
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 22:45–67
Published online 13 August 2009 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1469

Visualizing massively
multithreaded applications
with ThreadScope

Kyle B. Wheeler1,2,∗,† and Douglas Thain2

1Sandia National Laboratories, Albuqurque, NM, U.S.A.
2Computer Science and Engineering, University of Notre Dame, Notre Dame,
IN 46556, U.S.A.

SUMMARY

As highly parallel multicore machines become commonplace, programs must exhibit more concurrency
to exploit the available hardware. Many multithreaded programming models already encourage program-
mers to create hundreds or thousands of short-lived threads that interact in complex ways. Programmers
need to be able to analyze, tune, and troubleshoot these large-scale multithreaded programs. To address
this problem, we present ThreadScope: a tool for tracing, visualizing, and analyzing massively multi-
threaded programs. ThreadScope extracts the machine-independent program structure from execution
trace data from a variety of tracing tools and displays it as a graph of dependent execution blocks and
memory objects, enabling identification of synchronization and structural problems, even if they did not
occur in the traced run. It also uses graph-based analysis to identify potential problems. We demonstrate
the use of ThreadScope to view program structure, memory access patterns, and synchronization problems
in three programming environments and seven applications. Copyright © 2009 John Wiley & Sons, Ltd.

Received 5 January 2009; Revised 1 May 2009; Accepted 7 June 2009

KEY WORDS: visualization; multithreading; structure

INTRODUCTION

Today, personal computers commonly have two to four CPU cores, and shared-memory supercom-
puters have hundreds to thousands of cores. In the near future, we may expect personal computers

∗Correspondence to: Kyle B. Wheeler, Sandia National Laboratories, Albuqurque, NM, U.S.A.
†E-mail: kyle-jwiley@memoryhole.net

Contract/grant sponsor: Sandia National Laboratories; contract/grant number: DE-AC04-94AL85000

Copyright q 2009 John Wiley & Sons, Ltd.



46 K. B. WHEELER AND D. THAIN

to have hundreds, and shared-memory supercomputers to have tens of thousands of cores. As
a result, more and more programs must become multithreaded in order to exploit the available
hardware. A number of programming models and libraries such as OpenMP [1], Cilk [2], Intel’s
Threading Building Blocks [3], and qthreads [4] are emerging to simplify the construction of such
programs.
Because of its inherent non-determinism, threaded programming has always been a challenging

task. Programmers must avoid errors specific to parallel execution such as race conditions and
deadlocks. Synchronization bugs can hide in programs for years, undetected until a specific machine
configuration or scheduling order is used. Programmers must also deal with new performance issues
like data structure contention and variable levels of available parallelism in addition to standard
performance tuning issues. Parallelism problems become more complex and hard to analyze or
predict as the scale of parallel execution increases.
We have designed ThreadScope to visualize the structure of parallel applications, which assists the

programmer with troubleshooting and debugging massively multithreaded programs. ThreadScope
uses existing tracing tools to instrument multithreaded applications and uses those traces to visualize
the logical structure. The logical structure of multithreaded programs does not rely on a specific
order of execution other than that specified by synchronization methods. This approach removes
the need to replicate a threading problem in order to identify it.
The high-level structure of a program reveals the program’s parallel and sequential compo-

nents, as well as potential bottlenecks. This structure is independent of the underlying machine,
though may be dependent on the input. Graphs of the structure can be dense and detail-heavy.
The challenge in any dense visualization is deciding where to expand and condense details. To
clarify and simplify the visual depiction of the program structure, we employ a static single
assignment (SSA) form to remove programming idioms and coalesce memory cells into logical
memory objects. These simplification techniques demonstrate how application-specific data struc-
tures can be handled. By analyzing the graph structure, we may also identify race conditions and
deadlocks. Unlike some correctness checkers [5], this approach does not require the software to
be described in a new special-purpose language, but can address existing applications without
modification. A few key operations—reading and writing to memory, synchronization operations,
and spawning or joining threads—are the basic structural elements of any multithreaded applica-
tion. Thus, this analysis technique can be a part of the debugging process, rather than the design
process.
Because this approach relies on specific building blocks of multithreaded applications, it is not

specific to a particular threading library or model. This paper demonstrates ThreadScope’s visualiza-
tion capabilities and analysis features on several programs using a variety of parallel programming
models, and discusses the use of this visualization for structural identification of problems. The
programming models used include the Cilk threading library [2], the qthread threading library
[4], and the standard pthread library. These models were chosen for their variety of synchroniza-
tion mechanisms; however, the ThreadScope technique may be adapted for use with additional
environments.
The key advance of this work is the graph-based structural approach to error identification,

which can identify race conditions and deadlocks as well as predict potential bottlenecks and the
underlying programming model. Identification of livelocks and analysis of message-passing parallel
applications are venues for future work.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 47

METHODOLOGY

The graphs presented in this paper are the result of a two-stage data collection and analysis process.
In the first stage, a program, such as the example Cilk program in Figure 1, is traced by an
existing tracing tool. This trace is translated into an ‘event description’ language. Tracing the
program in Figure 1 produces the event description in Figure 2. ThreadScope includes several tools
for generating these event descriptions from several tracing tools, including Dtrace [6], Apple’s
libamber [7], and the SST simulator [8]. Other tracing tools could be used to produce similar
event descriptions; the basic requirement is the ability to detect thread and synchronization oper-
ations. In the second stage, ThreadScope uses the event description to generate dot-attributed
graph language, which is rendered by the GraphViz [9] graphics package into a graph similar to
Figure 3.
A ThreadScope graph G is a pair (V,E) where V is a set of vertices and E is a set of directed

edges between the vertices where E⊆{(u,v)|u,v∈V ∧u �=v}. There are two types of vertices and
three categories of edges. The vertices represent either serial execution blocks or memory objects.
Execution blocks are graphically represented by round vertices, and memory objects are represented
by rectangular vertices, scaled to represent their size. Each execution block is given a unique
identifying number, as are objects. When the graph is drawn, the first execution block is colored gray
to identify it. The edge categories are thread operations (spawns, joins, and continuations), memory
operations (reads, writes, and atomic read/writes), and memory object identity transitions. Read
and write edges come in a further two varieties, to distinguish atomic or synchronous operations
from potentially unsafe operations. A thread, as ThreadScope defines it, is a sequence of execution

Figure 1. Trivial Cilk program.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



48 K. B. WHEELER AND D. THAIN

Figure 2. ThreadScope event description log of program in Figure 1.

1

2 3

4

obj1 obj2

Figure 3. Graph generated from event log in Figure 2.

blocks that are connected by thread continuations. Thread continuations are implicitly inserted
whenever an execution block executes a potentially blocking operation that necessarily establishes
a ‘happens-before’ dependency [10] on everything that follows it.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 49

In this paper, the graphs are monochromatic, which can make distinctions between edge-types
difficult to see. In practice, edges are presented in color. Here, thread operations are represented by
solid edges. Thread continuations are represented by thick black edges, spawns by thin black edges,
and joins by thin gray edges. Memory operations are represented by dotted or dashed edges, for
safe and unsafe operations, respectively. Reads are black and writes are gray. Atomic read/write
operations are dotted with arrows at both ends. Memory object transitions are thick, dashed, light
gray lines.
For example, in Figure 3, round nodes 1 and 4 correspond to the main() function from Figure 1;

node 1 represents lines 6–8 and node 4 represents lines 9–11. The sync operation in line 9 divides
the thread into two execution blocks because it is a potentially blocking operation. Nodes 2 and 3
are both instances of the genrand() function, spawned in lines 7 and 8, respectively. They each
write to a memory object (obj1 and obj2) and exit. The spawn operations in lines 7 and 8 are
indicated by the thin black edges of the graph, and the sync operation is indicated by the thin gray
edges.
The graph is a progression through the logic of the program where parallelism is the x axis and the

y axis represents logical ordering. The number of potentially concurrent actions at any point in the
threaded program is equal to the number of solid lines or nodes at the y coordinate corresponding
to the logical progression through the program. The maximum number of solid edges crossed by a
horizontal line at that y coordinate is the maximum theoretical parallelism at that point.

Tracing

Event descriptions can be generated from a variety of tracing tools, from instrumented threading
libraries, to runtime function call interceptors [11], to full instruction logs. ThreadScope’s current
set of event-collection tools are based on one of three data collection methods: instrumenting the
threading library, system-level runtime tracing, and full instruction traces. In particular, there are
implementations for the qthread library [4], Dtrace [6], Apple’s libamber [7], and Sandia’s SST
simulator [8]. Because ThreadScope presents trace-based parallel application structure, it works
best when that structure does not depend on the input. The parallelism presented in ThreadScope
graphs is entirely dependent upon the parallelism requested during the instrumented application
run. In an explicitly parallel environment like Cilk or pthreads, all programmatic parallelism—
the parallelism expressed by the programmer—is expressed at runtime and can be captured and
expressed in a ThreadScope graph by a runtime tracing tool. Implicitly parallel environments, such
as OpenMP [1] or UPC [12], usually adapt the programmatic parallelism to the available paral-
lelism in ways that are not detectable at runtime without language-level instrumentation. Graphing
the programmatic parallelism of an implicitly parallel environment would require generating the
event description log at the level where the programmatic parallelism is visible, such as in the
compiler.
Each tracing method has its own benefits and drawbacks. For example, an instrumented threading

library can provide event tracing with relatively low overhead and can faithfully record all thread
and synchronization operations. However, an instrumented threading library usually traces the entire
execution of the program, which may not be desired. This can be addressed by adding functions to
control tracing behavior that can be called by the program, though this would require modifying
and recompiling the program in question.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



50 K. B. WHEELER AND D. THAIN

2

7 8 9

12

3

13

4 5 6

10

11

1

25

15 14 16 17 18

24

19 20

22

23

21

Figure 4. Structure of a Cilk application with a bottleneck.

System-level runtime tracing, such as with valgrind [11] or Dtrace [6], provides the ability to
track function calls or even track specific instructions. The overhead of this type of tracing depends
on how intrusive it is. For example, a Dtrace script can detect basic thread operations with relatively
low overhead, and can be limited to tracing only a portion of an application’s runtime. However,
the utility of Dtrace event logs is limited because Dtrace cannot detect individual memory accesses.
Examples of graphs based on Dtrace output are Figures 4–6.
Full instruction tracers, such as Apple’s libamber [7] trace generator or Sandia’s cycle-accurate

Structural Simulation Toolkit [8], record every instruction, and thus can track every memory oper-
ation. This thorough data collection has a relatively high cost. Cycle-accurate simulation has the
highest overhead, but avoids perturbing instruction ordering and thus can observe application
behavior without affecting it. The event description in Figure 2 was translated from the verbose
output of the SST simulator.
Each tracing technique has overhead associated with it. In many cases, as illustrated in Table I, a

great deal of overhead. The numbers in that table compare the execution time of each program run
uninstrumented to the execution time with instrumentation. In most cases there is some additional
post-processing time necessary to generate the event log from the trace outputs. The overhead of
the tracing technique is primarily of importance when considering how long it will take to debug

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 51

Figure 5. Structure of Cilk bucketsort (overview without details).

the program; it does not affect correctness unless the application being traced has strict timing
requirements. This is especially true for cycle-accurate simulation, because the application being
simulated is not aware of real wall-clock time, and the overhead of recording each instruction has
no impact on execution order.

The event description

Each event in ThreadScope’s event language consists of a type and several attributes in key = value
form. The basic thread lifetime events are INIT, SPAWNED, and ENDED, corresponding to when
threads are allocated, run, and complete. Synchronization events include LOCK, UNLOCK, SYNC,
WAIT, INCR and several others representing full-empty bit operations. Memory accesses are
described by MWRITE and MREAD events. Unknown event types are ignored by the graph generator,
thus allowing the event language to be expanded for additional analysis. For example, malloc-related
events’ (MALLOC, FREE, and REALLOC) operations were added late in the development process to
enhance memory object tracking. The event descriptions do not generally include data from within
the threading libraries or system libraries. The event logs omit this information purposefully, to
focus on thread-level application behavior.
Every event has a timestamp (a monotonically increasing integer) and a tid (a CPU identifier or

worker-thread identifier). Other attributes depend on the event. Threads are uniquely identified by
a ‘frame’ identifier and the time that they began executing, since frame identifiers may be reused.
For example, the INIT event indicates that a thread has been allocated. It has a ‘frame’ attribute
that specifies the identity of the thread being initialized—typically the address of the thread’s
bookkeeping structure or stack. The INIT event specifies the identity of the thread generating the
event with the ‘threadid’ attribute; the default value for threads that are not spawned is ‘0×0.0’.
The SPAWNED event indicates that a previously allocated thread has begun executing. This event
defines a thread’s identity (for future use in a ‘threadid’ attribute), and so has three required
fields: a timestamp (labeled ‘now’), a parallelism identifier (labeled ‘tid’), and the relatively unique
‘frame’ attribute. It has one optional field, ‘entry’, used for threading environments that allow for
continuations. The ENDED event indicates that a thread has stopped executing. It requires the ‘now’
and ‘tid’ fields, as well as a ‘frame’ field and an indication whether the thread is expected to
continue. This indication is an optional ‘next’ field that specifies what ‘entry’ number the frame

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



52 K. B. WHEELER AND D. THAIN

1

2 34 5 67 8 9 10 11

12

obj1 obj2 obj3obj4 obj5 obj6obj7 obj8 obj9 obj10 obj11

13

14

15

Figure 6. Structure of qt loop balance() spawning ten threads with C source code.

will next use. Subsequent SPAWNED events are considered to be continuations of previous threads
if their ‘frame’ and ‘entry’ values match the ‘frame’ and ‘next’ values of an ENDED thread.
Memory is tracked by its address, and so synchronization events and memory accesses require

an ‘addr’ attribute. However, memory is typically treated as a collection of logical storage ‘objects’
rather than as a large set of sequentially addressed one-byte storage units. Thus, ThreadScope tracks

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 53

Table I. Tracing overheads compared with uninstrumented execution.

Instrumented System-level Instruction
Benchmark thread library tracing tracing

HPCCG 1.01x 22.39x 19 698.79x
Pagerank 3.49x 58.19x 8692.25x
Piping 1.09x 72.85x 108.76x

the threads and memory objects used in an application as objects with relationships to each other
to simplify application structure. Memory addresses can be grouped into objects, for example as
the result of MALLOC events.

Visual representation

The first component of visualizing the structure of an application is to represent the relationships
between its threads. Very simple relationships were illustrated in Figure 3.
A graph of this nature, for a given execution of a parallel application, can be generated for any

threading mechanism that has uniquely identifiable threads. It demonstrates the logical connections
between threads, and can be useful for identifying potential bottlenecks in the application. Regions
where there is no available parallelism are bottlenecks that can be visually identified using this
graphing technique. For example, Figure 4 demonstrates a simple threaded application with an
obvious bottleneck.
The graph in Figure 4 does not indicate the severity of the bottleneck; it may be the synchro-

nization and respawning of more threads or something more computationally intensive. The graph
only reveals that there is a section of the program (node 13) that cannot execute in parallel. That
information is often a fact worth investigating when attempting to improve application performance.
Figure 4 is a small excerpt from a Cilk application performing a parallel bucket sort. The full graph
of this application is presented in Figure 5. Even without reading the source of the application, it
is clear that it has two bottlenecks of the sort illustrated in Figure 4. These bottlenecks segment the
computation into three parallelized segments and four purely serial segments.

MEMORY ACCESS PATTERNS

Once the structure of an application has been analyzed, the next step in performance and correctness
analysis is to examine the program’s memory access patterns. Even small programs generate a large
volume of memory references. Including them all in a graph would make it dense and difficult
to analyze. Making sense of the graph requires displaying only the memory references that are
meaningful, and including them in the graph in ways that are helpful to the problem that is being
analyzed. Exactly which memory references are meaningful depends on the application and the
situation, but there are some general simplifications that are frequently helpful in presenting a
clearer picture of application behavior.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



54 K. B. WHEELER AND D. THAIN

Improving visualization clarity

One way to present a clearer picture is to eliminate from the graph all memory locations that are not
written. This is useful for clearly presenting race conditions, programming errors, and synchroniza-
tion bottlenecks. For example, Figure 6 illustrates the qt_loop_balance() function from the
qthread library. The qt_loop_balance() function spawns a number of threads. Each thread,
just before exiting, increments a shared counter with the atomic qthread_incr() function. The
parent thread will wait for each thread to finish in turn. Each time a thread finishes, the shared
counter’s value is checked against the number of threads the parent spawned. If the counter’s value
is equal to the number of threads originally spawned, the parent can avoid waiting for the remaining
threads individually.
In Figure 6, the dotted edges beginning and ending in gray circles are the atomic increment

operations (qthread_incr()), the dotted black edges are synchronized memory writes (in this
case, writing the return code of the function), and the gray edges (both dotted and dashed) are the
relevant memory reads. In this case, a memory read is considered ‘relevant’ if the read was either
a blocking operation (qthread_readFF(); the dotted gray edges) or operated on an object that
had previously been written to. The graph illustrates a qt_loop_balance() loop that spawned
10 threads. Each thread wrote to both the shared counter and the thread’s return-value location.
The parent thread waited on three of the threads via a blocking operation (qthread_readFF()),
each time checking the shared counter before waiting on the next thread. It waited on only three
threads to finish (2, 3, and 4) before observing that the shared counter was the correct value.
Figure 6 is a small snippet of a graph generated by the HPCCG [13] benchmark. A larger

snippet, representing about 3% of its total runtime, is presented in Figure 8(a). This benchmark
relies heavily on qt_loop_balance(). Since this function is used sequentially, and frequently,
its serial components have the potential to become a bottleneck. Note that the structure of the
program can be observed in the memory and thread behavior, without requiring a priori knowledge
of memory layout, data structures, or programmer’s intent.
Considering only memory locations that are accessed by multiple threads is another useful simpli-

fication. For example, in a simple threaded matrix multiplication implementation, each memory
location should only be written to by a single thread. If multiple threads write to the same memory
location, that is probably a bug. Threads also typically use thread-specific scratch memory, often in
the stack, that has no direct bearing on the logical structure or correctness of the application. The
previous qt_loop_balance() structure simplifies slightly with this technique and makes the
flow of information clearer, as illustrated in Figure 7. The HPCCG benchmark’s graph is simplified
this way in Figure 8(b).

Object condensing

Programmers typically treat memory as a collection of logical objects rather than as a collection of
sequentially addressed bytes. As such, displaying the logical objects rather than the addressed bytes
simplifies the visual representation of memory operations. However, objects are hard to define, much
less identify from a raw memory address stream. For example, an object may intuitively include an
array; but it may be more useful to treat each element of the array as a separate object. Complex
data structures only add to the problem. With limited a priori knowledge, the best approach is a

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 55

1

2 3 45 6 7 8 9 10 11

12

obj1obj3 obj6 obj12

13

14

15

Figure 7. qt loop balance() spawning ten threads, memory limited to multiple-accesses.

winnowing process, consisting of successive identifications of important memory references from
the set of unidentified references.
In many cases, shared data structures are protected by synchronization operations of some kind,

such as mutual exclusion locks, semaphores, or full/empty bits. In a very real sense, shared objects
are defined by the locks that protect them, and obtaining the lock indicates that lock’s associated
memory object is about to be accessed. Because of this behavior pattern, objects that are associated
with specific locks can be extracted from a stream of memory address references by tracking the
state of the synchronization operations during memory access. In the case of mutex locks, whenever
a thread accesses a memory location, that location is associated with whatever locks are currently
held by the accessing thread. If an address is ever accessed without those locks, then it is not
protected by them and cannot be considered part of the memory object associated with that lock.
By the end of the sequence of memory references, each lock is associated with a set of memory
addresses that it protects. That set of memory addresses comprises a single logical memory object.
This object may not be contiguous and may not be entirely what the programmer expected or
intended, but it is a de-facto memory object. Addresses that are accessed by multiple threads without
a lock may indicate programming errors, and deserve closer attention.
Memory addresses that are not protected by synchronization operations can be clustered into

objects in other ways. References to stack variables and global data can be identified not only by
considering the memory region, but also with the aid of debugging information in the application
binary.
Memory references into the ‘heap’ region of the address space can be associated with the allocated

region to which they belong, however that is often insufficiently specific. Memory pools, arena
allocation, and structured mmap()ed files are all situations where usefully identifying discrete
memory objects can be especially difficult if they are not associated with synchronization operations.
It is possible to take a probabilistic approach, estimating discrete memory objects with the help of

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



56 K. B. WHEELER AND D. THAIN

(a) (b)

Figure 8. Structure graphs of 3% of the HPCCG benchmark (overview without details): (a) including only
written addresses and (b) including only shared addresses.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 57

1

23 45 6

13

obj1obj2obj3 obj4obj5 obj6

789

obj712

obj8

obj9

obj10 obj11

obj12

10

obj13

11

obj14

obj15

18 17 16 14 15

25

192120

24

22

23

1

234 56

obj1 obj3obj4obj5 obj6obj7

13

78 9obj13

12

obj15obj17 obj19obj21

obj23obj25 10

11

obj29

obj2

15 1416 17 18

obj8obj9obj10 obj11obj12

obj14obj16obj18 obj20obj22

obj24

19

obj26

obj27

obj28

21

23

obj30

20

obj31

obj32

22

25

24

(a) (b)

Figure 9. Structural impact of memory access and identity tracking: (a) naı̈ve and (b) SSA-like identity tracking.

proximity and temporal access patterns, but without a priori knowledge of the application, grouping
memory references into objects is, at best, a guessing game. The only option that guarantees relative
correctness is to assume that each unprotected memory location is an independent memory object.

Address re-use

Memory re-use impacts the observed structure of the application. Allocated memory and stack
addresses are often re-used, even though the object they represent has changed. It is considered
good practice to re-use memory as much as possible, to take advantage of processor caches, and
so tight algorithms typically re-use memory for unrelated computations. If the logical status of a
memory object is not considered, structure can be difficult to extract; the threads will all appear to
be operating on the same memory. For example, Figure 9(a) is the same program that was illustrated
in Figure 4, but with memory references added. The logical structure so easily seen in the original
graph has become hard to discern.
The most direct way of determining the logical identity of a memory object is to keep track

of when it is allocated and deallocated: when it is deallocated, the memory is logically reset and
if that memory is re-allocated, it clearly represents an entirely new logical object. Unfortunately,
allocation and deallocation only apply to heap-type memory regions, and even then are not always
easy to recognize—for example, in applications that implement memory pools or that simply re-use
variables. Allocation and deallocation tracking is an incomplete and thus unreliable approach.
We can also track the logical identity of memory by assuming that its identity changes when it is

written. This approach is commonly known in the compiler community as SSA [14]. This divides a
memory block’s existence into separate identities much in the same way that threads are separated
into connected execution blocks. If we use strict SSA to establish memory identity transitions,

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



58 K. B. WHEELER AND D. THAIN

each memory block may eventually obtain a large number of identities. Most of these identities
are irrelevant to the overall flow of the application and can be merged together. We can focus on
important memory references by applying the previously discussed simplification heuristics, such as
eliminating memory object identities that are not accessed by more than one thread. The operations
upon and previous identities of a memory object impact whether an object must be considered to be
shared by multiple threads. For instance, if a memory object is re-used by non-concurrent threads,
the two instances are distinct only if the second thread writes to the object before reading from
it. If the first action on the object is a read, the object must be treated as shared with the threads
that had previously used it. Figures 9(a) and (b) represent the same program, but Figure 9(b) has a
clearer structure because of this type of identity tracking.

Condensing structure with a priori knowledge

Not all memory references are equally important to analysis and debugging. For example, a shared
data structure—such as a hash table or a kernel-supplied file descriptor—may occupy a large
discontiguous portion of memory. If that data structure and its accessor functions are assumed to be
correct or at least outside the scope of analysis, it can be beneficial to represent that data structure
in the graph as a single object, rather than as a large set of independent memory locations.
ThreadScope’s memory tracking can be modified by adding new events to the event description,

thereby providing a priori information about the application’s behavior. For example, malloc()-
tracking uses MALLOC, FREE, and REALLOC events to define memory objects.
Figure 10 illustrates the potential risks and benefits of redefining memory objects. Figure 10(a)

is an example of a program with three threads that each insert an entry into a shared hash table and
then get it back out again. In this case, the hash table is a simplistic one that allocates a separate
object for each key/value pair with malloc(). Figure 10(b) presents the result of using malloc
to define memory objects. The structure is relatively clear. Another way of condensing is to isolate
objects by their operand functions. Figure 10(c) reduces the hash table to a single logical object
that is accessed by multiple threads. Note that, like Figure 9(a), the logical structure of the graph
is obscured by reducing the memory objects too far. Unfortunately, determining the existence of
a hash table and isolating key and value pairs are difficult to do automatically from a raw address
stream. Events representing hash table operations need to be added to the event log to mask the
hash implementation’s specific behavior.

ISOLATING POTENTIAL PROBLEMS

Identifying problems in parallel applications when there are few parallel threads of execution is not
particularly difficult: the graphs have few components and the patterns of possible errors are easy
to recognize visually. However, as the number of threads and the scale of the application increases
so does the complexity and size of the thread structure graphs. Merely rendering the entire graph
can be a challenge when analyzing an application that uses thousands of threads. One powerful
option for handling large graphs is the ZGRViewer tool [15]. Without such a tool, useful analysis
requires that the volume of data presented in a single graph be limited to areas of interest, such
as problem areas. There are two primary components to isolating potential problems in a thread

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 59

1

23 4

obj4

obj5 obj8

obj15obj17obj19obj21 obj23 obj25

12

5

6

7

8

obj6 obj9 obj16obj18

obj7 obj10obj20 obj22

10

obj27 obj11 obj24 obj26

13

9obj12

obj1

obj2

15

obj3

16

obj13

obj14

11

14

1

23 4

obj1Hash
Value 1

Hash
Value 2

Hash
Value 3

12

56 7

8

Hash
Value 1

Hash
Value 2

10

Hash
Value 3

13

9

obj5obj4

15

obj2

16

1114

1

2 34

obj4

The Hash

12

5

67

8

1013

9

obj1

obj2

15

obj3

16

1114

(a) (b) (c)

Figure 10. Simple hash table application, with memory object condensing options: (a) individual memory
references; (b) condensing malloc-defined blocks; and (c) condensing class-defined blocks.

structure graph: identification of areas of interest in the graph and selective display of only the
portions of the graph relevant to that interest.

Structural threading problems

Some of the most basic problems that afflict threaded programs are structural problems that can be
revealed and identified graphically. Problems such as race conditions and deadlocks are common
problems that can often be discovered using structural analysis.

Deadlocks

Tracking a deadlock down using a basic debugger can be an especially difficult exercise
when there are a large number of locks involved. Deadlock is defined by the four Coffman
conditions [16]:
1. Mutual exclusion.
2. Hold and wait.
3. No preemption.
4. Circular wait.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



60 K. B. WHEELER AND D. THAIN

1

23

10

obj1

obj3

4

obj7

7

obj2

obj4

5

obj6

6

obj5

obj8

11

8

9

1

23

10

obj1

obj3

4

obj7

7

obj2

obj4

5

obj6

6

obj5

obj8

11

8

9

1

23

9

obj1

obj2

4

obj3

7

obj4

obj5

5

obj6

8

obj7

obj8

11

6

10

1

23

9

obj1

obj2

4

obj3

7

obj4

obj5

5

obj6

8

obj7

obj8

11

6

10

(a) (b) (c) (d)

Figure 11. Identification of potential deadlock via structure: (a) circular wait; (b) highlighted circuit;
(c) no circular wait; and (d) highlighted dependencies.

In most multithreading programming models, the first three conditions for deadlock are assumed.
The fourth, circular wait, is a structural description that becomes apparent from the thread structure
graph of a deadlocked program, even if the program does not deadlock during execution. Figure 11(a)
presents a program that does not necessarily deadlock, but has the potential. In this program, two
threads lock two locks. One thread (starting with node 2) locks the first lock (obj1/3/7), unlocks
it, then locks and unlocks the second lock (obj2/5/6). The other thread (starting with node 3) locks
the second lock (obj2), locks the first lock (obj3), then unlocks them in the same order. Because
of the inconsistent ordering, this is a potential deadlock that may not occur at runtime. This can
be detected with dependency tracking [17]. We can interpret the structure graph as a resource-
allocation graph that will have a circuit if deadlock can occur. Figure 11(b) highlights the circular
dependency. Note that this program can (and did, during graph generation) run to completion,
despite the potential deadlock, depending on how the threads are scheduled. Potential deadlock,
however, can be identified with a depth-first traversal of the graph. When the previous program is
rewritten to ensure that the locks are only obtained in a specific order, as illustrated in Figure 11(c),
the circular wait is eliminated. The memory state transitions are highlighted to illustrate the lack
of a cycle in Figure 11(d).

Race conditions

There are many different kinds of race conditions, but not all of them can be easily recog-
nized by even the most advanced automatic analysis system. We can relatively easily identify
basic race conditions, such as when multiple threads manipulate the same memory object without

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 61

1

2 3

4

obj1obj2

obj4

obj3

5

1

2 3

4

5obj1 6

obj2

7

8

9

obj3 obj4

1

23

6

4 obj1

5

8

9

7

obj3

obj2obj4

(a) (b) (c)

Figure 12. Identifying race conditions via structure: (a) unprotected race;
(b) protected race; and (c) ordered access.

synchronization. When the race is to see which piece of data will be placed in a thread-safe memory
object, identifying the race condition can become fairly difficult. However, visualizing all of the
relevant accesses to a given memory object can reveal the potential for race conditions. If multiple
threads access the same memory object, there is a potential race condition and source of concern.
Figure 12 illustrates three different kinds of shared-memory access. In Figure 12(a), two threads
(2 and 3) attempt to write into the same memory object that thread 5 later reads. However, there is
no required ordering to these writes, and thread 5’s read could return either value written or even
some combination of the two. Figure 12(b) illustrates the common situation of a shared-memory
object protected by mutexes. This protection eliminates the potentially corrupt data read, but does
not establish a required ordering for the writes. The writes do not depend on one another, so they
can be executed in any order. This non-determinism may not be an error, depending on the appli-
cation. Finally, Figure 12(c) illustrates shared access to a protected memory object that does not
have a race condition. Because the writes are logically ordered through dependence relations, the
contents of the memory object are deterministic. Thus, the final read is both safe and deterministic
despite being unsynchronized. Because these graphs represent the logical structure of the program,
a dangerous potential race condition (12(a)) can be identified even if no error is apparent at runtime.
It is worth emphasizing that not all race conditions, defined as timing-dependent logic, are errors.

For example, the correctness of the qt_loop_balance() implementation from Figure 6 does
not rely upon a specific ordering of thread completions.

Graph-based problem identification

The useful portions of the graph can be isolated by presenting only a subgraph of the structure.
For example, the graph can be reduced to the subgraph of only the nodes that are connected

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



62 K. B. WHEELER AND D. THAIN

(a) (b)

(c)

Figure 13. Race condition isolation: presentation options. (a) full graph; (b) distance of four;
and (c) nearest common ancestor.

to a given thread or memory object of interest. Because the graphs are directed graphs, it is
possible to find the nearest common ancestor of two or more nodes of interest, and present only
the subgraph of the paths from those nodes to their common ancestor. Figure 13 illustrates such
graphs. Figure 13(a) is a graph of a short application with an intentional race condition in it.
Figure 13(b) narrows the graph of the application to only the nodes that have a distance of four
or less from the memory object with the race condition—the nodes that are directly connected
to the memory object are highlighted. Figure 13(c) presents the graph of the threads that touch
the memory object of interest and the ancestral tree up through the nearest common ancestor of
those threads. Both of these presentation modes are useful for visually locating potential structural
problems.
The other aspect of debugging is identifying the problems in a large graph algorithmically so

that they can be isolated and displayed. This is where heuristics are useful, similar to standard
compiler warnings. One common structurally detectable race condition is where a write occurs
to an object that has not necessarily been read yet. A race condition also occurs when there
are two writes to a memory location that do not depend on each other, which can be identified
algorithmically. When a deadlock occurs, of course, the affected threads and memory operations
can be identified, isolated, and displayed. Identifying potential deadlocks is also possible to do
algorithmically.

THREAD MODELS

One of the particularly interesting aspects of this kind of multiprocessing analysis is that the
programming scheme employed by the parallel algorithm being studied can be observed and

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 63

Figure 14. Structure of 10% of Cilk bucketsort, including memory references.

understood without in-depth knowledge of the program itself. The computation model and commu-
nication patterns used by the application impact the performance characteristics of the application,
and provide an indication of likely performance trends. The computation model is closely associated
with the communication pattern and provides insight into potential optimizations and problems that
can assist in debugging and maintenance.
For example, graphs in Figure 8 were generated from the HPCCG application, which uses

qthreads. HPCCG uses a distinctly phase-oriented programming model that is comparable to the
Bulk Synchronous Parallel [18] and PRAM [19] computation models. In each parallelized segment
of the application, threads are created, executed, and then results are communicated, largely in the
form of synchronization operations. These computational segments can be viewed more closely in
Figure 6, which illustrates a single iteration of the underlying qthread-based parallel construction
of HPCCG.
The bucketsort implementation, graphed in Figure 5, is an example of a distinctly different parallel

computation model. While the program is obviously composed of three distinct phases, without
memory references, the memory model cannot be determined. The graph in Figure 5 is produced
with a Dtrace-based event description, which could not detect memory references. Figure 14 is a
graph of 10% of the same bucketsort program, but traced with SST in order to include memory
references. Predictably, it is centered around the large array that it is sorting, depicted as the large
box near the top of the graph. This behavior makes it similar in some ways to a Linda-based
application [20]. The same would be true for most parallel applications centered around a single
data structure, though some data structures can be graphed more usefully, such as a hash table, as
illustrated in Figure 10.
Flow-based applications [21] have another distinct structure. This structure is illustrated in

Figure 15, which is a graph of a simple parallel stream processor. This program spawns four threads.
The first thread generates random numbers and puts them into a circular buffer. The second thread

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



64 K. B. WHEELER AND D. THAIN

2

361317

71

obj1

obj2

4

7

14

54

obj3

obj7

8

9

11

obj4

obj5

obj6

obj12

15

16

obj8

obj9

obj10

obj11

obj15

25

27

29

30

31

obj13

obj14

obj18

34

35

36

obj16

obj17

43

45

obj19

49

50

obj20

obj21

obj22

obj23

obj2455

56

57

58

59

obj25

obj26

obj27

67

68

69

obj28

72

5

18

10

12

24

33

19

20

21

22

23

37

26

28

32

42

48

38

39

40

44

46

51

52

53

60

66

61

62

63

64

Figure 15. Structure of a flow-based application.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 65

fetches numbers from that circular buffer and feeds only the odd numbers into a second circular
buffer. The third thread fetches numbers from the second circular buffer, sorts them, and then
puts them into a third circular buffer. The fourth thread fetches numbers out of the third circular
buffer and prints the unique ones. All three circular buffers have a capacity of three. Note that,
rather than relying on a large set of shared objects that multiple threads can access, each shared-
memory object is only accessed by two threads. This leads to a distinctive visual pattern. The
resulting thread structure graph has some distinct similarities with respect to the corresponding FBP
diagram.

RELATED WORK

ThreadScope is a hybrid approach to parallel program analysis. It is primarily a visualizer, to make
program structure clear and to make structural analysis easy. The graph framework used to generate
this visualization, however, leads to opportunities for detecting basic structural problems algorith-
mically.
Multithreaded applications have a history of being difficult to visualize, because there are few

strict rules about their behavior. Some of the oldest parallel visualizers, such as Pablo [22] and
Tapestry [23], are essentially monitoring programs that keep track of statistics like communication
bandwidth and latencies. More recent variations, such as Bedy’s [24] thread monitoring system
and the Gthread [25] visualization package from the PARADE [26] project give somewhat more
detailed information about locks and thread status. Getting more detail has typically meant tailoring
the visualizer to a particular environment. For example, the Gthread system works only on KSR
machines, Eden [27] is specific to Haskel programs, and Pajè [28] is a visualization system specif-
ically for data-flow programs such as those written in the Athapascan [29] environment. Pajè
monitors long-lived parallel threads, diagrams blocked states, and illustrates message transfer and
latency. Assuming that threads are relatively few and long-lived is typical of many parallel visual-
izers. In many cases, such as with ParaGraph [30], PARvis [31], and Moviola [32], the visualization
assumes one thread per node, and then focuses on the communication and blocked status of those
‘threads’. They provide time-process communication graphs that make it easy to identify basic
communication problems. Explicit communication is typical of the MPI programming model, and
MPI visualization tools like Vampir [33] provide similar information in similar-looking graphs.
ThreadScope graphs use communication behavior to help define structure, rather than presenting a
structure based on the hardware layout.
As multithreaded applications have become more popular, automated correctness checkers have

received a great deal of interest. In some cases these tools stem from serial application correctness
checkers. This is especially true for memory checkers such as IBM’s Rational Purify [34] and
Valgrind [11]. Valgrind is particularly interesting because it has developed a validation component,
Helgrind [35], to perform validation of common threading operations and watch for potential race
conditions. Another similar tool is Intel’s Thread Checker [36]. These tools are all dynamic program
analysis tools, similar to the tracing tools that generate the event description logs that ThreadScope
uses. The ThreadScope approach is more akin to shape analysis, such as done by Sagiv et al. [37],
because of the way it renames memory objects based on access behavior, though ThreadScope
relies primarily on thread behavior.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



66 K. B. WHEELER AND D. THAIN

CONCLUSION

Analyzing parallel applications continues to be an area of great interest as parallel runtime envi-
ronments become more powerful, complex, and unpredictable. The work presented in this paper
provides a powerful method of understanding the behavior of lightweight-threaded applications
in several common lightweight-threaded environments. This allows application structure to be
compared across multiple threading environments and assists in quickly identifying hard-to-
reproduce logical problems. Most importantly, this work allows the memory use patterns and thread
structure to be combined in a single visualization tool, enabling not only correctness analysis but
also providing the information necessary to plan thread/data partitioning schemes.

ACKNOWLEDGEMENTS

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

REFERENCES

1. Chapman B, Jost G, van der Pas R, Kuck DJ. Using OpenMP: Portable Shared Memory Parallel Programming. MIT
Press: Cambridge, MA, 2007.

2. Blumofe RD, Joerg CF, Kuszmaul BC, Leiserson CE, Randall KH, Zhou Y. Cilk: An efficient multithreaded runtime
system. Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPOPP
’95. ACM Press: New York, NY, U.S.A., 1995; 207–216. DOI: 10.1145/209936.209958.

3. Intel Corporation. Intel� Threading Building Blocks (1.10 edn), 2008. Available at: http://softwarecommunity.intel.com/
isn/downloads/softwareproducts/pdfs/301114.pdf.

4. Wheeler K, Murphy R, Thain D. Qthreads: An API for programming with millions of lightweight threads. Proceedings
of the 22nd IEEE International Parallel and Distributed Processing Symposium, MTAAP ’08. IEEE Computer Society
Press: Silver Spring, MD, 2008; 1–8. DOI: 10.1109/IPDPS.2008.4536359.

5. Holzmann GJ. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley: Boston, 2004.
6. Cantrill BM, Shapiro MW, Leventhal AH. Dynamic instrumentation of production systems. Proceedings of the Annual

Conference on USENIX Annual Technical Conference, ATEC ’04. USENIX Association: Berkeley, CA, U.S.A., 2004; 2.
7. Altherr R, Bois RD, Hammond L, Miller E. Software performance tuning with the Apple CHUD tools. IEEE International

Symposium on Workload Characterization 2006; 0:1. DOI: 10.1109/IISWC.2006.302722.
8. Rodrigues AF, Murphy RC, Kogge P, Underwood KD. The structural simulation toolkit: Exploring novel architectures.

Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06. ACM Press: New York, NY, U.S.A., 2006;
157. DOI: 10.1145.1188455.1188618.

9. Gansner ER, North SC. An open graph visualization system and its applications to software engineering.
Software—Practice and Experience 2000; 30(11):1203–1233. DOI: 10.1002/1097-024X(200009)30:11<1203::AID-
SPE338>3.3.CO;2-E.

10. Lamport L. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 1978;
21(7):558–565. DOI: 10.1145/359545.359563.

11. Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instrumentation. PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM: New York, NY,
U.S.A., 2007; 89–100. DOI: 10.1145/1250734.1250746.

12. El-Ghazawi T, Smith L. UPC: Unified parallel C. SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. ACM: New York, NY, U.S.A., 2006; 27. DOI: 10.1145/1188455.1188483.

13. Heroux M. Mantevo. Available at: http://software.sandia.gov/mantevo/ [1 December 2008].
14. Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK. Efficiently computing static single assignment form and

the control dependence graph. ACM Transactions on Programming Languages and Systems 1991; 13(4):451–490. DOI:
10.1145/115372.115320.

15. Pietriga E. ZGRViewer, a GraphViz/dot viewer. Available at: http://zvtm.sourceforge.net/zgrviewer.html [7 April 2009].

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe



THREADSCOPE 67

16. Coffman EG, Elphick M, Shoshani A. System deadlocks. ACM Computing Surveys 1971; 3(2):67–78. DOI:
10.1145/356586.356588.

17. Silberschatz A, Galvin PB, Gagne G. Operating System Concepts (6th edn). Wiley: New York, 2003.
18. Skillicorn DB, Hill JMD, McColl WF. Questions and answers about BSP. Scientific Programming 1997; 6(3):249–274.
19. Fortune S, Wyllie J. Parallelism in random access machines. Proceedings of the 10th Annual ACM Symposium on Theory

of Computing, San Diego, CA, 1978; 114–118. DOI: 10.1145/800133.804339
20. Ahuja S, Carriero N, Gelernter D. Linda and friends. Computer 1986; 19(8):26–34. DOI: 10.1109/MC.1986.1663305.
21. Morrison JP. Data responsive modular, interleaved task programming system. Technical Disclosure Bulletin 8, IBM,

January 1971.
22. Frank EE, Aydt RA. The PABLO performance visualization system functional specification. Department of Computer

Science, University of Illinois, February 1995.
23. Malony AD, Reed DA. Visualizing Parallel Computer System Performance. ACM: New York, NY, U.S.A., 1989; 59–90.

DOI: 10.1145/75705.75709.
24. Bedy M, Carr S, Huang X, Shene CK. A visualization system for multithreaded programming. SIGCSE ’00: Proceedings

of the Thirty-First SIGCSE Technical Symposium on Computer Science Education. ACM: New York, NY, U.S.A., 2000;
1–5. DOI: 10.1145/330908.331798.

25. Zhao QA, Stasko JT. Visualizing the execution of threads-based parallel programs. Technical Report GIT-GVU-95-01,
Graphics, Visualization, and Usability Center, Georgia Institute of Technology, Atlanta, GA, January 1995.

26. Stasko JT. The PARADE environment for visualizing parallel program executions: A progress report. Technical Report
GIT-GVU-95-03, Georgia Institute of Technology, 1995.

27. Berthold J, Loogen R. Visualizing parallel functional program runs: Case studies with the eden trace viewer. Parallel
Computing: Architectures, Algorithms and Applications (John von Neumann Institute for Computing). Georgia Institute
of Technology: Atlanta, GA, 2007; 121–128.

28. Kergommeaux JCD, Stein BDO, Martin MS. Paje: An extensible environment for visualizing multi-threaded program
executions. Proceedings of Euro-Par 2000. Springer: Berlin, 2000; 133–144.

29. Galilée F, Roch JL, Cavalheiro GGH, Doreille M. Athapascan-1: On-line building data flow graph in a parallel language.
Proceedings of the 1998 International Conference on Parallel Architectures and Compilation Techniques, PACT ’98.
IEEE Computer Society Press: Washington, DC, U.S.A., 1998; 88.

30. Heath MT, Finger JE. ParaGraph: A tool for visualizing performance of parallel programs. Technical Report, Oak Ridge
National Laboratory, 1995.

31. Linden LB. Parallel program visualization using ParVis. Parallel Computer Systems: Performance Instrumentation and
Visualization. ACM Press: New York, 1990; 157–187. DOI: 10.1145/100215.100265.

32. LeBlanc TJ, Mellor-Crummey JM, Fowler RJ. Analyzing parallel program executions using multiple views. Journal of
Parallel and Distributed Computing 1990; 9(2):203–217. DOI: 10.1016/0743-7315(90)90046-R.

33. Nagel WE, Arnold A, Weber M, Solchenbach K. VAMPIR: Visualization and analysis of MPI resources. Supercomputer
1996; 12(1):69–80.

34. Software I. Rational purify. Available at: http://www.ibm.com/software/awdtools/purify/ [7 April 2009].
35. Jannesari A, Tichy WF. On-the-fly race detection in multi-threaded programs. PADTAD ’08: Proceedings of the

Sixth Workshop on Parallel and Distributed Systems. ACM: New York, NY, U.S.A., 2008; 1–10. DOI: 10.1145/
1390841.1390847.

36. Intel Corporation. Intel thread checker. Available at: http://www.intel.com/support/performancetools/threadchecker/
[7 April 2009].

37. Sagiv M, Reps T, Wilhelm R. Parametric shape analysis via 3-valued logic. ACM Transactions on Programming
Languages and Systems 2002; 24(3):217–298. DOI: 10.1145/514188.514190.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:45–67
DOI: 10.1002/cpe


