UNIVERSITY OF

5) NOTRE DAME

Data Intensive Computing
with TaskVine

Douglas Thain and the CCL Team
University of Notre Dame

Greater Chicago Area

Systems Research Workshop, April 2023

CCTools ~

_ _ CCTools
The Cooperative Computing Lab

LIS N -« \We collaborate with people who have large

The Cooperative Computing Lab Software | Download | Manuals | Papers

e 1| scale computing problems in science,

About the CCL Community Highlight " . L]
We design software that enables our collaborators to easily harness ~ Scientists searching
large scale distributed systems such as clusters, clouds, and grids. for the Higgs boson
‘We perform fundamental computer science research in that enables have profited from L) =
new discoveries through computing in fields such as physics, Parrot's new support
chemistry, bioinformatics, biometrics, and data mining. for the CernVM
Filesystem
CCL News and Blo (CVMFS), a
network filesystem
T T e opera te compu te rsS Ste ms on t e
- n Talk at iPres 2015 (03 Nov 2015) ‘world-wide access to
CMS Cmc Study Paper at CHEP (20 Oct 2015) software
. with Umbrella (19 Oct 2015) installations. By
- DAGVZ Paper at Visual Performance Analysis using Parrot, CVMFS, and additional components integrated by the]
Workshop (13 Oct 2015) Any Data, Anytime, Anywhere project, physicists working in the »
« Virtual Wind Tunnel in IEEE CiSE (09 Sep 2015) ‘Compact Muon Solenoid experiment have been able to create a
 Three Papers at IEEE Cluster in Chicago (07 Sep 2015) uniform computing environment across the Open Science Grid. - -
« CCTools released (19 Aug 2015) Instead of maintaining large software installations at each) b)
o Recent CCL Grads Take Faculty Positions (18 Aug 2015) participating institution, Parrot is used to provide access m asingle
* (more news) highly-available CVMFS installation of the software from which

files are downloaded s nceded and aggressively cached for
efficiency. A pilot project at the University of Wisconsin has

e " "
: " Lte demonstrated the feasibility of this approach by exporting excess
L compute jobs to run in the Open Science Grid, opportunistically
— 370,000 CPU-hours across 15 sites with seamless

o— access to 400 gigabytes of software in the Wisconsin CVMFS
5.2.0 repository.

[e —— the context of real people and problems.

We develop open source software for large
http://ccl.cse.nd.edu scale distributed computing.

CCTools

Scientific computing usually starts here:

@, python
CONDA

. _

CCTools

But how do you scale up to clusters?

Computing Facility

Notre Dame
Condor Status

Slots Cores
awoodard@nd.edu 976

cbeaufil@nd.edu 370

Mhhatemi@ndedu 411 i 800tzches0rs e Caimed 0
cummini@nd.edu 311
M jkinniso@nd.edu 193
iazort@nd.edu 275 = =
M roidtman@nd.edu 261 = -
==ty M Kbariock@nd.edu
5 ophelani@nd.edu
S concla Vrering@reody e =
(=) smustiph@nd.edu ae L
= mwolf3@nd.edu N =
mthomann@nd.edu L r L HH
tgayle@nd.edu : -
C l I DA pthreads pdonnel4@nd.edu
tperkin1@nd.edu
%
[|

btovar@nd.edu

(9@/0 \ nblancha@nd.edu
(*)
s Unclaimed 2302
> Matched 138 1333
Preempting
Owner 57 521
Total 3657 10406

danasas

foreach B
Size:
Scale:

Workflows as a Computational Abstraction

A workflow is a collection of existing programs (functions) along with files (data
objects) joined together into a large graph expressing dependencies. Allows for
parallelism, distribution, and provenance without rewriting everything from scratch.

A A Research and Design Problems:

Resource Allocation
a2 Wi Nl Scaling and Performance

= m mm s Data Management

T Reliability
Portability /

I Reproducibility A3

)
p

R
A 4

i

pagasvs

Workflow Management Systems

Workflow Manager

Task / Data Scheduler

Express overall workflow
structure, components,
constraints, and goals.

Assign ready tasks and data
objects to resources in the cluster,
subject to runtime constraints.

. _

CCTools

Computing Facility

Notre Dame
Condor Status

Slots Cores
awoodard@nd.edu 976 3904
Mhhatemi@ndedu 411 i 800tzches0rs e Caimed 0
M cbeaufi@ndedu 370
acummini@nd.edu 311
M jkinniso@nd.edu 193
jdiszort@nd.edu 275
M roidtman@nd.edu
M kbarlock@nd.edu
ophelani@nd.edu
kherring@nd.edu F g | T
smustiph@nd.edu : H =
mwolf3@nd.edu o ==
mthomann@nd.edu 3 3 [N pppmmea T EnaEEEE EEEaeEn EEEEEEEE
tgayle@nd.edu
pdonnel4@nd.edu
tperkin1@nd.edu
btovar@nd.edu
nblancha@nd.edu

Unclaimed 241 2302
Matched 138 1333
Preempting
Owner 57 521
3657 10406

Eplay Options

Execute tasks on computational
resources, store and move data between
nodes.

CCTools

http://workflows.community

N workflows
community

Workflows Community
Summit 2022

A Roodmop Revolution

7anndo 209
Zenoqo, 2023

Workflows

Community Summit

Resources ¥ Research ¥ Events ¥ Members

NATIONAL ==
ACADEMIAES

Automated Research
Workflows for
Accelerated Discovery

ENERGY

Zenodo, 2022
Workflows
Community Summit

Jobs

About Get involved!

n Workflows Community
Initiative Retweeted

A eScience 2023 L 4
@escie... - Apr 19

We have another insightful
workshop called ReWorDS that
discusses the #reproducibility,
#data management, and
#security efforts of #eScience,
#HPC, and #Al workflows.
Check more:
sites.google.com/vols.utk.edu/r
@paulaolaya22 @JayLofstead
#sciences #workflows

sites.google....

rewords23

© Qo ®

+~ Workflows Community

Nanoreactors
ab-initio Chemistry

Time (pe)
100 200 — 400

Some Workflow Applications

ForceBalance
FF Optimization

Simulations:
Binding Energies,
Forces, Density,

500

Reference Data:
== | ab initio calculations

and experiment

AH,,,. etc.

Adaptive Weighted

Ensemble
Molecular Dynamics

Evaluate differences with reference data - A

Perform Add Bayesian
simulations regularization
\ V2 " e
Force Field jec.tlve
\ function
ForceBalance
Update

parameters

Optimization
Iniial method
parameters

Lifemapper
Species Distribution Modeling

ese < m

Optimized
parameters

ii iii
é b6 ¢ bed s é 40
----!-l-i-t

I
seesovovee
bmm [T L]

lfrs 3 glmpse of iemapoer's

Lobster
CMS Data Analysis

i CMs CcMs Output
 Software | pata ! : Data
i at CERN atCERN | InHDFS |

SHADHO

Hyperparameter Optimization

. _

CCTools

Workflows and Runtime Data Access

Workflow Manager Task / Data Scheduler Computing Facility
—— == . | \ ME,-' -

B R PN TR SR -

L LT)

Shared Parallel Filesystem MDS

CCTools

Challenges of Workflows on Clusters

e HPC filesystems are optimized for concurrent large-file access for
message-passing jobs: bulk load, coordinated checkpoint, final write.
e But workflows tend to behave differently:
o Traverse deep directory trees of small files. (metadata surge)
o Access same input file from many nodes at once.
o Create large intermediate files that are consumed and then deleted.
e Software is an essential part that is not integrated into the workflow:
o conda install tensorflow -> 99 packages, 32K files, 1.2 GB data
o import tensorflow -> huge startup times at scale due to metadata
o Same packages get installed and loaded over and over again with
small changes, sometimes intended, sometimes not.
e Accelerators have the (positive) effect of decreasing the overall CPU/IO
ratio, so it becomes even more essential to place data correctly!

Key Idea: Exploit Storage in Cluster

Workflow Manager

CCTools

Storage Already
Task / Data Scheduler Embedded in Cluster

Notre Dame
Condor Status

. -

Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work

@ 04
\ F)
{ :

TaskVine . ¢4

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from
very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and
software wherever possible.

TaskVine Architecture Overview

Application

=

results

Compute Cluster

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in

Remote
Services

the cluster wherever possible! w

CCTools

Design Goals for TaskVine

Make it easy to construct dynamic workflows with thousands to millions
of tasks running on thousands of cluster nodes.

Handle common failures by detecting and recovering from worker
crashes, network failures, and other unexpected events.

Avoid moving data wherever possible: leave data in place until it needs
to be moved or duplicated.

Re-use data objects within and across workflows by tracking
provenance from original sources all the way to final outputs.

Manage task resources (cpu, gpu, mem, disk) carefully in order to pack
in as much as we can (but not too much!) into each worker.

Support complex software environments built from package managers
by explicitly naming dependencies of tasks.

= I

File = Single file or complex dir.

Manager directs all file
movements and accesses.

Files are immutable and given a
unique cache name.

Each task runs in a sandbox
with a private namespace and
an allocation of cores, memory,
disk, and gpus.

TaskVine Worker

|

RAM } [CI;U

151

GPU
0

1

GPU
1

N

J

sd698d

data.tar.gz

output.txt

A)

Task 1 Sandbox

Task 2 Sandbox

CCTools

In-Cluster Data Management

Suppose you have a workflow like this: a dataset D comes from a web
repository, a software package S comes from the shared filesystem. After
passing through tasks 1-5, the final output F should be written to the filesystem.
TaskVine aims to keep all of the data within the cluster, as follows.

Ciewm o was

CCTools

In-Cluster Data Management

The manager selects a

worker for task 1, and

then directs dataset D to
be downloaded from the
web, and software '? \ S 31 worker worker
package S to be loaded

from the shared
filesystem. ﬁ

CCTools

In-Cluster Data Management

manager 5w ® B® *%maﬁ
Next, task 1 is hdi])

dispatched to that

worker, where it reads &
dataset D, runs software :
package S, and DysShl worker worker

produces file I, which

stays where it is created. @

CCTools

In-Cluster Data Management

manager

Once file | is created, task
2 can run immediately on
that node, producing file X. |[', ﬂ
Software package S and

file | are duplicated to the | I | TN S 1
other worker nodes.

CCTools

In-Cluster Data Management

manager

Now tasks 3 and 4 can run
on the other worker nodes,

producing files Y and Z. X ﬂ @— Q‘Qf

CCTools
In-Cluster Data Management -
®-m OB
manager g RS EeES

Next, task 5 is dispatched
to the middle worker. It

consumes files X, Y, and Z, [[, F _@
which are pulled in from

peer nodes. The output file
X is produced on that

node. @

CCTools

In-Cluster Data Management

Finally, output file F is written
back to the shared filesystem,
as the ultimate output of the

® -5 e’ ~
manager 5= o< @ %WJ

workflow. =
X F
The manager directs the e e T e T | IRy
D S [I S S R 4
workers to delete any N RN N R

remaining uncacheable files.

Common input files remain to
accelerate future workflows.

. -

Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work

API: Declare Files Explicitly

taskvine as vine

vine.

file
buffer
url
temp

data
software

Manager(9123)

.declareFile("mydata.txt")

.declareBuffer("Some literal data")
.declareURL("https://somewhere.edu/data.tar.gz")
.declareTemp() ;

m
m
m
m

m.declareUntar(url)
m.declarePoncho(package)

CCTools

CCTools

APIl: Connect Tasks to Files

task = vine.Task("mysim.exe -p 50 input.data -o output.data")

.add_input(url, "input.data")
.add_output(temp, "output.data")

.set_cores(4)
.set_memory(2048)
.set_disk(100)
.set_tag("simulator")

taskid = m.submit(t)

CCTools

APIl: Connect Tasks to Files

task = vine.PythonTask(simulate_func,molecule, parameters)

.add_input(url, "input.data")
.add_output(temp, "output.data")

.set_cores(4)
.set_memory(2048)
.set_disk(100)
.set_tag("simulator")

taskid = m.submit(t)

CCTools

Defining a Simple Task

taskvine as vine
vine.Manager(9123)
doc = m.declareURL("https://www.gutenberg.org/files/1960/1960.txt")

task = vine.Task("grep chair doc.txt")
task.add_input(doc, "doc.txt")

sandbox

taskid = m.submit(task)
task = queue.wait(VINE_FOREVER)

print task.output

CCTools

A Real Application: NCBI Blast

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-1inux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA.."

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

<

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software, "blastdir")
task.add_input(database, "landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

m.submit(task)

. -

Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work

CCTools

Transfer Management

Controlled:
Manager dispatches
transfers in a spanning
tree with a limited
load per node.
(default 3)

Uncontrolled:

Manager dispatches
unlimited transfers to
target data source.

Manager

BT
v
*
¢

Remote

Remote Services

Services

Colin
Thomas

CCTools

Worker to Worker Transfers

BLAST Workflow: Cold start for 500 tasks on 500 workers, each requiring software package and
database, ~30s compute each. (Left) Uncoordinated transfers dominate execution time.
(Right) Coordinated transfers between workers distribute data exponentially.

Manager to Worker Transfers Worker to Worker Transfers
500 A 500 H Tasks
Transfers

400 4
] % 400
E E
=] =)
E =
S 300 £ 300 -
s s
e
] 1
® ®
S 200 A © 200 A
£ = =
s s

100 + 100 4

—— 92T
0 e —— Transfers 0-
20 40 60 80 100 120 140 160 210 4‘0 6‘0 8'0 1(l)0

time time

Generating Unique Cacheable Names

Files have one of three lifetimes:
e single-task

e workflow (default)

e forever

"forever" cached objects are
given

content addressable names from
a Merkle Tree of the file's
provenance. If any inputs change,
then so does the name of the
output, and it's not the same file.

= 53ba27f

Checksum(Content-of-S)

Checksum(| 'S':Checksum(S), |)

) = c320b61

B

RWla__

Barry Sly-Delgado

"cmd":"blast",
"inputs” = {

"D": Checksum(D)
}

"task" : Checksum(Task-5
CheCksum("output": "X"

)

= f06da39

Worker Number

400 1 Cache Updates ——=—_ —

300 Curl URL =

2001

100 1

Eliminating Startup Costs

No Caching

Marked Done ;__:“:::

Minitask =——

I++

Tasks

||‘h o
I‘ , M'

W

|
|“
|

f
|

il
A

}W

I
|
m»"'

Il
M ’w | |||
M\|| ! | |\|

il

| |
(I

3001

Worker Number

100 8

.

CCTools

2001

Caching
- Cache Updates
+ Marked Done
+ Waiting Retrieval
Il Minitask
Curl URL
Il Tasks
25 50 75 100 125 150
time

Sharing Software Environments

Recipe

CCTools

python=3.7
numpy>=1.16

Every run of
conda install
is likely to
generate a
different
solution!

Workers
Solution Package a /‘
python 3.7.0 /l .th > dir \‘
numpy 1.21.1 abc123.tgz <
pandas 1.1.5 ! /‘
tgz = dir
python 3.7.1 0 \‘
numpy 1.21.1 def456.tgz p
pandas 1.1.6 \ /‘
tgz = dir <\‘
python 3.7.1 -/ =t
numpy 1.22.0 xyz789.tgz Transferable Cacheable but
pandas 2.3.4 but not usable! not transferable!

. -

Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work

. . CCTools
Mini-Tasks: FileUntar(f) — e

software = m.declareUntar(m.declareURL(blast_url))

FileUntar

sandbox

CCTools
Mini-Task: FileXRootD ——

XRootD
Server

New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them
reproducibly:

data = m.declareXRootD("xrootd://host/path", "proxy")

X509_USER_PROXY-=...

sandbox

Which is defined as a mini-task like this:

t = vine.Task("xrdcp {} output.root”.format(url));

t.add_input(proxy, "proxy509.pem")
t.set_env_var("X509_USER_PROXY", "proxy509.pem") FileXRootD

data = m.declareMiniTask(t, "output.root")

. —_—

CCTools

Mixed Modality Workflows

Standard Task: Library Task: Function Call:

Define once, runs on Define once, runs on all Define once, runs on any
any available worker. available workers. matching Library.

Any Unix process with Any Unix process with a JSON definition of args,
command line args. JSON invok. protocol. funcname, and results.
Produces output files. Implements Func Call. Produces JSON result.

Common Task Capabilities: Resource allocation and management,
fault-tolerance, distributed data handling, scheduling, logging, visualization...

TaskVine Worker

[RAM

1

T

~

)

data.tar.gz

N

Standard Task

data

result

-+
-

o
r -m o

[| f19xa2 c03rd5

: ; Y

software

-

FunctionCall

logfile.txt

A)

LibraryTask

Simply converting "import
tensorflow" into the preamble
of a Library task saves 1.2GB
of Python libraries, 30K
metadata system calls, and
5-10s latency per
FunctionCall. We can mix
standard Tasks, Libraries, and
FunctionCalls in the same
workflow:

David
Simonetti

CCTools

Multi-Model Workflows

TaskVine

Il tasks executing

11421 mm asks lost on disconnection e
e bt 100x Standard Tasks

results waiting retrieval
| h dat .
W T A Build model from MNIST data.
Bl outputs to manager

For each produced model:
Deploy LibraryTask for inference.

Submit 10x FunctionCalls that

3 , invoke each LibraryTask.
E Application gradually accelerates
E as standard tasks produce data
g that define libraries that can then
I - be invoked.
_ B
P

0 45 20 135 2055

. -

Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work

TaskVine is a Workflow Executor

TaskVine can be used directly by
custom-written applications that
desire fine grained control or it can
serve as an execution platform for
higher-level workflow languages
and systems.

CCTools

import taskvine o

file = URL(www) e i e A e
m.submit(task) [0 aeeeses
task = m.wait(5)

Custom Makeflow Parsl Coffea
App

C or Python C Python Python

TaskVine Manager

TaskVine TaskVine TaskVine TaskVine TaskVine

Worker Worker Worker Worker Worker

HPC Cluster

Application: TopEFT in WQ | 2,
Kelci Kevin
Mohrman Lannon
e Late stage data analysis for LHC CMS experiment. Search for new physics impacting
associated top quark production using the framework of effective field theory (EFT).
Custom processing and accumulation functions expressed in Coffea framework, then
dispatched using Work Queue. (Our previous system) Remote data access via worldwide

XRootD federation, temporaries moved home.

ﬁ TopEFT \ /

LFM access units storage units
_ Application m
4—’ tmp

\ Coffea ")
Framework || T final ' LFM

(*Work Queue A tmp
& Schelduler) m LEM
Manager Local Worker
Node Storage Nodes

\

-

/

XRootD XRootD
Proxy/Cache Data Federation

TopEFT / Coffea Data Splitting Workflow

one event

one chunk

memory (GB)
N wo

—_
1

64K 128K
events, r=0.79

input files
A

N] N \ J
processing processing processing processing
function function function function

partial
histograms

accumulating
function

/

accumulating
function

210
H
E
500

final histogram

WIP: TopEFT in TaskVine

Andrew
Hennessee

New executor module defined to use TaskVine: software and data dependencies are now
explicitly declared, and temporaries maintained within the cluster without moving them

back.

TopEFT
Application

* Coffea
\ Framework

TaskVine
Scheduler

Marjager
Node

access units storage units

Y
\‘
i+ ——{ xn
/
Local
Storage TaskVine Workers

*

XRootD XRootD
Proxy/Cache Data Federation

4

old:
Accumulation
Data Returned
TopEFT
+ Work Queue

New:
In-Cluster
Accumulation
TopEFT
+ TaskVine

26904

21520

Stuck on

g 10149 Long Tail!
©
10760
5380
1
0 20 40 60 80 100
time(m)
27109
21680
Tail
g 10760 Eliminated!
©
*+ 10840
Bl tasks executing
5420 B results waiting retrieval
. [worker transfers

20 40 60 80 100
time(m)

cores

— g
pompnnpn——
e e

20 40 60 80 100

time(m)
1008
960
720
480
240
0

0 20 40 60 80 100
time(m)

WIP: Parsl + TaskVine

Kyle Chard
U. Chicago

https://parsl-project.org /

Parsl Data Flow Kernel k

~

Compute Cluster

[Parsl + TaskVine Exec]

| Tesivine Mo

Remote
Services

Common Challenges

Two common problems of scaling up:

e \What resources should be assigned to a function call?
e \What software dependencies does this function need?

How can we solve these problems automatically at
runtime, without requiring the user to make advance
declarations?

Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -

— e . oy

Allocate 2GB per Function A?

12 cores and 12 GB RAM
. 4

7

VN -

7

N SN e e e e e == -

~

—-— o - o = o == =

Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -

— e . oy

-~

Allocate 4GB per Function A?

/’ \\
w

TaskVine Worker : ‘I‘

1 1

11

1 1

1 1

FA FA 11

1 1

1 1

7 |

N i
———————————— '/

Ve

12 cores and 12 GB RAM
. 4

—-— o - o = o == =

~

Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -

— e . oy

Mix Function A and Function B?

12 cores and 12 GB RAM
. 4

7

VN -

7

N SN e e e e e == -

~

—-— o - o = o == =

Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -

— e . oy

What if Function A Varies?

12 cores and 12 GB RAM
. 4

7

VN -

7

N SN e e e e e == -

~

—-— o - o = o == =

How to measure a single function call?

Python Interpreter

a

N

LFM

function

import A import B

<

4

fork (COW)

<

Resource Usage

LFM - Lightweight Function Monitor

’,’::::::::::::\
'l/ \
II‘ ‘il I |
o LFM P!
o L —— I
byl -=========- I
L : function 11
|] "= = e e e e o o = - -

II: ———— === :
I, 1 importA | | importB |

3 A TR

y3
N

Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuiji, TJ Dasso, Zoe Surma, Kyle Chard, lan Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International

Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088

4

Example: Memory Usage in Colmena-XTB

Thanh Phung

o Memory consumption over time MAX?
o ’ . . 0 Memory consumption distribution
251 T Sy i . :
.- WD : 251 {
£ 207 % " * . e /
L') 2 o > g ¢ x @ T,-T 20 4
= ¢ E 7/
215 . a . ? ¢ 7
= B . ? 5 u® b 1 ST ! >15 :o
Q o O . o O bd R o
=107 o0 & T . . £ /
}--‘-":'..,'. ‘. R RO 1.; , W< .."' % TG
o’ = % . L 4 . 1) 3 ° '}
5 . . » A f.o LA S
b '. . H 5 . = 5_
0
0 50 100 150 200 0
time flow 0 50 100 150 200

tasks in sorted order
Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are

Created Equal: Adaptive Resource Allocation for Heterogeneous Tasks in
Dynamic Workflows", WORKS Workshop at Supercomputing 2021. v

Example: Memory Consumption in TopEFT

500 -

memory (MBs)
w
(@]
o

N
o
o

100

Memory consumption over time

4001

- LR
g oo @ P A e AN N i et

0 500 1000 1500

time flow

500 -

memory (MBs)

100 1

Memory consumption distribution

400 1

w
o
o

N
o
o

-

r
/
1'

_J

0 500 1000 1500
tasks in sorted order

4

Dynamic K-means Bucketing

— Bucket 1
30— Bucket 2
® Task
Complete
Memory
(GBs)

10—

Time Flow

Evaluation - Average Task Efficiency

Colmena TopEFT Normal Uniform Exrﬁ?ar;e— Bimodal Trimodal
Whole Machine 15.8 0.6 124 39.1 15.7 31.3 30.7
Double Allocation 51.9 4.90 33.1 41.6 27.6 374 43.3
User Declaration 33.2 69.1 48.4 59.6 15.7 56.7 43.7
Quantized Bucketing - Iv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4
Quantized Bucketing - Iv2 41.9 45.3 56.3 62.4 16.1 434 57.8
Quantized Bucketing - Iv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3
K-means Bucketing - Iv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4
K-means Bucketing - Iv2 43.9 45.9 56.3 62.4 16.1 84.2 57.5
K-means Bucketing - Iv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3

Information about types of tasks leads to better performance!

Unit: percentage
(the higher the better)

. -

Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work

WIP: TaskVine and Dask

71 dask

Dask Task Graph
d={x"1,
'v': (inc, 'x"),
'z": (add, 'y', 10)}

S

¥

TaskVine :.*

Notre Dame
Condor Status

name == " main

imbo:t dask.delayed

@dask.delayed (pure=True)
sum d(args):
sum(args)

“daSK < delayed (pure=True)
add d(*args):
rn add(*args)

@dask.delayed (pure=True)
list _d(*ar
‘ list(args)

add d(1, 2)

sum d([1, 2, z])

list d(sum d([z, w]), 2)
sum _d(v)

i See?

Ben Tovar

DaskVine(port=0, ssl=True)

vine.Factory(manager=m)

.Cores = 4

.max
.min workers
{2
print(t.compute(scheduler=m.dask get))

Open Problems

e Adaptive Workload Decomposition: How do we help users with
the problem of "How big should my tasks be?" Too large: lost
parallelism; too small: waste of overhead. In tension with:

e Automated Resource Packing: How do users decide the resources
(cores, memory, disk) per task that achieve the best performance
(throughput, utilization, runtime) for the users goals?

e Understanding Dependencies: How to help users disentangle
what they want with what's installed with what was used last week...

e Scheduling in Proportion: There are countless techniques for
scheduling workflows wrt dependencies, data, performance...

But few scale up to millions of tasks on thousands of.nodes!

Current Status of TaskVine

TaskVine is a component of the
Cooperative Computing Tools (cctools)
from Notre Dame alongside Makeflow,
Poncho, Resource Monitor, etc.

First public release made in March 2023.
Research software with an engineering

process: issues, tests, manual, examples.

We are eager to collaborate with new
users on applications and challenges!

conda install -c conda-forge ndcctools

This work was supported by
NSF Award OAC-1931348

. ." TaskVine

TaskV framewo k f or bu]ld ng larg scale data intensive dynamic workflows that run on HPC clusters, GPU

and produce their own outputs, moreandmore

dm plledmtl alt
resllstgradallygow

ur twenty years of exper: creating
mlldyml dmhlamg

Quick User Overview
Start Manual Slides

ﬁ

UNIVERSITY OF

NOTRE DAME

For more information...

This work was supported by
NSF Award OAC-1931348

https://ccl.cse.nd.edu/software/taskvine ™™=~ — .
https://dthain.github.io :

+* TaskVine

G
L

TaskVine is a framework for building large scale data intensive dynamic workflows that run on HPC clusters, GPU
clusters, and commercial clouds. As tasks access external data sources and produce their own outputs, more and more
data is pulled into local storage on workers. This data is used to accelerate future tasks and avoid re-computing exisiting
results. Data gradually grows "like a vine" through the cluster. TaskVine is our third-generation workflow system, built
on our twenty years of experience creating scalable applications in fields such as high energy physics, bioinformatics,
molecular dynamics, and machine learning.

q

"-\,

Douglas Thain Benjamin Tovar Thanh Son Phung Barry Sly Delgado Colin Thomas
Director Research Ph.D. Student Ph.D. Student Ph.D. Student
Soft. Engineer

Quick User Overview
Start Manual Slides

'\‘.?l 7.0 {
David Simonetti Joe Duggan Andrew Hennessee Matt Carbonaro Jachob Dolak

Undergraduate Undergraduate Undergraduate Undergraduate Undergraduate

https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

