Weaver: Integrating Distributed Computing Abstractions
into Scientific Workflows using Python

Peter Bui
University of Notre Dame

pbui@nd.edu

ABSTRACT

Weaver is a high-level framework that enables researchers to
integrate distributed computing abstractions into their sci-
entific workflows. Rather than develop a new workflow lan-
guage, we built Weaver on top of the Python programming
language. As such, Weaver takes advantage of users’ famil-
iarity with Python, minimizes barriers to adoption, and al-
lows for integration with existing software. In this paper, we
introduce Weaver’s programming model, which consists of
datasets, functions, and abstractions that users combine to
organize and specify large-scale scientific workflows. We also
explain how these specifications are compiled into a directed
acyclic graph used by a workflow manager that dispatches
the work to a variety of distributed computing engines. To
examine how Weaver is used in scientific research, we present
three example applications that demonstrate Weaver’s abil-
ity to integrate into existing workflows and incorporate op-
timized distributed computing abstraction tools.

1. INTRODUCTION

The increase in availablity of vast amounts of distributed
computing resources has led to the development of new pro-
gramming tools and systems that simplify and ease the use
of such resources. Primarily, these tools have come in the
form of distributed computing abstractions such as MapRe-
duce [2] and All-Pairs [6] that optimize specific patterns or
models of computation. These new systems have been useful
in enabling the development of high performance/through-
put distributed scientific applications.

Unfortunately, while these abstractions have been success-
ful in improving specific patterns of computation, they of-
ten fail to encompass large and complicated scientific work-
flows. This is because many computational science work-
flows consist of a pipeline of separate computational stages,
but these tools normally focus on a single particular stage.
For instance, in the case of biometrics, a normal experi-
mental workflow consists of selecting a subset of data from
a repository, transforming the raw data into an intermedi-
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ate form suitable for processing, and finally performing the
experiment. Such multi-stage workflows are often too com-
plicated to be performed in a single abstraction and may in
fact require the use of multiple computational abstractions.

To address this problem a few programming systems have
been developed such as Swift [13], DAGMan [1], Pegasus
[3] which allow users to specify a pipeline of computational
tasks. These specifications usually consist of relationships
between tasks and the data inputs and outputs and are used
by the software tools to construct a directed acyclic graph
(DAG) representing the flow of data through the pipeline.
Distributed computing abstractions are incorporated into
these systems by implementing the abstraction directly as
nodes in the DAG or by using a specialized implementation
as a single node in the graph. Once a DAG has been formed,
it can be processed by a workflow manager which dispatches
tasks to a distributed computing engine such as Condor [11].

These previous projects tackled the problem of specify-
ing scientific workflows and integrating distributed comput-
ing abstractions by proposing new programming languages.
The introduction of a new language, however, has signifi-
cant adoption and usage challenges. Rather than developing
a new language, we decided to pursue a different route by
building a distributed computing workflow system named
Weaver on top of an existing general purpose program-
ming language, Python [9]. Developing a workflow frame-
work that facilitates the use of distributed computing ab-
stractions in Python provides the following advantages over
constructing a new language:

1. Familiarity: Most scientific workflows generally con-
sist of a set of ad hoc scripts that organize the various
stages of a computational pipeline. Building a dis-
tributed computing workflow framework on a general
purpose language such as Python takes advantage of
this familiarity with scripting. Rather than force users
to adapt to a new programming language, Weaver al-
lows users to augment their existing toolset and takes
advantage of their existing programming expertise.

2. Deployment: Since we build on top a ubiquitous pro-
gramming language, deployment becomes a non-issue.
Most Linux systems already include Python, which
means Weaver can run on these platforms easily with-
out much administrative time or costs, significantly
lowering the barrier to adoption and distribution.

3. Extensibility: Using a general purpose programming
language also allows users the ability to leverage exist-
ing software that is not a part of the Weaver frame-



work. Additionally, since the framework is constructed
as a library in the native language, end users may ex-
tend the system to meet their needs and add their own
extensions in a straightforward and reusable manner.

The remainder of this paper explores the details of Weaver.
In section 2, we explain the programming model used in
Weaver and identify what components are provided by the
framework and how they fit together. Section 3 discusses the
execution model used by Weaver and describes the complete
software application stack. Section 4 provides some exam-
ples of applications developed using Weaver along with some
experimental results. This is followed by a short discussion
of related work. Finally, we conclude the paper with possible
issues to explore in the future.

2. PROGRAMMING MODEL

Weaver is a high-level framework that enables scientific re-
searchers to construct distributed workflows in the Python
programming language. This framework provides a simpli-
fied programming model composed of datasets, functions,
and abstractions. These concepts are the fundamental
building blocks of the Weaver application programming in-
terface (API) and consist of a collection of custom Python
modules, classes, and functions that end users combine and
extend to define their workflows. This section introduces
these components and explains how they work together to
enable the incorporation of distributed computing abstrac-
tions into large-scale scientific applications.

2.1 Datasets

Most scientific computing tasks involve processing some
sort of collection of data, which is normally stored as files
on a physical filesystem. In the Weaver programming model
collections of data objects are organized into datasets, where
each object’s string method returns the location of the file
that contains the data. These datasets can take the form of
a Python list, set, generator function, or any other Python
object that implements the language’s iteration protocol.

To aid the user in specifying datasets, Weaver provides a
collection of custom DataSet objects that simplify the enu-
meration and selection of input data. Each object in these
DataSet collections contains the path to the data file as re-
quired by the programming model, along with a set of at-
tributes shared by all the members of the dataset. This
common set of metadata properties is exposed to the user
through the Query function, which will be explained shortly.

2.1.1 Files Dataset

An example of a DataSet provided by the Weaver frame-
work is the FilesDataSet. Since the most common type of
dataset is simply a group of data files, Weaver provides the
FilesDataSet constructor, which given a file path pattern,
this dataset builder will return the set of file objects that
match the specified pattern. Each object in this collection
contains the location of the file, along with relevant filesys-
tem metadata of each file such as size and timestamps.

2.1.2 0L Dataset

In addition to files stored on a filesystem, another com-
mon source for scientific data is a SQL database. Weaver
provides a simplified database abstraction interface that fa-
cilitates access to information stored in conventional SQL

databases such as MySQL or SQLite. Besides specifying the
details about how to connect to the database as shown in
Listing 1, the user only needs to define a file_path method
which returns the location of the data file based on the ob-
ject record returned by a SQL query. The user may either
directly map the database record to a file on disk, or the
user may materialize a file on-demand containing informa-
tion from the database record and return the path to that
generated file. In either case, it is up to the user to specify
how to translate the database record to a physical data file
as demanded by the Weaver programming model.

2.1.3 Query

Sometimes it is necessary to filter or select a subset of data
from a large collection before processing it. For instance, a
scientific database may contain thousands of records, but
the user is only interested in a specific subset for exper-
imentation. To facilitate this selection operation, Weaver
provides a Query function that allows the user to filter a
dataset in a manner similar to the SQLAlchemy expression
language [10], a popular object-relational mapping (ORM)
system. Users can specify queries on arbitrary datasets us-
ing SQL-like operations on datasets regardless of whether
the underlying data is an actual database or collection of
Python objects.

Since the objects in the Weaver DataSet collections con-
tain metadata information common to each item in the set,
it is possible for the user to filter these objects based on
these attributes. The Query function provides this selection
mechanism by implementing a SQL-like query expression
language which translates the queries into an appropriate
form for the underlying data collection. For datasets that
are actual databases, the function will form the appropri-
ate SQL expression and use that to perform the query. In
the case of datasets that are Python lists, sets, or genera-
tors, the user-specified filters will be applied to each object
in the dataset to produce the appropriate subset. To use
the Query function, the user first specifies the name of the
dataset, followed by the filters to be applied.

# Define dataset wusing Files constructor
files_ds = FilesDataSet(’/path/to/files /*.txt ")

# Filter files dataset for sizes > 1024
my_fds = Query(files_ds , files_ds.c.size > 1024)

# Define dataset wusing SQL constructor
sql_ds = SQLDataSet(’db’, ’biometrics’, ’irises’)

# Filter SQL records based on eye color
my_sds = Query (sql_ds ,

Or(sql_ds.c.EyeColor

sql_ds .c.EyeColor

== ’Blue’,

= ’"Green’))

Listing 1: Weaver Datasets Example.

This shows how to define a dataset in Weaver using the Files
and the SQL dataset constructors and how to filter the col-
lection using the Query function.

Examples of the use of the Query function are shown in
Listing 1. In the first example, the FilesDataSet constructor
is used to enumerate a dataset of files. The Query function
is then used on this collection to select files that are of a
particular size (> 1024 bytes). This is done using an SQL-
like query syntax even though the collection itself is not a
database. The second example shows the construction of
a SQLDataSet and the formation of a subset by using the



Query function to only select records with an FyeColor of
Blue or Green.

Including a query expression language in the Weaver frame-
work is useful for a couple of reasons. First, it provides a
unified way of constructing subsets of larger datasets. The
user simply defines the whole data repository and can then
apply filters to extract the interesting subgroup in a con-
sistent and repeatable manner. Second, by implementing
the expression language as a domain specific language, the
user never needs to leave the Python language environment.
Instead, the user always interacts with the dataset as collec-
tions of Python objects.

In summary, datasets in the Weaver programming model
are simply collections of objects with a corresponding man-
ifestation in the filesystem. To simplify and expedite the
specification of these datasets, Weaver provides a library of
constructors such as FilesDataSet and SQLDataSet. These
Weaver DataSets, in conjunction with the Query function
allow the user to quickly and easily specify large datasets
and perform filtering operations to selectively group data
for processing.

2.2 Functions

The second major component of most scientific workflows
are the executables used to process the data. The Weaver
programming model accounts for these executables by pro-
viding the notion of a function, which is a Python object
that defines the interface to an executable. Like objects in
a dataset, a Weaver function corresponds to a physical file
on the filesystem.

As with datasets, Weaver provides a set of components
designed to expedite and simplify the specification of work-
flow functions. The base object is a generic Function object
that contains the path to the executable as well as a cou-
ple of methods: command_string and output_string. The
first method specifies how to generate the appropriate string
used to execute the task given a set of input and output files,
while the second method allows the user to provide a default
means of naming the output files of the function. To further
simplify the definition of functions, Weaver includes a set of
objects that build upon this generic Function.

def f(xargs):
for f in args:
print sum(map(float , open(f).readlines ()))

Cat = StreamFunction(’cat’,
out_suffix = “txt’)
Img2Png = SimpleFunction(’convert’,
out_suffix = ’png’)
PyFcn = PythonFunction(f)

Listing 2: Weaver Functions Example.

This shows a few examples of how to specify erecutables us-
ing StreamFunction, SimpleFunction, and PythonFunction
constructors provided by Weaver.

2.2.1 SreamFunction

A common type of executable is one that takes one or more
input files and outputs the results to standard output (std-
out). An example of this is the cat utility, which takes a set
of input files and concatenates their contents to the output
stream. Such an application can be specified in Weaver by
using the provided StreamFunction constructor. Since these
executables require capturing standard output in order to

generate a output file, the StreamFunction object modifies
the command_string method to reflect this requirement.

2.2.2 SmpleFunction

Some executables simply require the user to explicitly
specify the input and output files as arguments to the com-
mand. Weaver provides the SimpleFunction constructor for
these types of applications which is similar to the Stream-
Function except the command_string method does not cap-
ture standard output to a file since the executable uses an
explicit output file.

As shown in Listing 2, both the StreamFunction and Sim-
pleFunction constructor also allow the user to specify a de-
fault output suffix by passing the out_suffix keyword ar-
gument to the function constructor. This suffix is used by
the output_string method to generate an output file name
based on the executable and the input filename.

2.2.3 PythonFunction

A final Function object provided by Weaver is the Python-
Function constructor, which allows for Python functions em-
bedded in the specification script to be invoked as normal
executables. As shown in Listing 2, this is done by simply
passing the desired Python function to the PythonFunction
constructor. Since all functions in the Weaver programming
model must be manifested as physical files on the filesystem,
the constructor marshals the specified Python function and
embeds it into a template Python script that is materialized
on the filesystem. Any arguments passed to this generated
script, such as the input and output files, are passed to the
marshaled function as normal Python function arguments.
The availability of this constructor allows users to specify
complete workflows entirely in the Python programming lan-
guage, which is useful for prototyping or experimentation.

All together, these Function constructors, StreamFunc-
tion, SimpleFunction, and PythonFunction, simplify the task
of specifying and defining executables that are to be used in
a scientific workflow.

2.3 Abstractions

The final component in the Weaver programming model
is the notion of abstractions, which are patterns or mod-
els of computation with a precise set of semantics. Unlike
most other high-level workflow frameworks, Weaver provides
a collection of distributed computing abstractions to the end
user as higher order functions that the user explicitly invokes
in order to utilize the pattern in a workflow [12].

Each abstraction takes in a set of datasets and functions
as arguments and applies those functions to the input data
in a particular pattern. To enable development of pipelined
workflows, the output of each abstraction is another collec-
tion of data objects, thus enabling the output of one ab-
straction to be used as the input to another. If a collection
of output files is not desired, the user may choose to merge
these output files into a single file by specifying an output
file when invoking the abstraction.

As with datasets and functions, Weaver includes a library
of readily available Abstractions. The following is a descrip-
tion of four patterns of computation included in the Weaver
framework and commonly found in scientific workflows.

231 Map

The Map abstraction is a common pattern used for work



that is naturally parallel and takes the form:

Map(function, inputs)

The abstraction takes in an input function, which is ap-
plied to each item in the input dataset. The results of each
function application is stored in a collection of output data
objects or as a single data file if the user specifies an output
target. Since each function application is independent of
other function executions, the individual tasks in this pat-
tern are data parallel and thus can be executed concurrently.

2.3.2 MapReduce

MapReduce [2] is another common abstraction that is used
for large data processing pipelines. This pattern usually
takes the following form:

MapReduce(mapper, reducer, inputs)

In this pattern, a mapper function is applied to the initial
set of inputs to generate a group of intermediate output
files which are partitioned, sorted, and then passed to the
reducer function for aggregation. All the tasks in the both
the mapper and reducer phases exhibit data independence
and therefore can be run in parallel.

2.3.3 All-Pairs

All-Pairs [6] is an abstraction that is frequently used in
fields such as biometrics and data-mining. In this pattern
of work each member of one dataset is compared to each
member of another dataset to produce a matrix that con-
tains the scores for each comparison. This abstraction takes
the following form:

AllPairs (function, inputs_a, inputs_b)

Like the previous abstractions, the individual comparison
tasks can execute independently of each other, which allows
the jobs to be scheduled to run in parallel.

2.3.4 \Wavefront

Wavefront [12] is an abstraction used in game theory and
gene sequencing applications and takes the following form:

Wavefront (function, matrix)

This abstraction computes a two-dimensional recurrence
relationship where each cell in the output matrix is gener-
ated by a function whose arguments are the values in the
cell immediately to the left, below, and diagonally left and
below. Although some cells can be processed in parallel, due
to the recurrence relationship, special care must be taken to
ensure the proper ordering of dependent cell computations.

As explained, the Weaver programming model consists of
datasets, functions, and abstractions. Datasets identify a
set of input files to be processed, while functions defined
executables that are used to process such files. Abstrac-
tions are high order functions that govern the pattern in
which functions are applied to datasets and allow the user
to take advantage of data parallelism to achieve increased
performance. Because the input and output of each abstrac-
tion is simply another dataset, different abstractions can be
pipelined together to form sophisticated scientific workflows.

3. EXECUTION MODEL

To take advantage of Weaver’s programming model, the
user programs a workflow specification in Python that in-
vokes the various dataset, function, and abstraction compo-
nents described above. Next, the user processes the script

using the Weaver compiler which produces a sandbox (di-
rectory) that contains a DAG detailing the relationships be-
tween each task, and links to the executables and input data
specified by the user. The generated DAG is then used by
a workflow manager that dispatches tasks in proper order
to a distribute execution engine. This section examines the
main components of the Weaver execution model.

3.1 Compiler

The Weaver framework is implemented in Python as a col-
lection of libraries that implement the various components
of the programming model and a compiler that processes
the user-defined scripts. To construct a specification, a user
simply creates a Python script that invokes the components
provided in the Weaver library to describe the desired work-
flow and then runs the Weaver compiler on the script.

Input Compiler Output
—_
Python |— Weaver —»| Sandbox
Script
- 1
v v '
DAG Executables Input Data
Symlinked

Figure 1: Weaver Compiler.

Users specify their workflow in a Python script that is com-
piled using Weaver to generate a sandbox containing a DAG
and links to the specified executables and input data.

As shown in Figure 1, the output of the Weaver com-
piler is a sandbox that contains a DAG and the various in-
put and executable files specified by the script. When the
compiler begins, it creates this sandbox which serves as the
location for the compiler’s output and as the environment
for the workflow manager. To form the DAG, the compiler
evaluates the user’s Python script using Python’s execfile
function. Internally, when users invoke one of the Weaver
abstractions, a list of tasks in the form of (command, in-
puts, outputs) tuples is generated. During the evaluation
of a user’s script, the compiler tracks these tuples and at the
end outputs them into a DAG. Additionally, the compiler
also keeps track of the user specified input and executable
files and symbolically links them (or copies if the user de-
sires) into the sandbox so that the workflow manager can
locate them later.

3.2 Makeflow

The result of the compilation phase is a sandbox environ-
ment containing a DAG and links to various files required
for proper execution of the workflow. Currently, Weaver
outputs Makeflow [12] DAGs which contain rules similar to
those found in a normal Makefile that describe tasks in terms
of the inputs and output dependencies. This information is
used by Makeflow to form a directed acyclic graph of the en-
tire pipeline, where the nodes are the data to be processed
and the tasks to be executed, and the links are the relation-
ships between the tasks and the necessary input and output
files. By forming this directed graph, Makeflow can deter-



mine which tasks depend on others and schedule the work
appropriately. Once the DAG is generated, users pass it to
Makeflow to begin the actual execution of the workflow.

Generate DAG

Weaver

Makeflow —{ DAG )

Condor ﬂ WorkQueue ﬂ SGEﬂ Unix # Dispatch Jobs

Figure 2: Weaver Software Stack.

The complete Weaver execution model is composed of three
layers. The first is the Weaver framework which is used to
generate a DAG. The second layer is the workflow manager
processes the DAG and dispatches jobs to the third layer, the
distribute execution engine.

The whole Weaver software application stack is shown in
Figure 2. As a flexible DAG-based workflow manager, Make-
flow provides access to multiple execution engine targets
such as Condor[11], Sun Grid Engine (SGE), WorkQueue
[12], and local Unix processes. Because Weaver generates
Makeflow DAGs rather than direct schedules for a specific
execution engine, users of the framework can take advantage
of multiple execution environments. This flexibility allows
users to adapt to the resources available to them without
having to modify their workflow specification.

3.3 Optimized Tools

As discussed earlier, we implemented a variety of dis-
tributed computing abstractions such as All-Pairsin Weaver.
By design, the framework uses a task tuple list as the means
of implementing an abstraction’s workflow pattern and relies
on the workflow manager to assemble a DAG to formulate
proper execution order. This allows for the specification of
sophisticated workflows that are completely agnostic of the
underlying execution engine. One can view the abstraction
primitives provided by Weaver, then, as generic operations
that would work on any distributed execution platform.

Unfortunately, these generic operations are not necessarily
the most optimal or efficient implementations of the particu-
lar abstraction. One reason is that the Weaver programming
model requires data to be manifested as files on the filesys-
tem. In workflows that involve many short running applica-
tions processing small pieces of data, this model will yield an
inefficient implementation since each data record will need
to be instantiated on the filesystem and each application
will appear as a separate task in the DAG. Depending on
the execution engine, the latency for each job start up can
greatly diminish the performance of such a workflow.

Another reason for why the generic implementations are
non-optimal is that some abstractions require intimate knowl-
edge of the underlying execution engine to be effective. For
instance, the original MapReduce presented by Google is
successful not only because of the data parallel task schedul-
ing but also because of its ability to take advantage of data
locality.

Because there exists optimized tools that implement some
of the abstractions provided by Weaver and because the
generic implementations may be non-optimal, Weaver allows

users to specify which version of the abstraction to utilize.
To use a optimized native version of an abstraction, the user
sets the use_native keyword argument in the abstraction’s
constructor to True. If the native version is available for
that abstraction, then Weaver will use that optimized tool
instead of a generic version.

Generic All-Pairs Optimized All-Pairs

h

Figure 3: Generic vs. Optimized All-Pairs DAG.

The DAG on the left represents the generic All-Pairs imple-
mentation produced by Weaver, while the one on the right
shows the DAG when the optimized version is used instead.

This ability to choose between a generic operation and a
specialized operation is similar to the use of SIMD instruc-
tions. In a conventional compiler, operations are compiled
using the lowest common denominator instruction set for a
particular platform. However, if the user requests an ar-
chitecture specific optimization, such as SIMD instructions,
the compiler will output optimized program code that takes
advantage of the hardware. Weaver behaves in a similar
manner. By default, it generates DAGs with generic imple-
mentations of any requested abstraction. If the user specifies
the use of a native optimized tool, then Weaver will forgo
the generic version and instead use the optimized tool. As
shown in Figure 5, a native tool greatly reduces the size of
the DAG since it no longer needs to implement the whole
abstraction as a set of task rules and instead uses the spe-
cialized software as a single optimized task.

The ability to choose between a generic implementation
and an optimized one that takes advantage of existing tools
makes Weaver flexible and great for exploring new abstrac-
tions. For instance, new patterns of execution can be quickly
developed as a set of DAG relationships and tested on a va-
riety of execution engines. If the new abstraction proves
useful, then an optimized implementation can be developed
and then plugged into Weaver.

Altogether, the separation of workflow specification, task
management, and execution engine make the Weaver execu-
tion model quite flexible. The compiler reads in a specifica-
tion and outputs a sandbox containing a DAG. This in turn
is used by a workflow manager, in this case Makeflow, which
dispatches jobs onto a variety of execution platforms. To
allow users to take advantage of existing optimized abstrac-
tion software, Weaver provides a mechanism for providing
hints to the compiler to use the specialized tool rather than
a non-optimal generic implementation.

4. APPLICATIONS

To illustrate how Weaver is used in scientific workflows, we
present three applications constructed using the framework.
The first application is the canonical word count workflow,
which represents many common text processing tasks. The
second example demonstrates a data analysis pipeline used



to examine the results of molecular dynamics simulations.
The third application is a common workflow used to perform
experiments on large volumes of biometric data.

4.1 Word Count

The first example demonstrates the Weaver version of the
common MapReduce word count application. The goal of
this program is to process a set a files to produce a count for
each word in the set. This is done by performing a MapRe-
duce on the files: the map function splits any input string
into tokens and emits them, while the reduce function accu-
mulates the total number of tokens found for each word.

def wc_mapper(key, value):
for w in value.split ():
print *%s\t%d’ % (w, 1)
def wc_reducer(key, values):
print %s\t%d’ % \

(key, sum(int(v) for v in values))

MapReduce(mapper = wc_mapper,
reducer = wc_reducer,
input = FilesDataSet (’weaver /*.py’),
output = ’wc.txt’)

Listing 3: Word Count Example.

This shows a Weaver implementation of word count using
the MapReduce abstraction and where the mapper and re-
ducer functions are defined in Python.

Listing 3 contains the Weaver specification for the word
count application. In this example, the map and reduce
functions are implemented directly in the script as Python
functions and are passed to the MapReduce abstraction along
with the FilesDataSet of the Weaver source code. The final
output is collected in the wc.txt file specified in the example.
As can been seen, the specification of the entire workflow is
rather compact and straightforward. Because Weaver uses
Makeflow as the task manager, the MapReduce workflow
can run on a variety of distributed execution engines that
do not normally support such a pattern of computation.

4.2 Molecular Dynamics

Another typical use of Weaver is to construct data anal-
ysis pipelines for large volumes of experimental results. In
such situations, there is usually a large repository of data
that needs to be analyzed using one or more analysis pro-
grams. Normally these datasets can be processed indepen-
dently from each other and thus fit into the Map abstraction.

db = SQLDataSet(’db’, ’proj_100000°’, ’status’)
files = Query(db, db.c.jobid == —1)

rmsd = StreamFunction(’rmsd’)

Map(rmsd , files , output = ’'rmsd.results’)

Listing 4: Molecular Dynamics Example.

In this example, unprocessed molecular dynamics results are
selected and then processed with the rmsd analysis tool using
the Map abstraction.

Listing 4 shows an example of a data analysis workflow
used to process biological data generated by researchers in
the Folding@Home project. Periodically, this script is exe-
cuted by Weaver to schedule tasks that need to be analyzed
and produces an appropriate workflow. As can be seen in
the code example, a database is used to keep track of which

data has already been processed. The Query function is
used to filter the database for data files that have yet to be
scheduled for processing (jobid is -1). Once this selection
is formed, the Map abstraction is used to apply the analy-
sis tool to each of these unprocessed files and to collect the
results into a single output file. After the Weaver compiler
is run on this specification and generates a DAG, Makeflow
can then be used to perform the actual computation.
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Figure 4: Molecular Dynamics Workflow Timeline.
This shows the progress of the tasks in a molecular dynamics
data analysis workflow involving 25,848 work units. The
complete pipeline was completed in about 90 minutes.

Figure 4 presents the execution timeline of a data analysis
workflow generated by weaver using a specification similar to
that in Listing 4. In this experiment, 25843 Folding@Home
data units were analyzed in about 90 minutes using SGE.
Normally, each work unit takes about 2.5 seconds, which
means that DAG generated by Weaver was able to achieve a
12x speedup when executed on a SGE cluster composed of
a mixture of 2GHz+ dual-core and quad-core machines. Be-
yond enabling an increase in throughput, the use of Weaver
also provided the researchers with a consistent and simple
means of scheduling their data analysis work. The success
of the Weaver framework as demonstrated in the graph en-
abled the researchers to replace their set of ad hoc scripts
in favor of Weaver, which proved to be more reliable and
simpler to use and maintain.

4.3 Biometrics

Weaver is also used to conduct biometric experiments,
which usually consist of multiple data processing stages as
described in the introduction. First, the interested dataset
must be selected or extracted from the original data repos-
itory. Next, the raw data must be transformed into a for-
mat suitable for experimentation. Finally, the experiment
is performed, which in biometrics, involves comparing all
members of the dataset to each other.

Listing 5 provides the Weaver implementation of such a
biometrics workflow. To construct the interested dataset,
the user first specifies the original data repository, in this
case a biometrics database, and uses the Query function to
select records with the desired property. These selected files
can then be converted to an appropriate format by using
the Map abstraction. The results of the conversions form a
new dataset that is then used as arguments to the All-Pairs
abstraction, which schedules tasks to compare each member
of the converted dataset with each other.

Figure 5 shows the results of experiments constructed us-



db = SQLDataSet(’db’, ’biometrics’, ’irises’)
nefs = Query (db,
db.c.state == ’Enrolled’,
Or(db.c.color == ’Blue’,
db.c.color == "Green’))
conf = SimpleFunction(’convert_iris_to_template’,
out_suffix = ’bit’)
cmpf = SimpleFunction(’compare_iris_templates’)

(
bits = Map(conf, nefs)
b

AllPairs (cmpf, bits, its, output = ’'matrix.txt’)

Listing 5: Weaver Biometrics Example.

In this example, images from a biometrics data repository
are selected, and transformed into a specialized bit format,
and then compared to each other.
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Figure 5: Generic vs. Optimized All-Pairs Timeline.
This figure shows the time to complete a biometrics pipeline
using the generic All-Pairs implementation versus the opti-
mized version. The generic implementation is considerably
more expensive, because it uses files for output storage and
is unable to dispatch sub-problems to multi-core processors.

ing the workflow specifications just described with the op-
timization options turned on and off. In these experiments,
we varied the size of the workloads by using datasets con-
sisting of 10 to 1000 images, where each file was 301 KB.
Each of these image files was converted to a specialized bit
format that was about 1.2 KB using the Map abstraction.
These bit files were then compared to each other using All-
Pairs to generate comparison matrices. For each dataset, we
generated workflows with and without the optimized native
implementations using Weaver’s SIMD-like compiler mech-
anism and executed both. From the graph, it is clear that
the generic version scales poorly as the number of images
increases, while the optimized native version scales almost
linearly. The generic implementation is several orders of
magnitude slower because it must use files for intermediate
storage and is unable to take advantage of specific execution
engine environment features. For instance, the optimized
All-Pairs tool uses the WorkQueue execution engine to en-
able low-latency work dispatching and takes advantage of
multi-core systems by intelligently scheduling tasks to mul-
tiple cores. Moreover, the native tool stores the intermediate
outputs in memory and outputs the results as a single file.
The results from the biometrics experiments show that
while generic implementations of various abstractions are
useful since they can be adapted to run on multiple dis-
tributed systems, there is a performance penalty for this

generality. Weaver’s programming model’s requirement that
input and output data must be stored as files can greatly
constrain the performance of certain types of workflows as
demonstrated above. In these cases, a specialized native
tool can easily outperform the generic implementation be-
cause it is not constrained by the programming model. For-
tunately, Weaver provides a mechanism to take advantage
of these optimized abstraction implementations, allowing for
specialized versions to be used when possible.

5. RELATED WORK

Because distributed computing abstractions can be quite
complex and require significant effort to utilize effectively,
there has been a variety of previous work aimed at providing
users with simplified and efficient interfaces to these systems.
Like Weaver, these high level languages provide a compact
programming model where the user specifies their workflow,
which is then translated into a set of tasks to be performed
by a distributed execution engine.

Pig [7] and Sawzall [8] are two languages that provide a
high-level interface to MapReduce [2]. Both of these lan-
guages provide a simplified programming model composed
of datasets and functions that is presented as new declara-
tive programming languages with a SQL-like flavor. Since
these languages are tightly tied to the MapReduce abstrac-
tion, the user is constrained in the types of workflows they
can efficiently specify.

To allow for more types of workflows, there has been
research into specifying distributed workflows as directed
acyclic graphs. DAGMan [1] and Pegasus [3] are two such
workflow specification languages that allow the user to spec-
ify a set of tasks to compute and the relationship between
each task. Each of these systems provide a custom program-
ming language and a compiler or interpreter that takes the
job specification and produces a static workflow graph.

Dryad [4] is another attempt at simplifying the construc-
tion of distributed workflows through the construction of
graphs. Because the work of building a workflow graph is
rather low-level and complex, the authors of Dryad suggest
the use of various higher-level tools such as Dryad LINQ [5].
This programming construct takes advantage of the LINQ
programming idiom in Microsoft’s .NET system to provide
a native interface to MapReduce type workflows.

Swift [13] also tackles the problem of specifying diverse
scientific workflows. In Swift, users construct data struc-
tures representing their input and output data and specify
functions that operate on these structures in a custom pro-
gramming language. This specification is then compiled into
a set of abstract computation plans which is processed by
the CoG Karajan execution engine which works in conjunc-
tion with the Swift run-time system to execute the plans.

Weaver shares many of the important features present in
these projects such as using a DAG-based workflow engine
and providing users a simplified interface to constructing dis-
tributed workflows. Because it does not force users to define
workflows in terms of graph nodes and links, Weaver is most
similar to DryadLINQ and Swift in providing a high-level
programming model. Unlike Swift, however, Weaver builds
on top of an existing programming language, Python, rather
than introduce a new one. Likewise, Weaver is not restricted
to a single programming construct as in DryadLINQ, but
encompasses a whole library of components that form a
domain specific language distributed computing. Finally,



unlike the projects mentioned previously, Weaver supports
multiple distributed computing abstractions as standard com-
ponents, enabling scientific researchers to incorporate pow-
erful distributed computing tools into their workflows.

6. FUTURE WORK

Although Weaver is in the early stages of development,
it is already being used by various research groups at the
University of Notre Dame. There are, of course, a variety
issues left to be explored. One possible line of inquiry is to
further investigate the trade-offs involved in using dedicated
optimized tools rather than generic implementations of ab-
stractions. As demonstrated in the results, a highly opti-
mized abstraction can easily outperform the generic version
produced by Weaver. It would be interesting to see if there
was any reasonable means of improving the generic versions
without removing the flexibility provided in separating the
specification and execution layers.

Along those lines, it would also be interesting to try to
expose the notion of data locality in the framework and see
how that information can be utilized. Currently, Weaver
collects the input data in a sandbox. When Makeflow is
executed the data and executables are sent to the appropri-
ate computational nodes for processing. For large datasets,
this transfer of data can be a problem. If an active storage
system were available, it would be better to only send the
executables to where the data is and perform the processing
there. It is not readily apparent how this sort of functional-
ity would be exposed in Weaver.

Another possibility for future work is to consider more
dynamic workflows. Currently, Weaver is used to compile a
workflow which is then executed using Makeflow. While this
works well for static pipelines, there are some applications
that require more dynamic workflows. A common example
of this is a simulation where the same tasks are repeated
over and over with small changes in between each iteration.
To account for this type of work, users can utilize Weaver
as an interpreter with JIT (just-in-time) compilation capa-
bilities to iteratively generate workflows at run-time rather
than producing a single static workflow. This ability to use
Weaver as an interpreter rather than a compiler opens up
the possiblity of more dynamic abstractions and is worth
investigating in the future.

7. CONCLUSION

Weaver is a high-level framework that enables scientific
researchers to incorporate distributed computing abstrac-
tions into their workflows using Python. In this paper, we
presented the Weaver programming model, which consists of
datasets, functions, and abstractions. We also explained the
Weaver execution model and discussed the relationship be-
tween the compiler, Makeflow, and the optimized tools. To
demonstrate the use of the framework, we provided three
applications constructed using Weaver and examine some
experimental results.

Overall, Weaver is a useful and effective framework for
constructing workflows that incorporate distributed comput-
ing abstractions. Its ability to integrate existing optimized
tools, as well as provide generic implementations of abstrac-
tions makes it a versatile workflow organizer. Because it is
built on top of an existing language, it takes advantage of
users’ familiarity with the language and eases adoption and

deployment issues that normally hinder new systems.
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