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The Cooperative Computing Lab
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e 1| scale computing problems in science,

About the CCL Community Highlight " . L]
We design software that enables our collaborators to easily harness ~ Scientists searching
large scale distributed systems such as clusters, clouds, and grids. for the Higgs boson
‘We perform fundamental computer science research in that enables  have profited from L) =
new discoveries through computing in fields such as physics, Parrot's new support
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network filesystem
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e " "
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[ e —— the context of real people and problems.

We develop open source software for large
http://ccl.cse.nd.edu scale distributed computing.
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Scientific computing usually starts here:

@, python
CONDA
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But how do you scale up to clusters?
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Workflows as a Computational Abstraction

A workflow is a collection of existing programs (functions) along with files (data
objects) joined together into a large graph expressing dependencies. Allows for
parallelism, distribution, and provenance without rewriting everything from scratch.
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Workflow Management Systems

Workflow Manager

Task / Data Scheduler

Express overall workflow
structure, components,
constraints, and goals.

Assign ready tasks and data
objects to resources in the cluster,
subject to runtime constraints.
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Eplay Options

Execute tasks on computational
resources, store and move data between
nodes.
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http://workflows.community

N workflows
community

Workflows Community
Summit 2022

A Roodmop Revolution
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We have another insightful
workshop called ReWorDS that
discusses the #reproducibility,
#data management, and
#security efforts of #eScience,
#HPC, and #Al workflows.
Check more:
sites.google.com/vols.utk.edu/r
@paulaolaya22 @JayLofstead
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Workflows and Runtime Data Access

Workflow Manager Task / Data Scheduler Computing Facility
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Challenges of Workflows on Clusters

e HPC filesystems are optimized for concurrent large-file access for
message-passing jobs: bulk load, coordinated checkpoint, final write.
e But workflows tend to behave differently:
o Traverse deep directory trees of small files. (metadata surge)
o Access same input file from many nodes at once.
o Create large intermediate files that are consumed and then deleted.
e Software is an essential part that is not integrated into the workflow:
o conda install tensorflow -> 99 packages, 32K files, 1.2 GB data
o import tensorflow -> huge startup times at scale due to metadata
o Same packages get installed and loaded over and over again with
small changes, sometimes intended, sometimes not.
e Accelerators have the (positive) effect of decreasing the overall CPU/IO
ratio, so it becomes even more essential to place data correctly!



Key Idea: Exploit Storage in Cluster

Workflow Manager

CCTools

Storage Already
Task / Data Scheduler Embedded in Cluster

Notre Dame
Condor Status
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Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
MiniTasks and Serverless
Applications
Challenges and Future Work
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TaskVine . ¢4

TaskVine is a system for executing data intensive
scientific workflows on clusters, clouds, and grids from
very small to massive scale.

TaskVine controls the computation and storage
capability of a large number of workers, striving to
carefully manage, transfer, and re-use data and
software wherever possible.



TaskVine Architecture Overview

Application

=

results

Compute Cluster

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers in

Remote
Services

the cluster wherever possible! w
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Design Goals for TaskVine

Make it easy to construct dynamic workflows with thousands to millions
of tasks running on thousands of cluster nodes.

Handle common failures by detecting and recovering from worker
crashes, network failures, and other unexpected events.

Avoid moving data wherever possible: leave data in place until it needs
to be moved or duplicated.

Re-use data objects within and across workflows by tracking
provenance from original sources all the way to final outputs.

Manage task resources (cpu, gpu, mem, disk) carefully in order to pack
in as much as we can (but not too much!) into each worker.

Support complex software environments built from package managers
by explicitly naming dependencies of tasks.
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File = Single file or complex dir.

Manager directs all file
movements and accesses.

Files are immutable and given a
unique cache name.

Each task runs in a sandbox
with a private namespace and
an allocation of cores, memory,
disk, and gpus.

TaskVine Worker
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output.txt
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Task 1 Sandbox
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In-Cluster Data Management

Suppose you have a workflow like this: a dataset D comes from a web
repository, a software package S comes from the shared filesystem. After
passing through tasks 1-5, the final output F should be written to the filesystem.
TaskVine aims to keep all of the data within the cluster, as follows.

Ciewm o was
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In-Cluster Data Management

The manager selects a

worker for task 1, and

then directs dataset D to
be downloaded from the
web, and software '? \ S 31 worker worker
package S to be loaded

from the shared
filesystem. ﬁ
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In-Cluster Data Management

manager 5w ® B® *%maﬁ
Next, task 1 is hdi])

dispatched to that

worker, where it reads &
dataset D, runs software :
package S, and DysShl worker worker

produces file I, which

stays where it is created. @
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In-Cluster Data Management

manager

Once file | is created, task
2 can run immediately on
that node, producing file X. |[', ﬂ
Software package S and

file | are duplicated to the | I | TN S 1
other worker nodes.
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In-Cluster Data Management

manager

Now tasks 3 and 4 can run
on the other worker nodes,

producing files Y and Z. X ﬂ @— Q‘Qf
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In-Cluster Data Management -
®-m OB
manager g RS EeES

Next, task 5 is dispatched
to the middle worker. It

consumes files X, Y, and Z, [[, F _@
which are pulled in from

peer nodes. The output file
X is produced on that

node. @
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In-Cluster Data Management

Finally, output file F is written
back to the shared filesystem,
as the ultimate output of the

® -5 e’ ~
manager 5= o< @ %WJ

workflow. =
X F
The manager directs the e e T e T | IRy
D S [ I S S R 4
workers to delete any N RN N R

remaining uncacheable files.

Common input files remain to
accelerate future workflows.
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Workflow Systems for Productivity at Scale
TaskVine: A Data Intensive Workflow System
Architecture
Programming Model
Data Handling
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API: Declare Files Explicitly

taskvine as vine

vine.

file
buffer
url
temp

data
software

Manager(9123)

.declareFile("mydata.txt")

.declareBuffer("Some literal data")
.declareURL("https://somewhere.edu/data.tar.gz")
.declareTemp() ;

m
m
m
m

m.declareUntar( url )
m.declarePoncho( package )

CCTools
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APIl: Connect Tasks to Files

task = vine.Task("mysim.exe -p 50 input.data -o output.data")

.add_input(url, "input.data")
.add_output(temp, "output.data")

.set_cores(4)
.set_memory(2048)
.set_disk(100)
.set_tag("simulator")

taskid = m.submit(t)
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APIl: Connect Tasks to Files

task = vine.PythonTask(simulate_func,molecule, parameters)

.add_input(url, "input.data")
.add_output(temp, "output.data")

.set_cores(4)
.set_memory(2048)
.set_disk(100)
.set_tag("simulator")

taskid = m.submit(t)
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Defining a Simple Task

taskvine as vine
vine.Manager(9123)
doc = m.declareURL("https://www.gutenberg.org/files/1960/1960.txt")

task = vine.Task("grep chair doc.txt")
task.add_input(doc, "doc.txt")

sandbox

taskid = m.submit(task)
task = queue.wait(VINE_FOREVER)

print task.output
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A Real Application: NCBI Blast

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
/LATEST/ncbi-blast-2.13.0+-x64-1inux.tar.gz"

landmark_url =
"https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA.."

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

<

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software, "blastdir")
task.add_input(database, "landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

m.submit(task)
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Transfer Management

Controlled:
Manager dispatches
transfers in a spanning
tree with a limited
load per node.
(default 3)

Uncontrolled:

Manager dispatches
unlimited transfers to
target data source.

Manager

BT
v
*
¢

Remote

Remote Services

Services

Colin
Thomas
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Worker to Worker Transfers

BLAST Workflow: Cold start for 500 tasks on 500 workers, each requiring software package and
database, ~30s compute each. (Left) Uncoordinated transfers dominate execution time.
(Right) Coordinated transfers between workers distribute data exponentially.

Manager to Worker Transfers Worker to Worker Transfers
500 A 500 H Tasks
Transfers

400 4
] % 400
E E
=] =)
E =
S 300 £ 300 -
s s
e
] 1
® ®
S 200 A © 200 A
£ = =
s s

100 + 100 4

—— 92T
0 e —— Transfers 0-
20 40 60 80 100 120 140 160 210 4‘0 6‘0 8'0 1(l)0

time time



Generating Unique Cacheable Names

Files have one of three lifetimes:
e single-task

e workflow (default)

e forever

"forever" cached objects are
given

content addressable names from
a Merkle Tree of the file's
provenance. If any inputs change,
then so does the name of the
output, and it's not the same file.

= 53ba27f

Checksum( Content-of-S )

Checksum(| 'S':Checksum(S), |)

) = c320b61

B

RWla__

Barry Sly-Delgado

"cmd":"blast",
"inputs” = {

"D": Checksum(D)
}

"task" : Checksum(Task-5
CheCksum( "output": "X"

)

= f06da39
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Sharing Software Environments

Recipe

CCTools

python=3.7
numpy>=1.16

Every run of
conda install
is likely to
generate a
different
solution!

Workers
Solution Package a /‘
python 3.7.0 /l .th > dir \‘
numpy 1.21.1 abc123.tgz <
pandas 1.1.5 ! /‘
tgz = dir
python 3.7.1 0 \‘
numpy 1.21.1 def456.tgz p
pandas 1.1.6 \ /‘
tgz = dir <\‘
python 3.7.1 -/ =t
numpy 1.22.0 xyz789.tgz Transferable Cacheable but
pandas 2.3.4 but not usable!  not transferable!
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Mini-Tasks: FileUntar( f ) — e

software = m.declareUntar(m.declareURL(blast_url))

FileUntar

sandbox
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Mini-Task: FileXRootD ——

XRootD
Server

New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them
reproducibly:

data = m.declareXRootD( "xrootd://host/path", "proxy" )

X509_USER_PROXY-=...

sandbox

Which is defined as a mini-task like this:

t = vine.Task("xrdcp {} output.root”.format(url));

t.add_input(proxy, "proxy509.pem")
t.set_env_var("X509_USER_PROXY", "proxy509.pem") FileXRootD

data = m.declareMiniTask(t, "output.root")
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Mixed Modality Workflows

Standard Task: Library Task: Function Call:

Define once, runs on Define once, runs on all Define once, runs on any
any available worker. available workers. matching Library.

Any Unix process with Any Unix process with a JSON definition of args,
command line args. JSON invok. protocol. funcname, and results.
Produces output files. Implements Func Call. Produces JSON result.

Common Task Capabilities: Resource allocation and management,
fault-tolerance, distributed data handling, scheduling, logging, visualization...




TaskVine Worker
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LibraryTask

Simply converting "import
tensorflow" into the preamble
of a Library task saves 1.2GB
of Python libraries, 30K
metadata system calls, and
5-10s latency per
FunctionCall. We can mix
standard Tasks, Libraries, and
FunctionCalls in the same
workflow:

David
Simonetti
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Multi-Model Workflows

TaskVine

Il tasks executing

11421 mm asks lost on disconnection e
e bt 100x Standard Tasks

results waiting retrieval
| h dat .
W T A Build model from MNIST data.
Bl outputs to manager

For each produced model:
Deploy LibraryTask for inference.

Submit 10x FunctionCalls that

3 , invoke each LibraryTask.
E Application gradually accelerates
E as standard tasks produce data
g that define libraries that can then
I - be invoked.
_ B
P

0 45 20 135 2055
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TaskVine is a Workflow Executor

TaskVine can be used directly by
custom-written applications that
desire fine grained control or it can
serve as an execution platform for
higher-level workflow languages
and systems.

CCTools

import taskvine o

file = URL(www) e i e A e
m.submit(task) [ 0 aeeeses
task = m.wait(5)

Custom Makeflow Parsl Coffea
App

C or Python C Python Python

TaskVine Manager

TaskVine TaskVine TaskVine TaskVine TaskVine

Worker Worker Worker Worker Worker

HPC Cluster




Application: TopEFT in WQ | 2,
Kelci Kevin
Mohrman Lannon
e Late stage data analysis for LHC CMS experiment. Search for new physics impacting
associated top quark production using the framework of effective field theory (EFT).
Custom processing and accumulation functions expressed in Coffea framework, then
dispatched using Work Queue. (Our previous system) Remote data access via worldwide

XRootD federation, temporaries moved home.

ﬁ TopEFT \ /

LFM access units storage units
_ Application m
4—’ tmp

\ Coffea ")
Framework || T final ' LFM

( *Work Queue A tmp
& Schelduler ) m LEM
Manager Local Worker
Node Storage Nodes

\

-

/

XRootD XRootD
Proxy/Cache Data Federation



TopEFT / Coffea Data Splitting Workflow

one event

one chunk

memory (GB)
N wo

—_
1

64K 128K
events, r=0.79

input files
A

N ] N \ J
processing processing processing processing
function function function function

partial
histograms

accumulating
function

/

accumulating
function

210
H
E
500

final histogram




WIP: TopEFT in TaskVine

Andrew
Hennessee

New executor module defined to use TaskVine: software and data dependencies are now
explicitly declared, and temporaries maintained within the cluster without moving them

back.

TopEFT
Application

* Coffea
\ Framework

TaskVine
Scheduler

Marjager
Node

access units storage units

Y
\‘
i+ ——{ xn
/
Local
Storage TaskVine Workers

*

XRootD XRootD
Proxy/Cache Data Federation

4



old:
Accumulation
Data Returned
TopEFT
+ Work Queue

New:
In-Cluster
Accumulation
TopEFT
+ TaskVine
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WIP: Parsl + TaskVine

Kyle Chard
U. Chicago

https://parsl-project.org /

Parsl Data Flow Kernel k

~

Compute Cluster

[ Parsl + TaskVine Exec ]

| Tesivine Mo

Remote
Services




Common Challenges

Two common problems of scaling up:

e \What resources should be assigned to a function call?
e \What software dependencies does this function need?

How can we solve these problems automatically at
runtime, without requiring the user to make advance
declarations?



Packing Functions Into Manycore Nodes

Python App Fa
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Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -
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Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -
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Mix Function A and Function B?
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Packing Functions Into Manycore Nodes

Python App Fa

Pars| DFK

TaskVine Manager -
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What if Function A Varies?
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How to measure a single function call?

Python Interpreter

a

N

LFM

function

import A import B

<

4

fork (COW)

<

Resource Usage

LFM - Lightweight Function Monitor

’,’::::::::::::\
'l/ \
II‘ ‘il I |
o LFM P!
o L —— I
byl -=========- I
L : function 11
| ] "= = e e e e o o = - -

II: ———— === :
I, 1 importA | | importB |

3 A TR

y3
N

Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuiji, TJ Dasso, Zoe Surma, Kyle Chard, lan Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International

Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088

4



Example: Memory Usage in Colmena-XTB

Thanh Phung

o Memory consumption over time MAX?
o ’ . . 0 Memory consumption distribution
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time flow 0 50 100 150 200

tasks in sorted order
Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are

Created Equal: Adaptive Resource Allocation for Heterogeneous Tasks in
Dynamic Workflows", WORKS Workshop at Supercomputing 2021. v



Example: Memory Consumption in TopEFT
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Dynamic K-means Bucketing

—  Bucket 1
30— Bucket 2
® Task
Complete
Memory
(GBs)

10—

Time Flow



Evaluation - Average Task Efficiency

Colmena TopEFT Normal Uniform Exrﬁ?ar;e— Bimodal Trimodal
Whole Machine 15.8 0.6 124 39.1 15.7 31.3 30.7
Double Allocation 51.9 4.90 33.1 41.6 27.6 374 43.3
User Declaration 33.2 69.1 48.4 59.6 15.7 56.7 43.7
Quantized Bucketing - Iv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4
Quantized Bucketing - Iv2 41.9 45.3 56.3 62.4 16.1 434 57.8
Quantized Bucketing - Iv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3
K-means Bucketing - Iv1 34.4 85.5 56.3 62.4 16.1 59.6 46.4
K-means Bucketing - Iv2 43.9 45.9 56.3 62.4 16.1 84.2 57.5
K-means Bucketing - Iv3 N/A 91.0 56.3 62.4 16.1 93.9 71.3

Information about types of tasks leads to better performance!

Unit: percentage
(the higher the better)
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WIP: TaskVine and Dask

71 dask

# Dask Task Graph
d={x"1,
'v': (inc, 'x"),
'z": (add, 'y', 10)}

S

¥

TaskVine :.*

Notre Dame
Condor Status

name == " main

imbo:t dask.delayed

@dask.delayed (pure=True)
sum d(args):
sum(args)

“daSK < delayed (pure=True)
add d(*args):
rn add(*args)

@dask.delayed (pure=True)
list _d(*ar
‘ list(args)

add d(1, 2)

sum d([1, 2, z])

list d(sum d([z, w]), 2)
sum _d(v)

i See?

Ben Tovar

DaskVine(port=0, ssl=True)

vine.Factory(manager=m)

.Cores = 4

.max
.min workers
{2
print(t.compute(scheduler=m.dask get))




Open Problems

e Adaptive Workload Decomposition: How do we help users with
the problem of "How big should my tasks be?" Too large: lost
parallelism; too small: waste of overhead. In tension with:

e Automated Resource Packing: How do users decide the resources
(cores, memory, disk) per task that achieve the best performance
(throughput, utilization, runtime) for the users goals?

e Understanding Dependencies: How to help users disentangle
what they want with what's installed with what was used last week...

e Scheduling in Proportion: There are countless techniques for
scheduling workflows wrt dependencies, data, performance...

But few scale up to millions of tasks on thousands of.nodes!




Current Status of TaskVine

TaskVine is a component of the
Cooperative Computing Tools (cctools)
from Notre Dame alongside Makeflow,
Poncho, Resource Monitor, etc.

First public release made in March 2023.
Research software with an engineering

process: issues, tests, manual, examples.

We are eager to collaborate with new
users on applications and challenges!

conda install -c conda-forge ndcctools

This work was supported by
NSF Award OAC-1931348

. ." TaskVine

TaskV framewo k f or bu]ld ng larg scale data intensive dynamic workflows that run on HPC clusters, GPU

and produce their own outputs, moreandmore

dm plledmtl alt
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Quick User Overview
Start Manual Slides

ﬁ



UNIVERSITY OF

NOTRE DAME

For more information...

This work was supported by
NSF Award OAC-1931348

https://ccl.cse.nd.edu/software/taskvine ™™=~ — .
https://dthain.github.io :

+* TaskVine

G
L

TaskVine is a framework for building large scale data intensive dynamic workflows that run on HPC clusters, GPU
clusters, and commercial clouds. As tasks access external data sources and produce their own outputs, more and more
data is pulled into local storage on workers. This data is used to accelerate future tasks and avoid re-computing exisiting
results. Data gradually grows "like a vine" through the cluster. TaskVine is our third-generation workflow system, built
on our twenty years of experience creating scalable applications in fields such as high energy physics, bioinformatics,
molecular dynamics, and machine learning.
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Douglas Thain Benjamin Tovar Thanh Son Phung  Barry Sly Delgado Colin Thomas
Director Research Ph.D. Student Ph.D. Student Ph.D. Student
Soft. Engineer

Quick User Overview
Start Manual Slides

'\‘.?l 7.0 {
David Simonetti Joe Duggan Andrew Hennessee Matt Carbonaro Jachob Dolak

Undergraduate Undergraduate Undergraduate Undergraduate Undergraduate



https://ccl.cse.nd.edu/software/taskvine
https://dthain.github.io

