Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.

Paperback ISBN: 979-8-655-18026-0

Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the

author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

181

Chapter 11 — Code Generation

11.1 Introduction

Congratulations, you have made it to the final stage of the compiler! After
scanning and parsing the source code, constructing the AST, performing
type checking, and generating an intermediate representation, we are now
ready to generate some code.

To start, we are going to take a naive approach to code generation, in
which we consider each element of the program in isolation. Each ex-
pression and statement will be generated as a standalone unit, without
reference to its neighbors. This is easy and straightforward, but it is con-
servative and will lead to a large amount of non-optimal code. But it will
work, and give you a starting point for thinking about more sophisticated
techniques.

The examples will focus on X86-64 assembly code, but they are not
hard to adapt to ARM and other assembly languages as needed. As with
previous stages, we will define a method for each element of a program.
decl_codegen will generate code for a declaration, calling stmt _codegen
for a statement, expr_codegen for an expression, and so on. These rela-
tionships are shown in Figure 11.1.

Once you have learned this basic approach to code generation, you
will be ready for the following chapter, in which we consider more complex
methods for generating more highly optimized code.

11.2 Supporting Functions

Before generating some code, we need to set up a few supporting functions
to keep track of a few details. To generate expressions, you will need some
scratch registers to hold intermediate values between operators. Write
three functions with the following interface:

int scratch_alloc();
void scratch_free(int r);
const char % scratch_name(int r);

Looking back at Chapter 10, you can see that we set aside each regis-
ter for a purpose: some are for function arguments, some for stack frame

181

182 CHAPTER 11. CODE GENERATION

Figure 11.1: Code Generation Functions

declcodegen

stmt codegen

expr_codegen Iabelcreate Iabelpnnt
symbol_codegen scratch alloc scratch_free

management, and some are available for scratch values. Take those scratch
registers and put them into a table like this:

r 0 1 2 3 4 5 6
name | %rbx | %r10 | %r1l | %r12 | %rl3 | %rld | %rl5
inuse | X X

Then, write scratch_alloc to find an unused register in the table,
mark it as in use, and return the register number r. scratch_free should
mark the indicated register as available. scratch_name should return the
name of a register, given its number r. Running out of scratch registers is
possible, but unlikely, as we will see below. For now, if scratch_alloc
cannot find a free register, just emit an error message and halt.

Next, we will need to generate a large number of unique, anonymous
labels that indicate the targets of jumps and conditional branches. Write
two functions to generate and display labels:

int label_create();
const char * label_name(int label);

label_create simply increments a global counter and returns the
current value. 1abel_name returns that label in a string form, so that label
15 is represented as " . L15".

182

11.3. GENERATING EXPRESSIONS 183

Finally, we need a way of mapping from the symbols in a program to
the assembly language code representing those symbols. For this, write a
function to generate the address of a symbol:

const char x symbol_codegen(struct symbol x*s);

This function returns a string which is a fragment of an instruction,
representing the address computation needed for a given symbol. Write
symbol_codegen to first examine the scope of the symbol. Global vari-
ables are easy: the name in assembly language is the same as in the source
language. If you have a symbol structure representing the global variable
count :integer, then symbol_codegen should simply return count.

Symbols that represent local variables and function parameters should
instead return an address computation that yields the position of that lo-
cal variable or parameter on the stack. The groundwork for this was laid
in the typechecking phase, where you assigned each parameter and each
local variable a unique sequence number.

For example, suppose you have this function definition:

f: function void (x: integer, y: integer) =
{

z: integer = 10;

return x + y + z;

In this case, x has parameter position zero, y has position one, and z is
local variable zero. Now look back at Figure 10.5, which shows the stack
layout on the X86-64 processor. Parameter position zero is at the address
-8 (%$rbp), parameter one is at ~16 ($rbp), and then local variable zero
follows after that at —24 (%rbp).

Given that, you can now extend symbol_codegen to return a string
describing the precise stack address of local variables and parameters,
knowing only its position in the stack frame.

11.3 Generating Expressions

The basic approach to generating assembly code for an expression is to
perform a post-order traversal of the AST or DAG, and emit one or more
instructions for each node. The main idea is to keep track of the registers
in which each intermediate value is stored. To do this, add a reg field to
the AST or DAG node structure, which will hold the number of a register
returned by scratch_alloc. As you visit each node, emit an instruction
and place into the reg field the number of the register containing that
value. When the node is no longer needed, call scratch_free to release
it.

183

184

CHAPTER 11. CODE GENERATION

Suppose we want to generate X86 code for the following DAG, where
a, b and c are global integers:

ASSIGN

SUBQ RO, R1
MOVQ R1, c¢

/ \ 1. MOVQ a, RO
ISuB ¢ 2. MOVQ $3, R1
/ \ 3. ADDQ RO, R1
4. MOVQ b, RO
IADD b
5.
6.

a/ \3

Figure 11.2: Example of Generating X86 Code from a DAG

A post-order traversal would visit the nodes in the following order:

1.

Visit the a node. Call scratch-alloc to allocate a new register (0)
and save that in node->reg. Then emit the instruction MOVQ a, RO
to load the value into register zero. !

Visit the 3 node. Call scratch-alloc to allocate a new register (1)
and emit the instruction MOVQ $3, RI1.

Visit the IADD node. By examining the two children of this node,
we can see that their values are stored in registers RO and R1, so we
emit an instruction that adds them together: ADDQ RO, R1. Thisis
a destructive two-address instruction which leaves the result in R1.
RO is no longer needed, so we call scratch_free (0).

Visit the b node. Call scratch_alloc to allocate a new register (0)
and emit MOVQ b, RO.

Visit the ISUB node. Emit SUBQ RO, R1, leaving the result in R1,
and freeing register RO.

Visit the ¢ node, but don’t emit anything, because it is the target of
the assignment.

Visit the ASSIGN node and emit MOVQ R1, c.

INote that the actual name of register RO is scratch_name (0), which is $rbx. To keep
the example clear, we will call them RO, R1, etc. for now.

184

11.3. GENERATING EXPRESSIONS 185

And here is the same code with the actual register names provided by
scratch_name:

MOVQ a, %rbx
MOVQ $3, %rlo0
ADDQ %rl1l0, %rbx
MOVQ b, %rbx
SUBQ %rbx, %rl0
MOVQ %rl0, c

Here is how to implement it in code. Write a function called expr_codegen
that first recursively calls expr_codegen for its left and right children.
This will cause each child to generate code such that the result will be left
in the register number noted in the reg field. The current node then gen-
erates code using those registers, and frees the registers it no longer needs.
Figure 11.3 gives a skeleton for this approach.

A few additional refinements are needed to the basic process.

First, not all symbols are simple global variables. When a symbol forms
part of an instruction, use symbol_codegen to return the string that gives
the specific address for that symbol. For example, if a was the first param-
eter to the function, then the first instruction in the sequence would have
looked like this instead:

MOVQ -8 (%rbp), S%Srbx

Second, some nodes in the DAG may require multiple instructions, so
as to handle peculiarities of the instruction set. You will recall that the X86
IMUL only takes one argument, because the first argument is always $rax
and the result is always placed in $rax with the overflow in $rdx. To
perform the multiply, we must move one child register into $rax, multi-
ply by the other child register, and then move the result from %rax to the
destination scratch register. For example, the expression (xx10) would
translate as this:

MOV $10, %rbx

MOV x, $rl0

MOV S%rbx, S%rax
IMUL %rl0

MOV S%$rax, %rll

Of course, this also means that $rax and $rdx cannot be used for other
purposes while a multiply is in progress. Since we have a large number
of scratch registers to work with, we will just not use $rdx for any other
purpose in our basic code generator.

185

186 CHAPTER 11. CODE GENERATION

void expr_codegen(struct expr xe)

{

if(!e) return;
switch (e->kind) {
// Leaf node: allocate register and load value.

case EXPR_NAME:
e->reg = scratch_alloc();
printf ("MOVQ %s, %s\n",
symbol_codegen (e->symbol),
scratch_name (e->req));
break;

// Interior node: generate children, then add them.

case EXPR_ADD:

expr_codegen (e—->left);

expr_codegen (e->right) ;

printf ("ADDQ %s, %s\n",
scratch_name (e->left->req),
scratch_name (e->right->req));

e->reg = e->right->reg;

scratch_free(e->left->req);

break;

case EXPR_ASSIGN:
expr_codegen (e—->left);
printf ("MOVQ %s, %s\n",
scratch_name (e->left->req),
symbol_codegen (e->right->symbol));
e->reg = e—->left->reg;
break;

Figure 11.3: Expression Generation Skeleton

186

11.3. GENERATING EXPRESSIONS 187

ASSIGN MOVQ $10, %rbx
/ \ MOVQ b, %rl0
CALL . MOVQ ¢, %rll
ADDQ %rl1l0, %rll
//\\ MOVQ %rll, %rsi
f ARG MOVQ %rbx, %rdi
/N PUSHQ %rl0
10 ARG PUSHQ %rll
/ \ CALL £
IADD (null) POPQ %rll
POPQ %rlo0
/ \ MOVQ $%$rax, %rbx
b c

MOVQ $%$rbx, a

Figure 11.4: Generating Code for a Function Call

Third, how do we invoke a function? Recall that a function is repre-
sented by a single CALL node, with each of the arguments in an unbal-
anced tree of ARG nodes. Figure 11.4 gives an example of a DAG repre-
senting the expression a=£f (10, b+c).

The code generator must evaluate each of the ARG nodes, computing
the value of each left hand child. If the machine has a stack calling con-
vention, then each ARG node corresponds to a PUSH onto the stack. If the
machine has a register calling convention, generate all of the arguments,
then copy each one into the appropriate argument register after all argu-
ments are generated. Then, emit CALL on the function name, after saving
any caller-saved registers. When the function call returns, move the value
from the return register ($rax) into a newly allocated scratch register and
restore the caller-saved registers.

Finally, note carefully the side effects of expressions. Every expression
has a value which is computed and left in a scratch register for its parent
node to consider. Some expressions also have side effects which are ac-
tions in addition to the value. With some operators, it is easy to overlook
one or the other!

For example, the expression (x=10) yields a value of 10, which means
you can use that expression anywhere a value is expected. This is what
allows you to write y=x=10 or £ (x=10) . The expression also has the side
effect of storing the value 10 into the variable x. When you generate code
for x=10 assignment, be sure to carry out the side effect of storing 10 into
x (that’s obvious) but also retain the value 10 in the register that represents
the value of the expression.

187

188 CHAPTER 11. CODE GENERATION

11.4 Generating Statements

Now that we have encapsulated expression generation into a single func-
tion expr_codegen, we can begin to build up larger code structures that
rely upon expressions. stmt_codegen will create code for all control flow
statements. Begin by writing a skeleton for stmt_codegen like this:

void stmt_codegen(struct stmt xs)

{

if(!s) return;

switch (s—->kind) {
case STMT_EXPR:
break;
case STMT_DECL:
break;

}

stmt_codegen (s—>next) ;

Figure 11.5: Statement Generator Skeleton

Now consider each kind of statement in turn, starting with the easy
cases. If the statement describes a declaration STMT_DECL of a local vari-
able, then just delegate that by calling decl_codegen:

case STMT_DECL:
decl_codegen (s—>decl);
break;

A statement that consists of an expression (STMT_EXPR) simply requires
that we call expr_codegen on that expression, and then free the scratch
register containing the top-level value of the expression. (In fact, every
time expr_codegen is called, a scratch register should be freed.)

case STMT_EXPR:
expr_codegen (s—>expr) ;
scratch_free (s—->expr->reqg);
break;

A return statement must evaluate an expression, move it into the des-
ignated register for return values $rax, and then jump to the function epi-
logue, which will unwind the stack and return to the call point. (See below
for more details about the prologue.)

188

11.4. GENERATING STATEMENTS 189

case STMT_RETURN:
expr_codegen (s—>expr) ;
printf ("MOV %s, $%$%rax\n",scratch_name (s->expr->req));
printf ("JMP .%s_epilogue\n", function_name) ;
scratch_free (s—>expr—->reqg);
break;

(The careful reader will notice that this code needs to know the name
of the function that contains this statement. You will have to figure out a
way to pass that information down.)

Control flow statements are more interesting. It's useful to first con-
sider what we want the output assembly language to look like, and then
work backwards to get the code for generating it.

Here is a template for a conditional statement:

if ([expr]) {
true-statements

} else {

false-statements

}

To express this in assembly, we must evaluate the control expression so
that its value resides in a known register. A CMP expression is then used
to test if the value is equal to zero (false). If the expression is false, then
we must jump to the false branch of the statement with a JE (jump-if-
equal) statement. Otherwise, we continue through to the true branch of
the statement. At the end of the true statement, we must JMP over the else
body to the end of the statement.

CMP $0, register
JE false-label

true-statements

JMP done-label
false-label :

false-statements
done-label :

189

190 CHAPTER 11. CODE GENERATION

Once you have a skeleton of the desired code, writing the code gen-
erator is easy. First, generate two new labels, then call expr_codegen
for each expression, stmt _codegen for each statement, and substitute the
few additional instructions as needed to make the overall structure.

case STMT_IF:
int else_label = label_create();
int done_label = label_create();
expr_codegen (s—>expr) ;
printf ("CMP $0, $%s\n",scratch_name (s—>expr—->req));
scratch_free (s—->expr->req);
printf ("JE %s\n",label_name (else_label));
stmt_codegen (s—>body) ;
printf ("JMP %s\n", label_name (done_label));
printf ("%$s:\n", label_name (else_label));
stmt_codegen (s->else_body) ;
printf ("%$s:\n", label_name (done_label)) ;
break;

A similar approach can be used to generate loops. Here is the source
template of a for-loop:

for (| init-expr | ;| expr | ;| next-expr |) {

’ body-statements ‘

}

And here is the corresponding assembly template. First, evaluate the ini-
tializing expression. Then, upon each iteration of the loop, evaluate the
control expression. If false, jump to the end of the loop. If not, execute the
body of the loop, then evaluate the next expression.

init-expr

top-label:

CMP $0, register
JE done-label

body-statements ‘

next-expression

JMP top-label
done-label :

Writing the code generator is left as an exercise for the reader. Just keep
in mind that each of the three expressions in a for-loop can be omitted. If

190

11.4. GENERATING STATEMENTS 191

the init-expr or the next-expr are omitted, they have no effect. If the expr is
omitted, it is assumed to be true. 2

Many languages have loop-control constructs like continue; and
break;. In these cases, the compiler must keep track of the labels as-
sociated with the current loop being generated, and convert these into a
JMP to the top label, or the done-label respectively.

The print statement in B-Minor is a special case of an imperative
statement with variant behavior depending on the type of the expression
to be printed. For example, the following print statement must generate
slightly different code for the integer, boolean, and string to be printed:

i: integer = 10;
b: boolean = true;
s: string = "\n";

print i, b, s;

Obviously, there is no simple assembly code corresponding to the dis-
play of an integer. In this case, a common approach is to reduce the
task into an abstraction that we already know. The printing of integers,
booleans, strings, etc., can be delegated to function calls that explicitly
perform those actions. The generated code for print i, b, s is then
equivalent to this:

print_integer (i)
print_boolean (b)
print_string(s)

4
4

14

So, to generate a print statement, we simply generate the code for
each expression to be printed, determine the type of the expression with
expr_typecheck and then emit the corresponding function call.

Of course, each of these functions must be written and then linked into
each instance of a B-Minor program, so they are available when needed.
These functions, and any others necessary, are collectively known as the
runtime library for B-Minor programs. As a general rule, the more high-
level a programming language, the more runtime support is needed.

2Yes, each of the three components of a for-loop are expressions. It is customary that the
first has a side effect of initialization (1=0), the second is a comparison (1<10), and the third
has a side effect to generate the next value (i++), but they are all just plain expressions.

191

192 CHAPTER 11. CODE GENERATION

11.5 Conditional Expressions

Now that you know how to generate control flow statements, we must
return to one aspect of expression generation. Conditional expressions
(less-than, greater-than, equals, etc.) compare two values and return a
boolean value. They most frequently appear in control flow expressions
but can also be used as simple values, like this:

b: boolean = x < y;

The problem is that there is no single instruction that simply performs
the comparison and places the boolean result in a register. Instead, you
must go the long way around and make a control flow construct that com-
pares the two expressions, then constructs the desired result.

For example, if you have a conditional expression like this:

’ left-expr ‘ < ’ right-expr ‘

then generate code according to this template:

left-expr

right-expr
CMP left-register, right-register
JLT true-label
MOV false, result-register
JMP done-label
true-label:
MOV true, result—register
done-label:

Of course, for different conditional operators, use a different jump in-
struction in the appropriate place. With slight variations, you can use the
same approach to implement the ternary conditional operator (x?a:Db)
found in many languages.

A funny outcome of this approach is that if you generate code for an
if-statement like i £ (x>y) {. . . } in the obvious way, you will end up with
two conditional structures in the assembly code. The first conditional com-
putes the result of x>y and places that in a register. The second condi-
tional compares that result against zero and then jumps to the true or false
branch of the statement. With a little careful coding, you can check for this
common case and generate a single conditional statement that evaluates
the expression and uses one conditional jump to implement the statement.

192

11.6. GENERATING DECLARATIONS 193

11.6 Generating Declarations

Finally, emitting the entire program is a matter of traversing each declara-
tion of code or data and emitting its basic structure. Declarations can fall
into three cases: global variable declarations, local variable declarations,
and global function declarations. (B-Minor does not permit local function
declarations.)

Global data declarations are simply a matter of emitting a label along
with a suitable directive that reserves the necessary space, and an initial-
izer, if needed. For example, these B-Minor declarations at global scope:

i: integer = 10;
s: string = "hello";
b: array [4] boolean = {true, false, true, false};

Should yield these output directives:

.data

iz .quad 10

S: .string "hello"
b: .quad 1, 0, 1, O

Note that a global variable declaration can only be initialized by a con-
stant value (and not a general expression) precisely because the data sec-
tion of the program can only contain constants (and not code). If the pro-
grammer accidentally put code into the initializer, then the typechecker
should have discovered that and raised an error before code generation
began.

Emitting a local variable declaration is much easier. (This only hap-
pens when decl_codegen is called by stmt_codegen inside of a func-
tion declaration.) Here, you can assume that space for the local variable
has already been established by the function prologue, so no stack manip-
ulations are necessary. However, if the variable declaration has an initial-
izing expression (x:integer=y+10;) then you must generate code for
the expression, store it in the local variable, and free the register.

Function declarations are the final piece. To generate a function, you
must emit a label with the function’s name, followed by the function pro-
logue. The prologue must take into account the number of parameters
and local variables, making the appropriate amount of space on the stack.
Next comes the body of the function, followed by the function epilogue.
The epilogue should have a unique label so that return statements can
easily jump there.

193

194

CHAPTER 11. CODE GENERATION

11.7

Exercises

Write a legal expression that would exhaust the six available scratch
registers, if using the technique described in this chapter. In general,
how many registers are needed to generate code for an arbitrary ex-
pression tree?

When using a register calling convention, why is it necessary to gen-
erate values for all the function arguments before moving the values
into the argument registers?

Can a global variable declaration have a non-constant initializing ex-
pression? Explain why.

Suppose B-Minor included a switch statement. Sketch out two dif-
ferent assembly language templates for implementing a switch.

Write the complete code generator for the X86-64 architecture, as out-
lined in this chapter.

Write several test programs to test all the aspects of B-Minor then
use your compiler to build, test, and run them.

Compare the assembly output of your compiler on your test pro-
grams to the output of a production compiler like gcc on equivalent
programs written in C. What differences do you see?

Add an extra code generator to your compiler that emits a different
assembly language like ARM or an intermediate representation like
LLVM. Describe any changes in approach that were necessary.

194

