
Data Intensive Computing
with TaskVine

Douglas Thain and the CCL Team
University of Notre Dame
Greater Chicago Area
Systems Research Workshop, April 2023

We collaborate with people who have large
scale computing problems in science,
engineering, and other fields.
We operate computer systems on the
O(10,000) cores: clusters, clouds, grids.
We conduct computer science research in
the context of real people and problems.
We develop open source software for large
scale distributed computing.http://ccl.cse.nd.edu

The Cooperative Computing Lab

Scientific computing usually starts here:

But how do you scale up to clusters?

Computing Facility

Workflows as a Computational Abstraction

Research and Design Problems:
▰ Resource Allocation
▰ Scaling and Performance
▰ Data Management
▰ Reliability
▰ Portability
▰ Reproducibility

A workflow is a collection of existing programs (functions) along with files (data
objects) joined together into a large graph expressing dependencies. Allows for
parallelism, distribution, and provenance without rewriting everything from scratch.

Workflow Management Systems

Workflow Manager Task / Data Scheduler Computing Facility

Express overall workflow
structure, components,
constraints, and goals.

Assign ready tasks and data
objects to resources in the cluster,
subject to runtime constraints.

Execute tasks on computational
resources, store and move data between
nodes.

http://workflows.community

Some Workflow Applications
Nanoreactors

ab-initio Chemistry
ForceBalance
FF Optimization

Adaptive Weighted
Ensemble

Molecular Dynamics

Lobster
CMS Data Analysis

SHADHO
Hyperparameter Optimization

Full Workflow:
12,500 species

 x 15 climate scenarios

 x 6 experiments

 x 500 MB per projection

 = 1.1M jobs, 72TB of output

Small Example: 10 species x 10 expts

Lifemapper
Species Distribution Modeling

SNSN SN SN MDSShared Parallel Filesystem

Workflows and Runtime Data Access

Workflow Manager Task / Data Scheduler Computing Facility

Challenges of Workflows on Clusters

● HPC filesystems are optimized for concurrent large-file access for
message-passing jobs: bulk load, coordinated checkpoint, final write.

● But workflows tend to behave differently:
○ Traverse deep directory trees of small files. (metadata surge)
○ Access same input file from many nodes at once.
○ Create large intermediate files that are consumed and then deleted.

● Software is an essential part that is not integrated into the workflow:
○ conda install tensorflow -> 99 packages, 32K files, 1.2 GB data
○ import tensorflow -> huge startup times at scale due to metadata
○ Same packages get installed and loaded over and over again with

small changes, sometimes intended, sometimes not.
● Accelerators have the (positive) effect of decreasing the overall CPU/IO

ratio, so it becomes even more essential to place data correctly!

SNSN SN SN MDSShared Parallel Filesystem

Key Idea: Exploit Storage in Cluster

Workflow Manager Task / Data Scheduler
Storage Already

Embedded in Cluster

Outline

▰ Workflow Systems for Productivity at Scale
▰ TaskVine: A Data Intensive Workflow System

▻ Architecture
▻ Programming Model
▻ Data Handling
▻ MiniTasks and Serverless

▰ Applications
▰ Challenges and Future Work

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from

very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and

software wherever possible.

TaskVine Architecture Overview

Compute Cluster

Application

TaskVine Mgr

14

tasks results

Remote
ServicesShared

Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files
Data

S/W

Other
App

Other
App

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in
the cluster wherever possible!

Design Goals for TaskVine

▰ Make it easy to construct dynamic workflows with thousands to millions
of tasks running on thousands of cluster nodes.

▰ Handle common failures by detecting and recovering from worker
crashes, network failures, and other unexpected events.

▰ Avoid moving data wherever possible: leave data in place until it needs
to be moved or duplicated.

▰ Re-use data objects within and across workflows by tracking
provenance from original sources all the way to final outputs.

▰ Manage task resources (cpu, gpu, mem, disk) carefully in order to pack
in as much as we can (but not too much!) into each worker.

▰ Support complex software environments built from package managers
by explicitly naming dependencies of tasks.

TaskVine Worker

f3

f5

url
sd698d

url
wq73dv

temp
xyz123

file
su3g2n

file
r223cdf

T1

data.tar.gz

output.txt

T2

configinput.txt

output.txt

Task 1 Sandbox Task 2 Sandbox

Application

TaskVine Mgr

tasks results RAM CPU
0

CPU
1

GPU
0

GPU
1

File = Single file or complex dir.

Manager directs all file
movements and accesses.

Files are immutable and given a
unique cache name.

Each task runs in a sandbox
with a private namespace and
an allocation of cores, memory,
disk, and gpus.

TaskVine WorkerTaskVine Worker

In-Cluster Data Management

D
1 3

4

I
S

FS

W

Y

Z

FS

2 X

5 F

Suppose you have a workflow like this: a dataset D comes from a web
repository, a software package S comes from the shared filesystem. After
passing through tasks 1-5, the final output F should be written to the filesystem.
TaskVine aims to keep all of the data within the cluster, as follows.

In-Cluster Data Management

worker

FSWEB

D S worker worker

manager
The manager selects a
worker for task 1, and
then directs dataset D to
be downloaded from the
web, and software
package S to be loaded
from the shared
filesystem.

In-Cluster Data Management

worker

FSWEB

D S I

1

worker worker

manager
Next, task 1 is
dispatched to that
worker, where it reads
dataset D, runs software
package S, and
produces file I, which
stays where it is created.

In-Cluster Data Management

FSWEB

D S I

2

I ISS

X

manager
Once file I is created, task
2 can run immediately on
that node, producing file X.
Software package S and
file I are duplicated to the
other worker nodes.

In-Cluster Data Management

FSWEB

D S I

2

I ISS Y Z

3 4X

manager
Now tasks 3 and 4 can run
on the other worker nodes,
producing files Y and Z.

In-Cluster Data Management

FSWEB

D S I I ISS Y Z

5X F

Next, task 5 is dispatched
to the middle worker. It
consumes files X, Y, and Z,
which are pulled in from
peer nodes. The output file
X is produced on that
node.

manager

In-Cluster Data Management

FSWEB

D S I I ISS Y Z

X F

manager
Finally, output file F is written
back to the shared filesystem,
as the ultimate output of the
workflow.

The manager directs the
workers to delete any
remaining uncacheable files.

Common input files remain to
accelerate future workflows.

F

Outline

▰ Workflow Systems for Productivity at Scale
▰ TaskVine: A Data Intensive Workflow System

▻ Architecture
▻ Programming Model
▻ Data Handling
▻ MiniTasks and Serverless

▰ Applications
▰ Challenges and Future Work

API: Declare Files Explicitly

import taskvine as vine

m = vine.Manager(9123)

file = m.declareFile("mydata.txt")
buffer = m.declareBuffer("Some literal data")
url = m.declareURL("https://somewhere.edu/data.tar.gz")
temp = m.declareTemp();

data = m.declareUntar(url)
software = m.declarePoncho(package)

API: Connect Tasks to Files

task = vine.Task("mysim.exe -p 50 input.data -o output.data")

t.add_input(url,"input.data")
t.add_output(temp,"output.data")

t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
t.set_tag("simulator")

taskid = m.submit(t)

API: Connect Tasks to Files

task = vine.PythonTask(simulate_func,molecule,parameters)

t.add_input(url,"input.data")
t.add_output(temp,"output.data")

t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
t.set_tag("simulator")

taskid = m.submit(t)

sa
nd

bo
x

Defining a Simple Task

import taskvine as vine

m = vine.Manager(9123)

doc = m.declareURL("https://www.gutenberg.org/files/1960/1960.txt")

task = vine.Task("grep chair doc.txt")
task.add_input(doc,"doc.txt")

taskid = m.submit(task)
task = queue.wait(VINE_FOREVER)

print task.output

doc.txt

grep

WWW

stdout

sa
nd

bo
x

A Real Application: NCBI Blast

29

blast.tar.gz landmark.tar.gz

blast/ landmark/

blastp

NCBI

query

stdout

ENV

untar untar

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-linux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA…"

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software,"blastdir")
task.add_input(database,"landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

m.submit(task)

Outline

▰ Workflow Systems for Productivity at Scale
▰ TaskVine: A Data Intensive Workflow System

▻ Architecture
▻ Programming Model
▻ Data Handling
▻ MiniTasks and Serverless

▰ Applications
▰ Challenges and Future Work

Transfer Management

Remote
Services

ManagerControlled:
Manager dispatches
transfers in a spanning
tree with a limited
load per node.
(default 3)

Remote
Services

ManagerUncontrolled:
Manager dispatches
unlimited transfers to
target data source.

Colin
Thomas

Worker to Worker Transfers

BLAST Workflow: Cold start for 500 tasks on 500 workers, each requiring software package and
database, ~30s compute each. (Left) Uncoordinated transfers dominate execution time.
(Right) Coordinated transfers between workers distribute data exponentially.

Generating Unique Cacheable Names

Files have one of three lifetimes:
● single-task
● workflow (default)
● forever

"forever" cached objects are
given
content addressable names from
a Merkle Tree of the file's
provenance. If any inputs change,
then so does the name of the
output, and it's not the same file.

S

S

D

5

S

D

5 X

Checksum(Content-of-S)
= 53ba27f

Checksum()

= f06da39

"cmd":"blast",
"inputs" = {
 "S" : Checksum(S),
 "D": Checksum(D)
}

Checksum()

= c320b61

"task" : Checksum(Task-5)
"output": "X"

Barry Sly-Delgado

Eliminating Startup Costs

Workers

Sharing Software Environments

python=3.7
numpy>=1.16

python 3.7.1
numpy 1.21.1
pandas 1.1.6

python 3.7.1
numpy 1.22.0
pandas 2.3.4

def456.tgz

xyz789.tgz

Recipe

python 3.7.0
numpy 1.21.1
pandas 1.1.5

abc123.tgz

Solution Package

.tgz

.tgz

.tgz

dir

dir

dir

Every run of
conda install
is likely to
generate a
different
solution! Cacheable but

not transferable!
Transferable

but not usable!

T

T

T

T

T

T

Outline

▰ Workflow Systems for Productivity at Scale
▰ TaskVine: A Data Intensive Workflow System

▻ Architecture
▻ Programming Model
▻ Data Handling
▻ MiniTasks and Serverless

▰ Applications
▰ Challenges and Future Work

sa
nd

bo
x

Mini-Tasks: FileUntar(f)

37

blast.tar.gz

input.tar.gz

tar

output

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-linux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA…"

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software,"blastdir")
task.add_input(database,"landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

FileUntar

sa
nd

bo
x

Mini-Task: FileXRootD

xrdcp

output.root

data = m.declareXRootD("xrootd://host/path", "proxy")

FileXRootD

XRootD
Server

proxy509.pem

proxy

X509_USER_PROXY=...

data

New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them
reproducibly:

Which is defined as a mini-task like this:

t = vine.Task("xrdcp {} output.root".format(url));
t.add_input(proxy,"proxy509.pem")
t.set_env_var("X509_USER_PROXY","proxy509.pem")
data = m.declareMiniTask(t,"output.root")

Mixed Modality Workflows

Standard Task:

Define once, runs on
any available worker.

Any Unix process with
command line args.

Produces output files.

Library Task:

Define once, runs on all
available workers.

Any Unix process with a
JSON invok. protocol.

Implements Func Call.

Function Call:

Define once, runs on any
matching Library.

JSON definition of args,
funcname, and results.

Produces JSON result.

Common Task Capabilities: Resource allocation and management,
fault-tolerance, distributed data handling, scheduling, logging, visualization…

TaskVine Worker

f3

f5 url
sd698d

temp
xyz123

file
f19xa2

url
c03rd5

T

data.tar.gz

output.txt

Standard Task

RAM CPU
0

CPU
1

GPU
0

GPU
1

L

software

FunctionCall

F

LibraryTask

logfile.txtresult

fork

data

Simply converting "import
tensorflow" into the preamble
of a Library task saves 1.2GB
of Python libraries, 30K
metadata system calls, and
5-10s latency per
FunctionCall. We can mix
standard Tasks, Libraries, and
FunctionCalls in the same
workflow:

David
Simonetti

Multi-Model Workflows

100x Standard Tasks
Build model from MNIST data.

For each produced model:
Deploy LibraryTask for inference.

Submit 10x FunctionCalls that
invoke each LibraryTask.

Application gradually accelerates
as standard tasks produce data
that define libraries that can then
be invoked.

Outline

▰ Workflow Systems for Productivity at Scale
▰ TaskVine: A Data Intensive Workflow System

▻ Architecture
▻ Programming Model
▻ Data Handling
▻ MiniTasks and Serverless

▰ Applications
▰ Challenges and Future Work

TaskVine is a Workflow Executor

TaskVine Manager

Parsl CoffeaMakeflowCustom
App

CC or Python Python Python

HPC Cluster

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

import taskvine

file = URL(www)
m.submit(task)
task = m.wait(5)

TaskVine can be used directly by
custom-written applications that
desire fine grained control or it can
serve as an execution platform for
higher-level workflow languages
and systems.

Application: TopEFT in WQ

● Late stage data analysis for LHC CMS experiment. Search for new physics impacting
associated top quark production using the framework of effective field theory (EFT).
Custom processing and accumulation functions expressed in Coffea framework, then
dispatched using Work Queue. (Our previous system) Remote data access via worldwide
XRootD federation, temporaries moved home.

Kelci
Mohrman

Kevin
Lannon

Workflow's Shape

input files

one event

one chunk

processing
function

processing
function

processing
function

processing
function

accumulating
function

accumulating
function final histogram

partial
histograms

shape is not fixed. partial
histograms accumulated as
they become available

TopEFT / Coffea Data Splitting Workflow

TopEFT
Application

Coffea
Framework

TaskVine
Scheduler

Proc.

Proc.

XRootD
Proxy/Cache

XRootD
Data Federation

Manager
Node

TaskVine Workers

storage unitsaccess units

Accum

tmp

final

tmp
WAN

Local
Storage

data

data

WIP: TopEFT in TaskVine

● New executor module defined to use TaskVine: software and data dependencies are now
explicitly declared, and temporaries maintained within the cluster without moving them
back.

Andrew
Hennessee

Task view Worker view

New:
In-Cluster

Accumulation
TopEFT

+ TaskVine

Old:
Accumulation
Data Returned

TopEFT
+ Work Queue

Stuck on
Long Tail!

Tail
Eliminated!

WIP: Parsl + TaskVine

Compute Cluster

TaskVine Mgr

48

Remote
ServicesShared

Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files
Data

S/W

Other
App

Other
AppParsl Data Flow Kernel

Parsl + TaskVine Exec

https://parsl-project.org

Kyle Chard
U. Chicago

Common Challenges

Two common problems of scaling up:

● What resources should be assigned to a function call?
● What software dependencies does this function need?

How can we solve these problems automatically at
runtime, without requiring the user to make advance
declarations?

Packing Functions Into Manycore Nodes

TaskVine Worker

FA

Python WorkflowPython App

Parsl DFK

TaskVine Manager

FA FB

FA FA FA

FAFA
FAFAFAFA

FBFBFBFB

12 cores and 12 GB RAM

Allocate 2GB per Function A?

Packing Functions Into Manycore Nodes

TaskVine WorkerPython WorkflowPython App

Parsl DFK

TaskVine Manager

FA FB

FA FA FA

FAFAFAFA

FBFBFBFB

Allocate 4GB per Function A?

12 cores and 12 GB RAM

Packing Functions Into Manycore Nodes

TaskVine WorkerPython WorkflowPython App

Parsl DFK

TaskVine Manager

FA FB

FA FA

FAFAFAFA

FBFBFBFB

Mix Function A and Function B?

FB

FB

FB

12 cores and 12 GB RAM

Packing Functions Into Manycore Nodes

TaskVine WorkerPython WorkflowPython App

Parsl DFK

TaskVine Manager

FA FB

FA FA

FAFAFAFA

FBFBFBFB

What if Function A Varies?

FA

12 cores and 12 GB RAM

Python Interpreter

How to measure a single function call?

54

LFM - Lightweight Function Monitor

import A import B

function

LFM

import A import B

function

LFM
fork (COW)

Resource Usage
import A import B

function

LFM

import A import B

function

LFM

Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuji, TJ Dasso, Zoe Surma, Kyle Chard, Ian Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International
Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088

Ben
Tovar

Example: Memory Usage in Colmena-XTB

Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are
Created Equal: Adaptive Resource Allocation for Heterogeneous Tasks in
Dynamic Workflows", WORKS Workshop at Supercomputing 2021.

MAX?

1ST?

Thanh Phung

Example: Memory Consumption in TopEFT

Dynamic K-means Bucketing

Memory
(GBs)

10

20

30

Bucket 1
Bucket 2
Task
Complete

Time Flow

Evaluation - Average Task Efficiency

Colmena TopEFT Normal Uniform Expone-
ntial Bimodal Trimodal

Whole Machine 15.8 0.6 12.4 39.1 15.7 31.3 30.7

Double Allocation 51.9 4.90 33.1 41.6 27.6 37.4 43.3

User Declaration 33.2 69.1 48.4 59.6 15.7 56.7 43.7

Quantized Bucketing - lv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4

Quantized Bucketing - lv2 41.9 45.3 56.3 62.4 16.1 43.4 57.8

Quantized Bucketing - lv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3

K-means Bucketing - lv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4

K-means Bucketing - lv2 43.9 45.9 56.3 62.4 16.1 84.2 57.5

K-means Bucketing - lv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3

Unit: percentage
(the higher the better)

Information about types of tasks leads to better performance!

Outline

▰ Workflow Systems for Productivity at Scale
▰ TaskVine: A Data Intensive Workflow System

▻ Architecture
▻ Data Handling
▻ MiniTasks and Serverless

▰ Applications
▰ Challenges and Future Work

WIP: TaskVine and Dask

Dask Task Graph
d = {'x': 1,
 'y': (inc, 'x'),

 'z': (add, 'y', 10)}

Ben Tovar

Open Problems

● Adaptive Workload Decomposition: How do we help users with
the problem of "How big should my tasks be?" Too large: lost
parallelism; too small: waste of overhead. In tension with:

● Automated Resource Packing: How do users decide the resources
(cores, memory, disk) per task that achieve the best performance
(throughput, utilization, runtime) for the users goals?

● Understanding Dependencies: How to help users disentangle
what they want with what's installed with what was used last week…

● Scheduling in Proportion: There are countless techniques for
scheduling workflows wrt dependencies, data, performance…
But few scale up to millions of tasks on thousands of nodes!

Current Status of TaskVine

62

● TaskVine is a component of the
Cooperative Computing Tools (cctools)
from Notre Dame alongside Makeflow,
Poncho, Resource Monitor, etc.

● First public release made in March 2023.
● Research software with an engineering

process: issues, tests, manual, examples.
● We are eager to collaborate with new

users on applications and challenges!

This work was supported by
NSF Award OAC-1931348

conda install -c conda-forge ndcctools

For more information…

63

https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

This work was supported by
NSF Award OAC-1931348

https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

