 3 1.03 0.07 46.18 0.02 0.78 0.00 2.66 0.01

Table 1: Execution profile of Montage workflow executions for a 8 degrees square region of the sky.

Task Count
Runtime I/O Read I/O Write Memory Peak

Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev.
fastqSplit 15 22.94 9.00 755.85 297.11 755.94 297.15 1.92 0.01
filterContams 842 1.25 0.27 13.48 1.46 13.51 1.46 2.03 0.01
sol2sanger 842 0.56 0.32 24.58 2.11 18.46 1.49 3.57 0.01
fast2bfq 842 0.60 0.22 18.44 1.58 4.45 0.57 3.85 0.01
map 842 106.16 16.97 276.04 7.97 1.67 0.60 177.60 1.39
mapMerge 18 12.22 13.33 151.15 190.58 145.73 189.81 8.02 2.14
pileup 3 109.36 4.73 7347.57 576.47 6664.40 249.78 133.06 25.70

Table 2: Execution profile of Epigenomics workflow executions.

Task Count
Runtime I/O Read I/O Write Memory Peak

Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev.
periodogram wrapper 86617 26.36 93.01 5.72 3.41 7.85 3.05 29.27 0.34

Table 3: Execution profile of Periodogram workflow executions.

Task
Runtime I/O Write Memory Peak

ρ σ ρ σ ρ σ
mProjectPP 0.15 0.68 0.88 0.19 0.88 0.40
mDiffFit 0.46 0.91 0.01 1.19 0.01 1.08
mConcatFit 0.00 5.27 0.00 0.01 0.00 0.01
mBgModel -0.99 88.50 1.00 0.00 0.96 0.01
mBackground 0.62 2.68 0.99 6.44 0.99 5.78
mImgtbl 0.54 2.84 0.92 0.05 0.88 0.13
mAdd 0.84 14.03 0.98 383.86 0.97 3.40
mShrink -0.02 4.25 1.00 0.00 0.00 0.01
mJPEG 0.00 0.07 0.00 0.00 0.98 0.01

(a)

Task
Runtime I/O Write Memory Peak

ρ σ ρ σ ρ σ
fastqSplit 0.98 9.00 1.00 297.15 0.00 0.01
filterContams -0.03 0.27 0.99 1.46 0.00 0.01
sol2sanger 0.21 0.41 0.90 1.49 0.00 0.01
fast2bfq 0.18 0.27 0.56 0.87 0.00 0.01
map 0.02 18.96 0.06 0.70 0.01 1.43
mapMerge 0.98 13.33 0.99 189.81 -0.36 2.15
pileup 0.99 4.73 0.17 249.78 0.87 25.70

(b)

Task
Runtime I/O Write Memory Peak

ρ σ ρ σ ρ σ
periodogram wrapper 0.68 1333.12 0.69 189.81 0.83 0.34

(c)

Table 4: Correlation (ρ) and standard deviation (σ) values for the (a) Montage, (b) Epigenomics, and (c) Periodogram
workflows. Highlighted cells indicate high correlation values.

61



rounded by sufficiently many points such that one may con-
sider p and q to be part of a cluster. A point is defined by a
pair of parameter values, where in the x axis are represented
the I/O read parameter values. For instance, Figure 4 shows
the dataset clustering of the runtime and I/O write param-
eters for two task types (mProjectPP and mDiffFit) of the
Montage workflow. In these datasets, 4 smaller datasets are
identified where the correlation value is more significant or
they converge to a unique point. Algorithm 1 shows the DB-
SCAN pseudocode. The value of the distance ε is chosen by
using a k-distance graph, plotting the distance to the minPts
nearest neighbors; good values of ε are where this plot shows
a strong bend.

Algorithm 1 DBSCAN algorithm.

inputs: D dataset, eps, minPts
cluster C = 0
for p ∈ D and p is unvisited do

mark p as visited
neighborPts = regionQuery(p, eps, D)
if neighborPts.size < minPts then

mark p as noise
else
C = next cluster
expandCluster(p, neighborPts, C, eps, minPts)

end if
end for

expandCluster(p, neighborPts, C, eps, minPts)
add p to C
for p′ ∈ neighborPts do

if p′ is unvisited then
mark p′ as visited
neighborPts’ = regionQuery(p′, eps, D)
if neighborPts’.size ≥ minPts then

neighborPts = neighborPts ∪ neighborPts’
end if

end if
if p′ /∈ any cluster then

add p′ to C
end if

end for

regionQuery (p, eps, D)
return D′ ⊆ D, where distance(p, q) ≤ eps, q ∈ D′

Correlation (ρ) and standard deviation (σ) values, and
clusters (c) per task type are shown in Tables 5,6, and 7
for the Montage, Epigenomics, and Periodogram workflows,
respectively. Datasets with high correlation values were not
clustered (highlighted cells in Table 4), for example the I/O
write parameter of mAdd for the Montage workflow, and fil-

terContams for the Epigenomics workflow. Otherwise, sub-
sets (clusters) of the datasets may have higher correlation
values, and standard deviation values are smaller (e.g. run-
time parameter of periodogram_wrapper in Table 7). In
clusters where the correlation is null and the standard de-
viation is negligible, the data is concentrated in a unique
point, i.e. the parameter is a constant value independent of
the workflow input dataset. This is observed for most mem-
ory peak parameter of the Montage and Epigenomics work-
flows. After clustering, some datasets, as for the runtime
parameter of mImgtbl for the Montage workflow, have lower
correlation values than before, but also have lower standard
deviation values. Thus, task estimation errors based on the
mean values are smaller.
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Figure 4: Dataset clustering of runtime and I/O write pa-
rameters for the Montage workflow.

Task
Runtime I/O Write Memory Peak

c ρ σ c ρ σ c ρ σ
mProjectPP 1 0.00 0.68 1 0.88 0.19 1 0.88 0.40

2 0.00 0.54
3 0.00 0.28

mDiffFit 1 0.04 1.08 1 0.01 1.17 1 0.01 1.03
2 0.05 0.84 2 0.00 0.00 2 0.00 0.00
3 0.07 0.61

mConcatFit 1 0.00 5.27 1 0.00 0.01 1 0.00 0.01
mBgModel 1 -0.99 88.50 1 1.00 0.00 1 0.96 0.01
mBackground 1 -0.02 1.46 1 0.99 6.44 1 0.99 5.78

2 0.00 0.00
3 -0.09 0.66

mImgtbl 1 0.00 0.17 1 0.92 0.05 1 0.88 0.13
2 0.28 1.85

mAdd 1 0.84 14.03 1 0.98 383.86 1 0.97 3.40
mShrink 1 0.00 2.25 1 1.00 0.00 1 0.00 0.01

2 0.00 1.58
mJPEG 1 0.00 0.07 1 0.00 0.00 1 0.98 0.01

Table 5: Montage: clusters (c), correlation (ρ), and standard
deviation (σ) values.

4. TASK ESTIMATION PROCESS
Figure 5 shows our general estimation process for one pa-

rameter. The process is based on regression trees. The tree
is built offline from analyses of historical data. First, tasks
are classified by application (workflow), then by task type.
The next step decides whether runtime, I/O write, or mem-
ory parameters should be estimated based on the input data
size. If the parameter is strong correlated to the input data,
values are estimated according to the ratio parameter/input
data size. Otherwise, values are estimated as the mean.

An intermediate step could be added to the process to
classify tasks by execution parameters (e.g. the ‘degree’
parameter for Montage workflows). The process outputs
rules used to estimate future workflow executions. Figure 6
show examples of rules to estimate I/O write for the peri-

odogram_wrapper task (Periodogram workflow).
An offline task estimation approach estimates at once task
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Task
Runtime I/O Write Memory Peak

c ρ σ c ρ σ c ρ σ
fastqSplit 1 0.98 9.00 1 1.00 297.15 1 0.00 0.01
filterContams 1 -0.03 0.27 1 0.99 1.46 1 0.00 0.01

2 0.70 0.17
sol2sanger 1 0.19 0.31 1 0.90 1.49 1 0.00 0.01

2 0.39 0.31
3 0.17 0.08

fast2bfq 1 0.12 0.21 1 0.24 0.73 1 0.00 0.01
2 0.63 0.17 2 0.00 0.00

map 1 -0.04 16.95 1 0.36 0.59 1 0.05 1.38
2 0.41 14.10 2 0.37 0.55 2 0.54 0.89

mapMerge 1 0.98 13.33 1 0.99 189.81 1 0.55 1.98
2 0.00 0.00
3 0.00 0.00

pileup 1 0.99 4.73 1 0.17 249.78 1 0.87 25.70

Table 6: Epigenomics: clusters (c), correlation (ρ), and stan-
dard deviation (σ) values.

Task
Runtime I/O Write Memory Peak

c ρ σ c ρ σ c ρ σ
periodogram wrapper 1 0.85 28.27 1 0.64 3.07 1 0.83 0.34

2 -0.96 2937.36 2 -1.00 37.18

Table 7: Periodogram: clusters (c), correlation (ρ), and
standard deviation (σ) values.

runtimes, output data sizes (I/O write), and memory peaks
for all tasks in a workflow. In scientific workflows, poor
output data estimations may lead to a chain of estimation
errors: the output data of a task is the input data of another
task in a subsequent level. Hence, runtime and memory peak
may also be poorly estimated for the sub-sequential task—as
our estimation process is based on the input data. There-
fore, we propose an online task estimation process based on
the MAPE-K loop (Monitoring, Analysis, Planning, Execu-
tion, and Knowledge), where task executions are constantly
monitored [23]. Upon task completion, estimated values for
the task are updated with the real values, and based on these
values a new prediction is done (using the regression tree of
Figure 5) for subsequent tasks of multiple levels (tasks that
are data-dependent of the current task). Figure 7 summa-
rizes the online estimation process. Note that in a workflow,
tasks may have multiple parents, thus at an instant time t,
their input data will be a composition of estimated and real
(for completed parent tasks) values.

5. EXPERIMENT AND EVALUATION
The experiment presented hereafter aims at evaluating the

accuracy of the online estimation process in comparison to
the offline estimation process.

5.1 Experiment conditions
Trace analyzes were performed in the three workflow ap-

plications described in Section 3: Montage, Epigenomics,
and Periodogram. For each workflow, we use the three dif-
ferent executions used to characterize the workflows. Two
executions are reserved for training purposes (generation of
rules), and the third one is used for test the accuracy of
the estimation process (leave-one-out cross-validation). For
each execution, we perform an analysis to test the accuracy
of the prediction, thus results presented in the next subsec-
tion are an average of these analyzes. We assume that a
parameter is statistically correlated if its correlation coeffi-
cient ρ is greater than or equal to 0.8. Otherwise, the mean

Figure 5: Estimation process for one parameter.

value is used.
We implemented a simple DAG analyzer that parses a

workflow description and spawns tasks and their dependen-
cies. The analyzer implements both the offline and online
estimation processes. An analysis consists in replaying a
workflow execution, estimating tasks runtimes, I/O writes,
and memory peaks at once, for the offline approach, or upon
task completion, for the online one. Replaying a workflow
execution means that our simulator processes each task in
the same order of its real execution; tasks experience the
same delays and resource performances. The simulator only
computes task needs estimations, and compares them to the
real values to assess estimation errors. We do not aim at
evaluating the efficiency of scheduling algorithms, but the
accuracy of our online estimation process.

5.2 Results and discussion
Table 8 shows the average estimation error of both esti-

mation processes for the Montage workflow. In general, the
online process has an average estimation error of 18% for
runtime, 9% for I/O write, and 13% for memory peak, while
the offline has 43%, 56%, and 53% respectively. For the first-
level tasks (mProjectPP) both offline and online approaches
have the same accuracy as tasks are estimated directly from
the workflow input data. However, offline estimations for
tasks such as mDiffFit, mBackground, mImgtbl, and mAdd

are extremely affected by the propagation of estimation er-
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if workflow = ‘Periodogram’
and taskType = ‘periodogram wrapper’
and parameter = ‘write’
and input size ≤ 45088768 then

return [7371489.28, mean] // mean value in bytes
end if

if workflow = ‘Periodogram’
and taskType = ‘periodogram wrapper’
and parameter = ‘write’
and input size > 45088768 then

return [0.38, ratio] // ratio of output and input data
end if

Figure 6: Rules for I/O write estimation of the Periodogram
workflow.
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Figure 7: Online estimation process.

rors. For instance, the input data of a mDiffFit task are
multiples mProjectPP output data. From Table 5, we no-
tice that mDiffFit has low correlation values, thus mean
values are used in the prediction. A bad estimation of the
input data size may lead the process to select the wrong
cluster. The online process initially faces the same problem
of erroneous estimations, but upon task completion, wrong
predictions are replaced by the actual value.

Table 9 shows the average estimation error for the Epige-
nomics workflow. The average estimation error for the of-
fline process is 29% for runtime, 57% for I/O write, and
48% for memory, and for the online process is 13%, 5%,
and 8% respectively. Similarly, first-level task estimations
(fastqSplit) are the same for both approaches. Offline es-
timations for filterContams, sol2sanger, fast2bfq, and
mapMerge are significantly affected by previous erroneous es-
timations of their parent tasks.

Table 10 presents average estimation errors for the Peri-
odogram workflow. As the workflow has only one task level
(periodogram_wrapper, see Figure 3), the online approach
produces the same result as the offline. I/O write and mem-
ory estimation errors are low, but runtime predictions are
correctly for a bit more than 50% of the tasks.

In all analyzes for the 3 scientific workflows, the online
process is more accurate when predicting task needs. The
importance of using a loop to constantly monitor task ex-
ecutions to update estimations is emphasized on workflows
due to their task dependency model. Although the online

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

mProjectPP Offline 18.95 1.63 2.80
Online 18.95 1.63 2.80

mDiffFit Offline 191.02 159.46 91.07
Online 46.52 69.14 73.72

mConcatFit Offline 4.38 0.00 7.62
Online 4.03 0.00 6.22

mBgModel Offline 23.83 0.00 22.08
Online 1.17 0.00 3.43

mBackground Offline 65.13 102.80 104.62
Online 44.90 1.23 1.84

mImgtbl Offline 61.27 127.29 126.58
Online 29.15 5.53 8.35

mAdd Offline 9.67 113.14 110.20
Online 9.31 3.43 9.06

mShrink Offline 13.72 0.34 0.00
Online 7.61 0.33 0.00

mJPEG Offline 1.61 0.00 19.09
Online 1.37 0.00 11.40

Table 8: Montage: average estimation errors of task run-
time, I/O write, and memory peak.

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

fastqSplit Offline 8.36 3.28 9.14
Online 8.36 3.28 9.14

filterContams Offline 59.31 109.81 102.83
Online 29.13 5.35 8.15

sol2sanger Offline 54.93 98.20 96.68
Online 34.74 1.23 1.96

fast2bfq Offline 27.13 128.18 99.98
Online 17.09 15.11 10.65

map Offline 23.62 0.00 21.07
Online 1.39 0.00 3.33

mapMerge Offline 53.74 93.34 1.01
Online 10.22 9.39 1.00

pileup Offline 6.00 4.17 49.42
Online 5.11 3.87 19.31

Table 9: Epigenomics: average estimation errors of task run-
time, I/O write, and memory peak.

strategy counterbalances the propagation of estimation er-
rors, the estimation of first-level tasks have strong influence
in subsequent estimations. Therefore, efforts should be con-
centrated on techniques to address more accurate offline pre-
dictions. One approach to improve offline predictions would
be to consider other parameters such as command-line ar-
guments when estimating workflow executions.

6. RELATED WORK
Workload archives are widely used for research on dis-

tributed systems, to validate assumptions, to model com-
putational activity, and to evaluate methods in simulation
or in experimental conditions. Available workload archives,
such as the Parallel Workloads Archive [24], the Grid Work-
load Archive [25], and the Grid Observatory [26], provide

Task Estimation
Runtime I/O Write Memory

Avg. Error Avg.Error Avg.Error
(%) (%) (%)

periodogram wrapper Offline 45.13 16.72 1.02
Online 45.13 16.72 1.02

Table 10: Periodogram: average estimation errors of task
runtime, I/O write, and memory peak.
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workloads from parallel and grid execution environments.
These workloads mainly capture information about task ex-
ecutions, but lack fine-grained information of scientific work-
flow executions, such as dependencies among tasks, task sub-
steps, and artifacts introduced by application-level schedul-
ing. Therefore, some efforts have been done to collect and
publish traces and performance statistics for real scientific
workflows. We recently published traces for a few workflows
executed using Pegasus [27], and traces of several work-
flow executions obtained from a science-gateway [28]. We
also published synthetic workflows based on statistics from
real applications for use in simulations [29]. Similarly, Ra-
makrishnan and Ganon [30] have provided data statistics for
many real workflow applications, and Ostermann et al. [31,
32] have provided analyzes of workflow-based workload traces
from the Austrian grid.

On workload characterization in distributed environment,
Iosup and Epema [33] and Hart [34] presented analyzes of
grid and HPC workloads characteristics including system us-
age, user population, application characteristics, and char-
acteristics of grid-specific application types. Ren et al. [35]
presented an analysis of a MapReduce trace derived from a
production Hadoop cluster, where they analyzed job char-
acteristics such as CPU utilization, memory usage, slots al-
location, I/O operations, and network transfers. Mahambre
et al. [36] characterized a cloud workload into patterns based
on their behavioral characteristics and presented statistical
techniques to understand the patterns. They categorized the
virtual machine workload in the following patterns: period-
icity, threshold, relationship, variability, and image similar-
ity. Recently, Madougou et al. [37] provided a characteriza-
tion of workflow executions using provenance data captured
from a workflow management system. They analyzed usage
and failure patterns at workflow and task levels.

Workload estimations are generally used by resource al-
location strategies and task scheduling algorithms in dis-
tributed platforms, such as clouds and grids. Verboven et
al. [8] presented a parameter sweep prediction framework
GIPSy, which estimates task runtimes based on previous
runtime information. They performed evaluations using six
different models: polynomial approach, radial basis func-
tions, kriging models, neural networks, support vector ma-
chines, and nearest neighbor prediction. Their approach
gives good accuracy, but is not applicable to an online envi-
ronment. Sonmez et al. [12] studied job runtime and queue
wait time prediction methods and their application in grid
scheduling. They evaluated time series prediction methods
when predicting job runtimes, and point-valued and upper-
bound predictions when estimating queue wait times. A
comparison to scheduling techniques that do not use pre-
diction, show that the use of these techniques do not imply
a better performance of grid scheduling. Pacheco-Sanchez
et al. [38] proposed a Markovian Arrival Process (MAP)
to predict HTTP workloads in cloud infrastructures. The
process captures moments of the probability distribution,
autocorrelation, and temporal dependencies of a time serie.
Khan et al. [39] also proposed a method of characterizing and
predicting workload in a cloud environment. Their method
discovers and leverages repeatable workload patterns within
groups of virtual machines (VMs) that belong to a cloud
customer. They also developed a co-clustering technique for
identifying such VM groups and the common workload pat-
terns. A method based on Hidden Markov Modeling is used

capture temporal correlations and to predict the changes of
workload pattern. The use of Markov-based techniques pro-
vide good accuracy when predicting workloads. However,
it adds a significant overhead to the application execution.
In this work, we adopted an approach where the methods
used to provide estimation should be computed online with
negligible overheads.

On workflow workloads estimation, Duan et al. [40] pro-
posed a hybrid Bayesian neural network method for model-
ing and predicting execution time of workflow activities in
grids. Contrary to our work, they use resource information
to estimate runtime. Thus, their approach is useful for the
task scheduling problem, but it is not applicable for the re-
source provisioning problem. On the other hand, Eun-Kyu
Byun et al. [41] and Huang et al. [42] proposed heuristics
and models to estimate the number of resources required to
execute a workflow. They assume that task runtimes are
available. Nadeem and Fahringer [43] proposed a workflow
performance prediction system using similarity templates.
Templates are generated from different workflow attributes
reflecting workflow performance at different grid infrastruc-
ture levels, and are evaluated through an exhaustive search
method. The drawback of their approach is that they rely
on an expert user to emphasize attributes when defining
templates.

7. CONCLUSION
We presented a method to online estimate fine-grained

task needs such as runtime, disk usage, and memory con-
sumption. We profiled three real scientific workflow execu-
tions, and defined a process to automatic characterize these
profiles. We assume that task needs can be estimated based
on the size of the input data. Our process looks for correla-
tions between the task need parameters and the input data
size. If no correlation is found, density-based clustering is
performed to identify groups of high density areas. Smaller
groups may have higher correlation, or lower standard de-
viation values. Then, we defined a process, based on the
MAPE-K loop, to online estimate task needs according to
workflow execution characterizations.

The method was evaluated through the analysis of work-
flow execution traces where the accuracy of our process was
measured in comparison with the real value. We also com-
pared the accuracy of our online method against an offline
estimation process, where all tasks of a workflow are esti-
mated at once. Results shows that our online estimation
process outcomes more accurate estimation than the offline
method. In addition, we showed that poor output data es-
timations lead to a chain of estimation errors in scientific
workflows, hence the importance of using an online strategy
where task executions are constantly monitored and esti-
mations are updated accordingly. Future work includes the
analysis of the impact of re-planning a workflow when using
an online estimation strategy, and a sensitivity analysis of
the correlation value ρ. We also plan to increase the number
of workflow samples and to compare the results with other
monitoring tools.
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