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Abstract 

In many systems such as operating systems and 
databases it is important to run client code in a separate 
protection domain so that it cannot interfere with correct 
operation of the system. Clients communicate with the 
server by making cross domain calls, but these are ex- 
pensive, often costing substantially more than running 
the call itself. This paper describes a new mechanism 
called batched futures that transparently batches pos- 
sibly interrelated client calls. Batching makes domain 
crossings happen less often, thus substantially reducing 
the cost. We describe how the mechanism is imple- 
mented for the Thor object-oriented database system, 
and presents performance results showing the benefit 
of the mechanism on various benchmarks. 

1 Introduction 

An important issue in the design of software systems 

is preventing untrusted clients from interfering with the 

correct operation of servers. Systems ranging from 

databases to operating systems solve this problem by re- 

quiring that clients run in their own protection domains 

(typically a separate process) and communicate with 

servers via cross-domain calls. An ill-behaved client is 

thus prevented from corrupting data structures, reading 
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private information, or otherwise interfering with the 

correct operation of servers. Protection domains thus 

increase the modularity, security, and debuggability of 

the system. 

However, crossing protection domains is expensive; 

existing interprocess call implementations are at least an 

order of magnitude slower than direct calls [ 11,2]. This 

is prohibitively expensive for lightweight operations; 

much more time is spent crossing protection domains 

than getting work done. The problem is likely to get 

worse with advances in software and hardware technol- 

ogy: context-dependent optimizationsin hardware such 

as pipelining and caching make context switches all the 

more expensive, while increasingly complex software 

systems make them all the more important. 

This paper presents a general mechanism, called 

batchedfutures, for reducing the cost of cross-domain 

calls. The basic idea is that certain calls are not per- 

formed at the point the client requests them, but are 

instead deferred until the client actually needs the value 

of a result. By that time a number of deferred calls 

have accumulated and the calls are sent all at once, in a 

“batch”. In this way we can turn N domain crossings 

into one, and user code runs faster as a result. Our 

mechanism makes the batching transparent to client ap- 

plications and allows later calls to make use of the re- 

sults of earlier calls. In addition, it can be used when the 

client and server run on the same machine or different 

machines. 

Batched futures are particularly useful for interact- 

ing with object-oriented databases. An object-oriented 

database can potentially provide much safer sharing 

than is possible in a file system or conventional database 

because it can know about objects’ types, and objects 
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can be encapsulated, and accessed only by methodcalls. 

As a result, objects entrusted to the database are less 

likely to be corrupted by the client applications that 

share them, provided applications cannot violate encap- 

sulation. Encapsulation can be preserved by running the 

application in a separate domain, so that it can interact 

with objects in the database only by means of cross- 

domain calls to invoke their methods. This approach 

is likely to be expensive, however: methods calls often 

perform very little work (for example, a call might just 

look up the value of an instance variable), so that the 

time to execute calls will be dominated by the domain- 

crossing overhead. Deferred calls therefore offer the 

potential to significantly improve performance. 

We describe batched futures in the remainder of this 

paper. We begin in Section 2 by discussing related 

work. Section 3 describes Thor, an object-oriented 

database system that served as the context for our work. 

Section 4 describes futures; Section 5 describes how 

they are implemented. Section 6 shows the speed-ups 

obtained by futures by presenting the results of experi- 

ments on various benchmarks; the results show that the 

mechanism obtains almost a two-fold speedup in an un- 

favorable case and can do considerably better. Section 

7 discusses extensions to our mechanism, including a 

way to defer more calls. We conclude in Section 8 with 

a discussion of future research directions. 

2 Related Work 

The batched future mechanism is based on two earlier 

lines of research. The first is the future mechanism 

of the parallel programming language Multilisp [9]. In 

Multilisp, the construct (future E) forks a parallel thread 

to evaluate the expression E and immediately returns 

a future to the main program as a placeholder for the 

eventual value of the expression. The future is overwrit- 

ten with the value of E when its evaluation is complete. 

Batched futures are not primarily aimed at concurrency 

(although as we shall see they can allow concurrency) 

but instead delay calls and make a batch of them at 

once, hence the name. (In other words, batched futures 

do lazy rather than eager evaluation.) 

The other predecessor is work on communication 

streams, such as pipes [8] and Mercury streams [14], in 

which remote calls are collected and then sent over in a 

batch in order to reduce delay to the caller. This work is 

similar in spirit to ours, but is concerned with masking 

network delay, and requires explicit user control. A 

future-like mechanism called promises is proposed in 

[ 151 as a way to control streaming in client code. Stream 

and promises are more limited than our mechanism 

because they do not allow later calls to refer to the 

results of earlier ones. 

An invocation chaining mechanism similar to 

batched futures is proposed in [l], but the paper only 

provides a sketch of the mechanism and many details, 

e.g., of storage management (how and when to reclaim 

the storage used by the mechanism so that it does not 

grow without limit), efficiency, transparency, and type 

safety, are not worked out. 

The software based fault-isolation mechanism de- 

scribed in [ 171 allows an untrusted module to run safely 

in the same address space as protected data and code by 

putting guards around each jump, load, and store in the 

untrusted code to prevent it from accessing or jumping 

to memory outside of its own address segment. The 

entire client program is slowed down as a result of the 

restrictions, but the performance penalty is relatively 

low. When the isolated code calls into the protected 

code, it does so only to defined entry points using a 

special mechanism; the cost of such calls is also low. 

This approach will probably out-perform ours in many 

cases, but it is more difficult to use since it requires 

either modifications to the compiler of the client lan- 

guage or modifications to all the client binaries. Also, 

our approach can be used even when the client code 

runs on a different machine than the server. 

3 Environment 

This work was done in the context of Thor [ 13 1. Thor is 

an object-oriented database system that aims to satisfy 

two sometimes conflicting design goals: it must provide 

strong guarantees about the security and integrity of its 

objects while remaining cheap enough to use even for 

lightweight objects and operations. Thor objects are im- 

plemented in an object-oriented programming language 

called Theta [7]. Applications that use Thor objects can 

be written in arbitrary programming languages, and in 
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fact a single application can have components imple- 

mented in different programming languages and yet 

sharing Thor objects. Thus Thor provides for multi- 

lingual sharing of its objects. 

Thor objects are encapsulated and can be accessed 

only by method calls. Each object has a type that de- 

termines its methods; Theta provides a set of built-in 

types and users can define new abstract types. A de- 

scription of the interface of each type is stored in Thor. 

Method calls happen within transactions; the applica- 

tion indicates when to commit (or abort) the current 

transaction and start a new one. Objects exist in a per- 

sistent universe. The universe has a persistent root; all 

objects reachable from the root are stored in highly re- 

liable and highly available storage and the storage of 

unreachable objects is reclaimed automatically by the 

garbage collector. 

Method calls return either handles or basic values. 

Basic values are immutable, unstructured data, such 

as integers, that are copied into client space and used 

there directly. For most objects, however, the client 

receives only an opaque pointer, known as a handle, 

that identifies the object and can be used to invoke its 

methods. A handle is actually an integer index into 

a table H in the database that maps handles to actual 

objects. The first time an object is returned as a result 

of a client call, the database chooses a handle for it 

by selecting a free slot in H. When handle j is later 

used in a call, the database looks in Hb] to find the 

corresponding object. Handles are valid only for the 

duration of a client session, so that H does not need to 

be persistent. 

When the client begins a new session, the 

@d-wellknown call enables it to obtain handles for a 

few well-known objects by name, most importantly the 

root of the persistent universe. In general, however, the 

client finds objects by navigation: a method call follows 

a pointer from an object and returns a handle to some 

other object as a result. For example, the root object is a 

directory that can be navigated using directory methods 

(e.g., the lookup method). Typically an application will 

do many stages of navigation before reaching an object 

where the values are of interest. 

Thor is actually implemented using a client/server 

structure, in which persistent objects are stored at server 

machines. Thor runs a process at the client machine 

that maintains a cache containing copies of Thor ob- 

jects. The Thor process runs method calls made by 

the application (which runs in a separate process); the 

method calls read and modify the cached copies. The 

Thor process fetches copies of objects into the cache 

when there is a cache miss, and prefetches objects into 

the cache in expectation of future use [6]. Modified 

copies of cached objects are copied back to the servers 

when transactions commit. 

3.1 Veneers 

Languages that interact with Thor are augmented by a 

thin layer that we call a veneer. We have implemented 

veneers for C, C++, Lisp, Perl, and TCL. Here we sketch 

how veneers work; more details about veneers and how 

they are implemented can be found in [4]. 

A veneer provides a small set of built-in commands 

(for example, there is a command to commit a transac- 

tion) plus mechanisms for referring to Thor objects and 

calling Thor methods. The veneer is nothing more than 

a set of client routines and types, and does not require 

a preprocessor or modifications to the compiler for the 

client language. It is produced by a veneer generator, 

which is similar to the stub generators used in RPC (re- 

mote procedure call) systems [3]. A veneer generator 

for a particular client language maps Thor objects and 

operations to stub objects and stubfunctions in that lan- 

guage. When a client program calls a stub function, 

the function makes a cross-domain call to invoke the 

corresponding operation in the database. 

Handles are encapsulated inside of stub objects, 

which are allocated in the heap. Application program- 

mers are supposed to follow certain conventions when 

using stub objects, although no harm comes to Thor if a 

client violates these conventions because of the explicit 

checking of calls that is discussed below. Stub objects 

are not intended to be manipulated directly by clients. 

Furthermore, clients are supposed to only copy pointers 

to stub objects and not the stub objects themselves, and, 

in a language with explicit deallocation, they should 

call the special free-object operation, provided by the 

veneer, to deallocate a stub object. 

The veneer maintains its own handle table, VH, 
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int nth(th-list* 1, int n) 

( 
while t--n) 

1 = 1->next(); 

return l->firstO; 

Figure 1: Client code for the nth function. 

which maps handles to stub objects. When a call to 

Thor returns a handle, if the handle is already defined 

in VH, the veneer returns the previously created stub 

object that contains it; otherwise the veneer creates a 

new stub object containing the handle, stores a pointer 

to the stub object in the handle’s slot in VH, and re- 

turns the new stub object. This implementation ensures 

that there is one stub objects per handle in the veneer 

(assuming the client does not copy stub objects). 

Handles are treated differently in different veneers. 

In a language without compile-time type checking (such 

as Lisp), all handles are treated alike, and no type check- 

ing is performed. In a language with a static type system 

(such as C++), handles are encapsulated in stub objects 

with distinct types mirroring those of the Theta type hi- 

erarchy, allowing compile-time type checking of Thor 

calls in the client program. For example, for a Thor 

list of integers with methods$rst and next, the C++ ve- 

neer will provide a corresponding C++ class thJist and 

two associated stub methods, also namedjrst and next. 

C++ code to return the nth item (an integer) of a thlist 

is shown in Figure 1. 

To ensure safety, Thor does runtime checking of each 

client call coming from an unsafe language (whether it 

has strong type-checking or not) to be sure handles are 

legitimate, objects have the methods being called, and 

the caller has supplied the proper number and types of 

arguments. (An unsafe language is any one in which ob- 

ject encapsulation is not enforced, e.g., because runtime 

type checking errors are possible, or because pointer 

manipulations can undermine the type system.) 

4 Batched Futures 

A future can be viewed as a reference to the eventual 

result of a call. Like the actual result, it can be passed as 

an argument to other calls, included in data structures, 

and so forth. If the actual value referred to by the future 

is required by the client and is not yet computed, the 

client waits until it is available. As mentioned, futures 

were introduced in the parallel programming language 

Multilisp to allow caller-callee parallelism, but we use 

them for a different reason: to defer calls so that they 

can be batched. 

An important point to realize is that for many calls, 

the actual return value is not of immediate interest to 

the client. This is especially true in an object-oriented 

system with encapsulation: The particular value of a 

reference to an encapsulated object is never of any inter- 

est, since the reference can only be used as an argument 

or recipient of another call. 

The basic idea of our batched futures design, then, 

is to batch calls as long as they return handles. When 

the client makes such a call, the stub function records 

information about the call, and returns a future to the 

client instead. Later calls in a batch can refer to results 

of earlier ones using futures and thus a sequence of 

interrelated calls can be batched together. As soon as 

the client makes a call that will return a basic value, or 

commits a transaction, the veneer sends the entire batch 

of calls to the database in a single domain crossing. As 

the database processes each call, it makes a mapping 

between the result and the corresponding future to allow 

the result to be retrieved for later uses of the future. 

For example, the nth function in Figure 1 would nor- 

mally require n + 1 cross-domain calls (each of which 

requiring two domain crossings). With batched fu- 

tures, the same code requires only a single cross-domain 

call. Inside the loop, the client code makes no domain 

crossings; the next stub function simply returns futures 

ft . . . fn to stand for the results of the calls and adds 

information about each call to a queue of batched calls. 

Each future is used as the receiver (i.e., first argument) 

of the following call. Finally, the client callsfirst, which 

returns a basic value. The stub function forfirst sends 

the batch of calls to the database, which evaluates the 

set of batched calls and sends back the requested result 

for3rst. This entire process is depicted in Figure 2. 

In essence, the veneer has constructed a simple pro- 

gram that recreates the effects of a set of possibly in- 

terrelated calls when evaluated in the database. The 
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Client Code Batched Program 

Figure 2: Batching interrelated calls using futures. 

program has just a few simple actions: 

l calling an operation; 

l assigning the result of an operation to a future 

usable as an argument to later calls; 

l returning the result to the client 

The database’s job is to interpret this program effi- 

ciently. 

This example may not be realistic, since the nth func- 

tion might be included as an operation in the database, 

but it illustrates an important point: the function navi- 

gates a chain of pointers before reaching a point where 

actual values are of interest. Clients often navigate 

other, less predictable chains of pointers. It is not re- 

alistic to expect a built-in database operation for every 

chain of pointers that a client might follow, both be- 

cause it is difficult to anticipate every useful chain and 

because to do so would create a very cluttered interface. 

Batched futures help resolve the dilemma: type inter- 

faces can consist of a logical set of operations, possibly 

fine-grained, that are combined based on the particular 

needs of the application. 

Note that the mechanism depends upon knowing the 

signatures of the database methods, so that the veneer 

can tell whether to send a call immediately or defer 

it. This information is available in the type interfaces 

stored in Thor and embedded in the stub functions. 

Stubs that return handles defer their calls for later exe- 

cution; other stubs cause the execution of their call and 

the preceding batch of deferred calls. 

Batching calls allows the server to “see the future” by 

looking ahead in the current batch of calls. This might 

enable it to improve performance. For example, a file 

system could reorder read requests to optimize disk 

head motion or a three-dimensionsal rendering system 

could avoid performing an expensive rendering if it 

determined that a later call would obscure it. Thus 

batching can have other benefits in addition to reducing 

the number of domain crossings. 

5 Implementation of Batched Futures 

There are three key issues in the implementation of 

batched futures: 

1. How to represent futures in the veneer. Futures 

must be represented in such that a way that they 

are interchangeable with handles in stub objects. 

2. How to maintain the mapping between futures and 

actual objects in the database so that the database 

can associate a future used as an argument in a call 

with the corresponding result. 

3. How to limit the size of the mapping, since each 

call returns a new future and the mapping could 

potentially grow without bound. 

We consider each of these issues in turn. 

5.1 Representing Futures 

A future is just an integer chosen by the veneer to stand 

for the eventual result of a call. To distinguish futures 

from handles, we tag them using the sign bit: futures 

are negative, handles positive. 

Like handles, futures are encapsulated in stub objects, 

to which the client program is given pointers. Because 

of this level of indirection, there is only one instance of 

each future; on assignment, clients copy pointers, not 

the stub objects themselves, just as with handles. 

5.2 Mapping Futures to Objects 

Two parallel tables maintain the mapping between fu- 

tures and objects, analogous to the H and VH tables that 

map handles to objects and stub objects. The veneer 

future table VF maps futures to stub objects, and the 

database future table F maps futures to actual objects. 

Slots in VF are initialized when a stub function re- 

turns a future to the client. Such a stub function: 
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1. 

2. 

3. 

4. 

5. 

Increments a global counter to determine the index 

i of the future. 

Batches a message describing the call and the 

choice of future i to hold its result. (The database 

will receive the message as part of the next batch 

of calls.) 

Allocates a stub object o that contains future i. 

Stores a reference to o in VF[i]. 

Returns o to the client program. 

The database initializes slots in F when it processes 

a batch of calls. Each deferred call specifies the future 

index i that should be mapped to the result; after the 

database processes the call, it stores the resulting object 

in F[i]. When future i is used as an argument to a call, 

the database looks in F[i] to find the corresponding 

object. Because the database processes the calls in the 

same order they were made, the arguments of calls are 

determined by the time the database processes them. 

The following is a more detailed description of the 

steps performed by the database in processing a call. 

The database: 

1. 

2. 

3. 

4. 

Reads the method name and arguments. 

Looks up each (non-basic) argument in H or F, 

depending on whether the index is positive or neg- 

ative. 

Type checks and performs the call. 

If the call is the last of a batch, sends the result 

back to the client. Otherwise stores a reference to 

the call result in F[i], where i is the index specified 

by the client. 

Note that the only overhead that has been added to the 

database is a couple of inexpensive conditionals. This 

overhead is dwarfed by the amount of time saved in 

avoiding a domain crossing. 

5.3 Limiting the Size of the Future Mapping 

Because each deferred call returns a new future and a 

future could be used as an argument to any later call, 

tables F and VF can grow arbitrarily large. Our imple- 

mentation solves this problem by periodically replacing 

futures with the corresponding handles. After the num- 

ber of futures passes a limit, the veneer flushes the 

pending invocations and piggybacks a request to the 

database to send the object handle equivalents for all 

futures currently in use. The veneer uses the point- 

ers in VF to update the stub objects; because the client 

copies pointer to the stub objects, and not the stub object 

themselves, we do not have to worry about updating and 

tracking multiple copies of each stub object. The veneer 

and the database can then safely reclaim all slots in F 

and VF. Thus futures require only a constant amount of 

additional space relative to normal calls. The database 

could actually send back the corresponding handles af- 

ter every batch of calls. However, there are performance 

advantages to sending handles in larger batches. It is 

cheaper to do one big read than a lot of small ones. Also, 

the longer the database waits, the greater the likelihood 

that the client has freed futures in the batch (in a lan- 

guage with explicit deallocation), allowing the database 

to avoid sending back the corresponding handles, as dis- 

cussed below. 

5.4 Stub Object Storage Management 

Managing storage associated with stub objects contain- 

ing futures is not a problem if the client language is 

garbage collected. The stub object will not be dis- 

carded while still referenced from VF, even if the client 

program no longer refers to it, but will be subject to 

garbage collection as soon as it is updated with the 

correct handle and the slot in VF is cleared. 

For languages with explicit deallocation, the 

free-object operation provided by the veneer clears the 

entry in VF as well as reclaiming the object storage. 

When the veneer replaces futures with handles, it skips 

the entries in VF that have been cleared. It can also 

tell the database which futures have non-empty entries 

in VF, saving the expense of sending back handles for 

futures that have been freed. 

There is one other concern regarding stub objects 

containing futures. When stub objects contain handles, 

the veneer ensures that there is only one stub object for 

each database object. The same property does not hold 
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for stub objects containing futures. This is a necessary 

consequence of the fact that the veneer does not know 

what the actual handle will be at the time the stub object 

is created. Therefore multiple stub objects can refer to 

the same database object. Such redundant stub objects 

are a problem only if the client has a very large number 

of active references that correspond to a small number 

of actual objects. (Inactive references are not a prob- 

lem because in that case the stub objects will be freed.) 

Presumably, this will be not be a common occurrence. 

In general, we expect that most futures are only tem- 

poraries (that is, intermediate navigation pointers) and 

users won’t want to hold onto them. 

If redundant stub objects are a problem, the veneer 

can support an operation that takes a reference to a stub 

object, frees the stub object if it is redundant, and re- 

turns a pointer to the corresponding ‘canonical’ stub 

object for that object’s handle. (The operation requires, 

of course, that the client has no other references to 

the redundant stub object.) Alternatively, a customized 

garbage collector can do the same thing safely and au- 

tomatically by redirecting pointers to redundant objects 

to the canonical one so that redundant objects can be 

freed. 

5.5 Shared Memory Optimizations 

Batched futures can be implemented using Unix pipes. 

In this case the veneer just writes each message to the 

stream but does not flush the stream until it needs a 

result. However, it is faster to use shared memory if it 

is available. Each deferred call is recorded in a shared 

memory buffer, and data written by one side is always 

immediately visible to the other side without any need 

for flushes. (To obtain optimal performance, it is impor- 

tant that when one process blocks waiting for a result, 

the other is awakened quickly. Our implementation uses 

shared-memory semaphores to obtain this effect.) With 

this implementation, the database can begin working on 

deferred calls whenever it has time, even if the veneer 

is not yet waiting for the result of the last call in a batch. 

For example, on a multiprocessor this approach allows 

the database to process calls in parallel with the veneer. 

Another shared memory optimization permits us to 

get rid of the F and VF tables and future remapping 

entirely. The tables exist only to allow futures used in 

later calls to be mapped to the results of earlier calls. 

The same effect can be achieved by allocating stub 

objects in shared memory. Rather than passing a handle 

or future, the veneer passes a pointer to the stub object, 

which the database dereferences. When the result of 

a batched call becomes available, the database stores 

the handle in the stub object allocated for the result, 

effectively performing the future remapping step for 

that object immediately. 

The use of shared memory might raise the concern 

that the security of the system has somehow been com- 

promised. Note, however, that the worst a client can 

do is overwrite a stub object in shared memory, which 

it could do just as easily when the stub object was in 

its own private address space. The database is not ex- 

posing any more information than it was before, and 

its runtime type checking will continue to prevent the 

client from making illegal calls. 

6 Experimental Results 

In this section we characterize the gains that can be 

expected from using futures, and present experiments 

showing the benefit obtained on various workloads. We 

give a simple model of the system’s performance, pro- 

vide results that show the predicted performance across 

a range of batching factors and domain crossing costs, 

and finally give results based on a standard benchmark. 

The experiments were compiled using DEC C++ 

and run on a lightly loaded Alpha AXP3000 running 

OSF/1.3. The Thor experiments used a warm object 

cache because we wanted to measure just the amortized 

cross-domain call time, and not additional delays to 

fetch objects. 

6.1 Performance model 

The average cost of acall can be modeled by the formula 

t = t, + tdp 

where t, is the cost of running acall, td is the cost of the a 

pair of domain crossings, and B is the “batching factor,” 

the total number of calls divided by the number of pairs 

of domain crossings. When there are no futures, B = 

347 



1 (since each call requires a pair of domain crossings); 

as we defer calls, B increases and the average cost of 

a call goes down. Note that the model assumes that 

td is independent of B. In other words, the amount of 

time it takes to switch between domains is independent 

of the amount of data (that is, the number of batched 

calls) being transferred between the two domains. This 

assumption is approximately true in actual systems; for 

example, in the case of a remote call system, an entire 

batch can be sent in one message up to some size limit 

beyond which more than one message will be needed. 

The model predicts that, as B increases, the average 

cost of a call will asymptotically approach t,, dropping 

rapidly at first and then with increasing slowness as 

td/B goes to zero and t, begins to dominate the total 

cost of the call. The key points to note are that t, 

provides a lower bound on the average cost per call, 

and that the larger the ratio of td to t,, the more a 

system has to gain from batched futures, but also the 

higher the batching factors it must achieve before the 

domain crossing overhead td/B becomes negligible. For 

example, if the ratio of td to t, is r, then a batching factor 

of r will yield performance that is within a factor of two 

of the optimal value. 

6.2 Potential Performance Gains 

The best case for batched futures is a client program 

in which all of the cross-domain calls can be batched. 

To experiment with the potential performance improve- 

ments that might be achieved using futures, we consid- 

ered the nth function described earlier. Each operation 

in the nth function returns a handle, so that all of the calls 

can be batched, leading to an arbitrarily large batching 

factor B . 

To show how the speedup provided by batched fu- 

tures varies across a range of values for t, and td, and 

also to demonstrate a range of systems to which batched 

futures are applicable, we considered three systems: 

1. Local IPC: A simple client-server system with a 

very low t, value and a comparatively high value 

for td. The client and server run in different pro- 

cess on the same machine and communicate us- 

ing a shared memory buffer. The server, written 

in C++, implemented just the essential elements 

2. 

3. 

necessary to run the experiment: a linked list, a 

very simple dispatcher, a handle table, and a fu- 

ture table. It did not implement type checking, 

garbage collection, concurrency control, persis- 

tence, or any other features of Thor as a database. 

The stub functions and the client program were 

essentially the same as those in the case of Thor, 

however. 

Local Thor: Thor running in its typical con- 

figuration, in which the application process and 

interacts with a separate Thor process at the client 

machine. The Thor process caches copies of per- 

sistent objects and performs client calls. The t, 

for this system is significantly higher than that of 

the first system primarily because type checking 

and dispatching of calls in the current prototype is 

slow and needs to be optimized. 

Remote Thor: Here there is no Thor process at 

the client machine, so that every application call 

requires a network communication. We may run 

Thor in this fashion if the client machine has a 

memory too small to be an effective cache, or does 

not have sufficiently safe protection domains. 

The possible benefits of batched futures depend on 

the values of t, and td in the different systems. These 

values are summarized in the Figure 3, which gives ap- 

proximate values for t, and td in microseconds for each 

system. The values for td were estimated by observ- 

ing the difference between average call time for B=l 

and B=2, which (using our formula) works out to be 

td/2. (“Average call time” was determined by taking 

the actual elapsed time for the list descent divided by 

the number of calls, averaged over 100 trials. The vari- 

ation from trial to trial was small as long as the load on 

the CPU was low.) The value for t, was then estimated 

by subtracting td from the average call time for B=l . 

The observed performance of the systems is shown 

in Figures 4, 5, and 6. As predicted by the model, 

the average time per call drops rapidly at first and then 

approaches t, for that system with increasing slowness; 

the shape for each graph resembles the graph of l/B 

scaled by td and shifted up by t,. 

In the local IPC system (Figure 4), batched futures 

lead to a greater than tenfold increase in performance 
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Figure 3: Approximate values of t, and td for three 

systems. 

for sufficiently large B. The maximum speedup for lo- 

cal Thor (Figure 5), is around 3. The speedup is small 

because operation marshaling, type checking, and dis- 

patching in Thor are currently expensive, leading to 

a high value for t, even though the operations them- 

selves are simple. When the operation dispatcher is 

optimized, we can expect to see speedups from batched 

futures closer to those seen in the simple IPC system. 

Even Thor’s relatively large value oft, is dwarfed in 

comparison with the cost of a network communication 

(Figure 6). In that case, batched futures can again 

provide to a tenfold speedup. If batched futures were 

used in a system that had the t, of our IPC system 

and the td of a system communicating over a network, 

we would expect to see up to a 90-fold performance 

improvement. Obtaining this speedup, however, would 

require hundreds of operations being combined in each 

batch. 

6.3 A Less Favorable Case 

Clearly, not all applications are as favorable for batched 

futures as list descent. For example, in a graph traver- 

sal the number of nodes connected to the current node 

may need to be know immediately, meaning that many 

calls cannot be deferred and the batching factor is nec- 

essarily low. In this section, we give an example of a 

less favorable application to show the limitations of the 

batched futures mechanism as currently defined and to 

suggest ways it can be improved. 

As a representative application, we implemented var- 

ious traversals from the 007 suite of benchmarks for 

object-oriented databases [5]. The 007 database con- 

sists of a set of interconnected parts, arranged in a hi- 

erarchy of complex assemblies, base assemblies, com- 

posite parts, and finally atomic parts. The operations 

on the parts and assemblies are quite simple: they ei- 

ther return a connected part, or a scalar attribute, such 
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Speedup: 1.7 

Figure 7: 007 traversal performance. 

an integer id or a character documentation string. We 

implemented the parts and their primitive operations as 

types in the Thor database, and the traversals in the Thor 

C++ veneer using the methods defined by the 007 type 

interfaces. 

In practice, one can safely increase performance 

by implementing parts of the traversal inside of the 

database using Theta. We wished, however, to assess 

the worst-case scenario (for our mechanism), in which 

the client performs a large number of very fine-grained 

interactions with the database, many of which need to 

be performed immediately. 

We ran 007 traversal 2b, the traversal that demands 

the greatest number of fine-grained database calls. The 

traversal visits every part in the database, swapping the 

x and y coordinates of each atomic part. It makes a 

total of 207,399 calls on the database and has an actual 

running time of 46.19 seconds, for an average of 222 

microseconds per call. 

The results of the experiment are shown in Figure 7. 

For this traversal the batching factor was 2.33. In other 

words, almost one out of every two operations was one 

that returned a basic value and forced the batch of calls 

to be flushed. 

With this batching factor, we obtained a speedup of 

1.7, giving us a running time of 1.8 times the optimal 

time for our current implementation. The optimal time 

was obtained by running the traversal when the client 

program was linked into the database, so that the domain 

crossing overhead was zero but all of the other costs 

were the same. (Note that the optimal time is about 

a third of the non-batched time, which matches our 

measurements in the list descent case that show t, is 

about a third oft, + td, the total overhead of running an 

operation without futures.) 

However, getting so close to the optimal performance 

is largely an artifact of our unoptimized implementa- 

tions of marshaling, type checking, and dispatching in 

the database. We estimate that the optimal time will 

improve by at least a factor of 3 when these implemen- 

tations are optimized. In this case a batching factor of 

2.33 only gets us a running time of 3.4 times the optimal 

performance. 

Even with such low batching factors, batched futures 

yield useful performance improvements. The improve- 

ments are limited, however, by the batch size. One 

limiting factor in the current design is the need to stop 

batching as soon as a call returns a basic value. A sim- 

ple way of addressing this limitation is discussed in the 

next section; a more sophisticated approach that can be 

used even when control structures depend on the results 

of Thor operations is discussed in Section 8. 

7 Extensions 

This section discusses two extensions to the future 

mechanism. First we discuss how to deal with ex- 

ceptions; then we describe how to defer calls that return 

basic values. 

7.1 Exceptions 

In the normal case, Thor operations terminate by retum- 

ing a value but they can also terminate by signaling an 

exception [ 121, indicating that a condition has occurred 

that prevents the normal return. An exception consist 

of a name and zero or more values that give additional 

information about the cause of the exception. For ex- 

ample, the array type might signal a bounds exception 

if the caller attempts to access a slot beyond the end of 

an array. 

Exceptions represent a challenge for two reasons. 

First, many client languages fail to include any built- 

in mechanisms for handling them. Second, immediate 

detection of exceptions is incompatible with batching: 

if the veneer has to communicate with the database to 
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check for exceptions after every call, no batching is 

possible. 

If the client language has an exception mechanism, it 

can be used to propagate information about Thor excep- 

tions for non-deferred calls. Deferred calls, however, 

cannot signal exceptions, since they are not executed 

until later. Therefore, the stubs for deferred calls do not 

have exceptions listed in their signatures; instead such 

a stub always returns a stub object and we incorporate 

the information about the eventual outcome of the call 

(when it is known) in the stub object. 

In addition, the database propagates exceptions. If 

a call that is supposed to produce a future signals an 

exception, the database stores information about the 

exception in the future’s slot in F. If a later call uses that 

future as an argument, or uses an error-handle as an 

argument (see below), the database will not run the call 

but instead produces a unhandled-exe exception with a 

value that identifies the bad argument. (Thus unhan- 

dled-exe is a possible exception of any call.) When 

the database finishing processing a batch of calls, it 

returns all the information about exceptions associated 

with earlier calls in the batch in addition to the infor- 

mation about the outcome of the last call in the batch. 

The veneer then stores the exception information in the 

stub objects of the affected futures. If one of these stub 

objects is used in a subsequent call, the stub passes the 

error-handle in that argument position. 

If the client language has no exception mechanism, 

we can use the above mechanism, except that some- 

thing extra is needed for calls that return basic values 

(or return nothing). One possibility is to have such calls 

have an extra argument, an error value that the client 

code is supposed to check before using the call’s result. 

This approach is error prone, however, since it is easy 

for programmers to forget to check for the error value. 

Therefore we use a different approach: we maintain 

an exception history, and store (effectively) informa- 

tion about the outcome of each call in it. This history 

is cleared automatically when a transaction starts; fur- 

thermore, it must have been cleared by the client code 

when a transaction commits, or the veneer will abort 

the transaction. Various operations are provided to give 

the client code convenient access to the history. More 

details about this mechanism can be found in [4]. 

The above approach allows the client to defer check- 

ing for exception values until convenient. In addition, 

it allows us to support exception handling while still 

achieving high batching factors. 

7.2 Futures for Basic Values 

An obvious extension to batched futures is the ability to 

use futures for operations that would ordinarily return 

basic values. Sometimes the client does not need to 

know basic value results immediately, if at all. For 

example, the client can swap the values of two slots in 

an array of integers without knowing what those values 

are, or sum a set of values without knowing the values 

of all of the intermediate results, as long as the database 

keeps track of the intermediate values and allows the 

client to refer to them using futures. 

Futures in Multilisp [9] could be used transparently in 

place of basic values. However, this transparency came 

at a cost: the system had to add tags to every value to 

indicate whether it was a future or an actual value and 

every time an operation depended on the actual value of 

an object, it had to check the tag to see if the object was a 

future and if so block until the value was available. This 

approach is incompatible with our needs. Many client 

languages allow direct access to all of the bits of a value 

and will not tolerate tagging; furthermore inserting the 

necessary tag checks would require modifications to the 

client language compiler. 

We therefore expose the distinction between futures 

for basic values and actual basic values to client pro- 

grammers, allowing them to convert between the two 

forms on demand. Our scheme is like the promises 

mechanism used in Mercury [ 151 with the crucial differ- 

ence that futures for values can be passed as arguments 

to Thor operations without blocking. Futures for values 

are distinguished from normal values by making them 

a distinct type. For each basic value type T, the ve- 

neer defines a corresponding stub type Thor-T, we shall 

refer to such types collectively as ThorValues. (For ex- 

ample, the stub version of a client integer is a thint. 

Similarly, the veneer defines th-char, th&at, and so 

forth.) Conceptually, a ThorValue can be thought of as 

a pointer to a value that lives inside Thor. Each Thor- 

Value type supports a “dereferencing” operation that 
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returns the corresponding client value and an operation 

that creates a ThorValue from a client value. 

To allow futures for values to be passed as arguments 

to Thor method calls without dereferencing them, the 

veneer type interfaces include “futurized” versions of 

stub functions that take and return ThorValues rather 

than basic values. We also retain the standard versions 

of the stub functions. If the client wishes to batch a 

call containing a mix of client and Thor values, it must 

use a futurized stub, and must convert client values to 

obtain the ThorValues needed as arguments. As with 

handles, the veneer can batch a number of interrelated 

calls without communicating with the database. Unlike 

with handles, the client has a way to obtain the actual 

representation of the return result. 

A ThorValue is represented in the veneer as a union 

containing either an actual basic value, or a future for a 

call that will return a basic value, with a tag to indicate 

which is the case. If the client attempts to dereference 

a ThorValue containing a future, the veneer sends the 

current batch of calls to the database. 

To process a set of batched calls that use ThorValues, 

the database keeps a mapping between each future for 

a value and the corresponding basic value result, and 

sends back the actual results to the veneer in a batch. 

The veneer then overwrites the futures in the ThorValue 

stub objects with their actual values. Thereafter, the 

value for each of the ThorValues used in that batch of 

calls is available immediately without consulting the 

database. 

A ThorValue needs to be decoded before it can be 

turned into a basic value [lo] if the representation sent 

over by Thor differs from that used for the type in 

that language; also in this case a value will need to 

be encoded into a ThorValue. As an optimization, the 

veneer can store the value of the future in some ‘raw’ 

form when it first gets it and defer the decoding until 

the client actually asks for the value. This allows the 

veneer to save the expense of decoding and later en- 

coding results that are only used as intermediate values 

by the client. For example, suppose the database and 

the client language use different formats for represent- 

ing floating point numbers, and that it is expensive to 

convert between the two formats. If the client does not 

always need the values of the floating point numbers, 

the veneer could increase performance by performing 

the conversions lazily. (It might be advantageous to 

keep a copy of the original representation even after the 

number was converted, to avoid re-encoding the num- 

ber if it is passed as an argument to another database 

operation.) 

When futures are used for basic values, they are no 

longer completely transparent. The client must insert 

calls to obtain the client values corresponding to Thor- 

Values when desired, and possibly also to wrap client 

values as database values. However, client program- 

mers are always free to write their programs as usual 

with the normal version of calls, then convert them to 

use futures later as an optimization. 

One concern is the proliferation of stub functions: 

adding futures for basic values has approximately dou- 

bled the number of stub functions. (The number is not 

exactly double because stub functions whose arguments 

and return values consist entirely of handles do not need 

a futurized version.) This can lead to a cluttered inter- 

face containing multiple versions of each stub function, 

which client programmers may find confusing. We can 

minimize this problem by choosing sensible conven- 

tions for naming and ordering stub functions so that the 

futurized versions are shown last. Figure 8 shows an 

interface using the conventions we have adopted: we 

capitalize the first letter of the method name to name 

futurized versions of stub functions. The figure also 

shows a client program that uses this interface to swap 

two elements of an array with no additional domain 

crossings. 

We have not yet implemented futures for basic values. 

However, we calculated how they would increase the 

batch size for 007 traversals and how that might affect 

performance. For example traversal 2b would benefit 

from the use of futures for basic values, because all 

calls to swap the x and y attributes can be deferred 

since the client has no need to know the actual x and y 

values. This increases the average batch size increase 

from 2.33 to 3.47 and the predicted performance using 

the mathematical model increases from 1.7 times the 

standard performance (for unoptimized Thor) to over 2 

times faster. 
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class th-int-array { 

int fetch(int slot) ; 

void storetint slot, int val); 
. 

th-int* Fetch(th-int* slot); 

void Store(th-int* slot, th-int* val); 

void swap(th-int-array* a, th-int* i, th-int* j) 

/* Swap a[il and a[jl using futures l / 
th-int* a-i = a->Fetch(i); 

a->Store(i, a->Fetch(j) 1; 

a->Store(j, a-i); 

Figure 8: Using futurized stubs. 

8 Conclusion and Future Work 

This paper has described batched futures, a mechanism 

that reduces the delay to clients making calls to servers 

that run in a separate protection domain. Futures allow 

calls to be deferred until a client really needs a result. 

Then all calls can be made at once, in a batch; later 

calls in the batch can refer to the results of earlier calls. 

The paper analyzed the performance gains that can be 

expected from the mechanism. Our results show that 

significant benefit can be obtained by using futures even 

when batches are small. 

The work was done in the context of Thor, but can 

be used in other systems. Our implementation depends 

on knowing whether a call returns an opaque pointer or 

a value and can be used in any system where this infor- 

mation is available, for example, an operating system. 

Even without this information, an approach in which 

the client chooses whether or not to defer a call is al- 

ways possible. The mechanism can be used when the 

client and server run in different processes on the same 

machine, and also when the client runs at a different 

machine than the client. 

Speedups are limited by the number of operations 

that can be deferred. For example, the 007 bench- 

marks do not allow deferring very many calls, even 

with futures for values, because after a few calls the 

application needs to do something itself, e.g., look at a 

value to determine what to do next. One possibility we 

are investigating is to enrich the “batching language” 

used to communicate with the database. Currently, 

the batched program can include interrelated calls, but 

nothing else. Much larger batching factors could be 

achieved if the client were allowed to combine calls 

with simple batched control structures; for example, 

the entire traversal 2b could be done in a single batch. 

To the client, batched control structures appear much 

like normal control structures. Instead of affecting the 

control flow of the client program, however, the batched 

control structures are interpreted in the database, which 

carries out calls only on the indicated paths. Because 

a batched loop needs to be analyzed and type checked 

only once by the database, batched control structures 

amortize not only the expense of domain crossing but 

also that of processing each call. The effect is somewhat 

like what is achieved with query languages. However, 

in this case the user does not need to learn any special 

query language - the “query” is constructed on the fly 

based on the batched calls and control structures used 

by the client. 

Another possibility is suggested by Stamos’ work 

on remote evaluation [ 161. The idea is to define a 

“safe” subset of the client language such that procedures 

written in that subset are guaranteed not to violate the 

security of the database. The compiled code for such 

a procedure can then be installed in the database, and 

calls to it can run inside the database. Probably not 

all languages have useful safe subsets, but looking for 

them, and defining preprocessors that recognize them, is 

an interesting research direction. If an entire application 

could be written in the safe language subset, it could 

run inside the database without any domain crossings, 

thereby achieving the best possible performance. 
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