
Reducing Cross Domain Call Overhead Using Batched Futures

Phillip Bogle and Barbara Liskov *

(pbogle, liskov) @lcs.rnit.edu

MIT Laboratory for Computer Science

Cambridge, MA 02 139

Abstract

In many systems such as operating systems and
databases it is important to run client code in a separate
protection domain so that it cannot interfere with correct
operation of the system. Clients communicate with the
server by making cross domain calls, but these are ex-
pensive, often costing substantially more than running
the call itself. This paper describes a new mechanism
called batched futures that transparently batches pos-
sibly interrelated client calls. Batching makes domain
crossings happen less often, thus substantially reducing
the cost. We describe how the mechanism is imple-
mented for the Thor object-oriented database system,
and presents performance results showing the benefit
of the mechanism on various benchmarks.

1 Introduction

An important issue in the design of software systems

is preventing untrusted clients from interfering with the

correct operation of servers. Systems ranging from

databases to operating systems solve this problem by re-

quiring that clients run in their own protection domains

(typically a separate process) and communicate with

servers via cross-domain calls. An ill-behaved client is

thus prevented from corrupting data structures, reading

*This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract NOOO14-91-J-4136, and in
part by the National Science Foundation under grant CCR-8822158.

Permission to co
granted provided t rl

y without fee all or part of this material is
at the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice IS given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
OOPSIA 94- 10194 Portland, Ore on USA
Q 1994 ACM O-89791 -688-3194 0010..$3.50 7

private information, or otherwise interfering with the

correct operation of servers. Protection domains thus

increase the modularity, security, and debuggability of

the system.

However, crossing protection domains is expensive;

existing interprocess call implementations are at least an

order of magnitude slower than direct calls [11,2]. This

is prohibitively expensive for lightweight operations;

much more time is spent crossing protection domains

than getting work done. The problem is likely to get

worse with advances in software and hardware technol-

ogy: context-dependent optimizationsin hardware such

as pipelining and caching make context switches all the

more expensive, while increasingly complex software

systems make them all the more important.

This paper presents a general mechanism, called

batchedfutures, for reducing the cost of cross-domain

calls. The basic idea is that certain calls are not per-

formed at the point the client requests them, but are

instead deferred until the client actually needs the value

of a result. By that time a number of deferred calls

have accumulated and the calls are sent all at once, in a

“batch”. In this way we can turn N domain crossings

into one, and user code runs faster as a result. Our

mechanism makes the batching transparent to client ap-

plications and allows later calls to make use of the re-

sults of earlier calls. In addition, it can be used when the

client and server run on the same machine or different

machines.

Batched futures are particularly useful for interact-

ing with object-oriented databases. An object-oriented

database can potentially provide much safer sharing

than is possible in a file system or conventional database

because it can know about objects’ types, and objects

341

can be encapsulated, and accessed only by methodcalls.

As a result, objects entrusted to the database are less

likely to be corrupted by the client applications that

share them, provided applications cannot violate encap-

sulation. Encapsulation can be preserved by running the

application in a separate domain, so that it can interact

with objects in the database only by means of cross-

domain calls to invoke their methods. This approach

is likely to be expensive, however: methods calls often

perform very little work (for example, a call might just

look up the value of an instance variable), so that the

time to execute calls will be dominated by the domain-

crossing overhead. Deferred calls therefore offer the

potential to significantly improve performance.

We describe batched futures in the remainder of this

paper. We begin in Section 2 by discussing related

work. Section 3 describes Thor, an object-oriented

database system that served as the context for our work.

Section 4 describes futures; Section 5 describes how

they are implemented. Section 6 shows the speed-ups

obtained by futures by presenting the results of experi-

ments on various benchmarks; the results show that the

mechanism obtains almost a two-fold speedup in an un-

favorable case and can do considerably better. Section

7 discusses extensions to our mechanism, including a

way to defer more calls. We conclude in Section 8 with

a discussion of future research directions.

2 Related Work

The batched future mechanism is based on two earlier

lines of research. The first is the future mechanism

of the parallel programming language Multilisp [9]. In

Multilisp, the construct (future E) forks a parallel thread

to evaluate the expression E and immediately returns

a future to the main program as a placeholder for the

eventual value of the expression. The future is overwrit-

ten with the value of E when its evaluation is complete.

Batched futures are not primarily aimed at concurrency

(although as we shall see they can allow concurrency)

but instead delay calls and make a batch of them at

once, hence the name. (In other words, batched futures

do lazy rather than eager evaluation.)

The other predecessor is work on communication

streams, such as pipes [8] and Mercury streams [14], in

which remote calls are collected and then sent over in a

batch in order to reduce delay to the caller. This work is

similar in spirit to ours, but is concerned with masking

network delay, and requires explicit user control. A

future-like mechanism called promises is proposed in

[151 as a way to control streaming in client code. Stream

and promises are more limited than our mechanism

because they do not allow later calls to refer to the

results of earlier ones.

An invocation chaining mechanism similar to

batched futures is proposed in [l], but the paper only

provides a sketch of the mechanism and many details,

e.g., of storage management (how and when to reclaim

the storage used by the mechanism so that it does not

grow without limit), efficiency, transparency, and type

safety, are not worked out.

The software based fault-isolation mechanism de-

scribed in [171 allows an untrusted module to run safely

in the same address space as protected data and code by

putting guards around each jump, load, and store in the

untrusted code to prevent it from accessing or jumping

to memory outside of its own address segment. The

entire client program is slowed down as a result of the

restrictions, but the performance penalty is relatively

low. When the isolated code calls into the protected

code, it does so only to defined entry points using a

special mechanism; the cost of such calls is also low.

This approach will probably out-perform ours in many

cases, but it is more difficult to use since it requires

either modifications to the compiler of the client lan-

guage or modifications to all the client binaries. Also,

our approach can be used even when the client code

runs on a different machine than the server.

3 Environment

This work was done in the context of Thor [13 1. Thor is

an object-oriented database system that aims to satisfy

two sometimes conflicting design goals: it must provide

strong guarantees about the security and integrity of its

objects while remaining cheap enough to use even for

lightweight objects and operations. Thor objects are im-

plemented in an object-oriented programming language

called Theta [7]. Applications that use Thor objects can

be written in arbitrary programming languages, and in

342

fact a single application can have components imple-

mented in different programming languages and yet

sharing Thor objects. Thus Thor provides for multi-

lingual sharing of its objects.

Thor objects are encapsulated and can be accessed

only by method calls. Each object has a type that de-

termines its methods; Theta provides a set of built-in

types and users can define new abstract types. A de-

scription of the interface of each type is stored in Thor.

Method calls happen within transactions; the applica-

tion indicates when to commit (or abort) the current

transaction and start a new one. Objects exist in a per-

sistent universe. The universe has a persistent root; all

objects reachable from the root are stored in highly re-

liable and highly available storage and the storage of

unreachable objects is reclaimed automatically by the

garbage collector.

Method calls return either handles or basic values.

Basic values are immutable, unstructured data, such

as integers, that are copied into client space and used

there directly. For most objects, however, the client

receives only an opaque pointer, known as a handle,

that identifies the object and can be used to invoke its

methods. A handle is actually an integer index into

a table H in the database that maps handles to actual

objects. The first time an object is returned as a result

of a client call, the database chooses a handle for it

by selecting a free slot in H. When handle j is later

used in a call, the database looks in Hb] to find the

corresponding object. Handles are valid only for the

duration of a client session, so that H does not need to

be persistent.

When the client begins a new session, the

@d-wellknown call enables it to obtain handles for a

few well-known objects by name, most importantly the

root of the persistent universe. In general, however, the

client finds objects by navigation: a method call follows

a pointer from an object and returns a handle to some

other object as a result. For example, the root object is a

directory that can be navigated using directory methods

(e.g., the lookup method). Typically an application will

do many stages of navigation before reaching an object

where the values are of interest.

Thor is actually implemented using a client/server

structure, in which persistent objects are stored at server

machines. Thor runs a process at the client machine

that maintains a cache containing copies of Thor ob-

jects. The Thor process runs method calls made by

the application (which runs in a separate process); the

method calls read and modify the cached copies. The

Thor process fetches copies of objects into the cache

when there is a cache miss, and prefetches objects into

the cache in expectation of future use [6]. Modified

copies of cached objects are copied back to the servers

when transactions commit.

3.1 Veneers

Languages that interact with Thor are augmented by a

thin layer that we call a veneer. We have implemented

veneers for C, C++, Lisp, Perl, and TCL. Here we sketch

how veneers work; more details about veneers and how

they are implemented can be found in [4].

A veneer provides a small set of built-in commands

(for example, there is a command to commit a transac-

tion) plus mechanisms for referring to Thor objects and

calling Thor methods. The veneer is nothing more than

a set of client routines and types, and does not require

a preprocessor or modifications to the compiler for the

client language. It is produced by a veneer generator,

which is similar to the stub generators used in RPC (re-

mote procedure call) systems [3]. A veneer generator

for a particular client language maps Thor objects and

operations to stub objects and stubfunctions in that lan-

guage. When a client program calls a stub function,

the function makes a cross-domain call to invoke the

corresponding operation in the database.

Handles are encapsulated inside of stub objects,

which are allocated in the heap. Application program-

mers are supposed to follow certain conventions when

using stub objects, although no harm comes to Thor if a

client violates these conventions because of the explicit

checking of calls that is discussed below. Stub objects

are not intended to be manipulated directly by clients.

Furthermore, clients are supposed to only copy pointers

to stub objects and not the stub objects themselves, and,

in a language with explicit deallocation, they should

call the special free-object operation, provided by the

veneer, to deallocate a stub object.

The veneer maintains its own handle table, VH,

343

int nth(th-list* 1, int n)

(
while t--n)

1 = 1->next();

return l->firstO;

Figure 1: Client code for the nth function.

which maps handles to stub objects. When a call to

Thor returns a handle, if the handle is already defined

in VH, the veneer returns the previously created stub

object that contains it; otherwise the veneer creates a

new stub object containing the handle, stores a pointer

to the stub object in the handle’s slot in VH, and re-

turns the new stub object. This implementation ensures

that there is one stub objects per handle in the veneer

(assuming the client does not copy stub objects).

Handles are treated differently in different veneers.

In a language without compile-time type checking (such

as Lisp), all handles are treated alike, and no type check-

ing is performed. In a language with a static type system

(such as C++), handles are encapsulated in stub objects

with distinct types mirroring those of the Theta type hi-

erarchy, allowing compile-time type checking of Thor

calls in the client program. For example, for a Thor

list of integers with methods$rst and next, the C++ ve-

neer will provide a corresponding C++ class thJist and

two associated stub methods, also namedjrst and next.

C++ code to return the nth item (an integer) of a thlist

is shown in Figure 1.

To ensure safety, Thor does runtime checking of each

client call coming from an unsafe language (whether it

has strong type-checking or not) to be sure handles are

legitimate, objects have the methods being called, and

the caller has supplied the proper number and types of

arguments. (An unsafe language is any one in which ob-

ject encapsulation is not enforced, e.g., because runtime

type checking errors are possible, or because pointer

manipulations can undermine the type system.)

4 Batched Futures

A future can be viewed as a reference to the eventual

result of a call. Like the actual result, it can be passed as

an argument to other calls, included in data structures,

and so forth. If the actual value referred to by the future

is required by the client and is not yet computed, the

client waits until it is available. As mentioned, futures

were introduced in the parallel programming language

Multilisp to allow caller-callee parallelism, but we use

them for a different reason: to defer calls so that they

can be batched.

An important point to realize is that for many calls,

the actual return value is not of immediate interest to

the client. This is especially true in an object-oriented

system with encapsulation: The particular value of a

reference to an encapsulated object is never of any inter-

est, since the reference can only be used as an argument

or recipient of another call.

The basic idea of our batched futures design, then,

is to batch calls as long as they return handles. When

the client makes such a call, the stub function records

information about the call, and returns a future to the

client instead. Later calls in a batch can refer to results

of earlier ones using futures and thus a sequence of

interrelated calls can be batched together. As soon as

the client makes a call that will return a basic value, or

commits a transaction, the veneer sends the entire batch

of calls to the database in a single domain crossing. As

the database processes each call, it makes a mapping

between the result and the corresponding future to allow

the result to be retrieved for later uses of the future.

For example, the nth function in Figure 1 would nor-

mally require n + 1 cross-domain calls (each of which

requiring two domain crossings). With batched fu-

tures, the same code requires only a single cross-domain

call. Inside the loop, the client code makes no domain

crossings; the next stub function simply returns futures

ft . . . fn to stand for the results of the calls and adds

information about each call to a queue of batched calls.

Each future is used as the receiver (i.e., first argument)

of the following call. Finally, the client callsfirst, which

returns a basic value. The stub function forfirst sends

the batch of calls to the database, which evaluates the

set of batched calls and sends back the requested result

for3rst. This entire process is depicted in Figure 2.

In essence, the veneer has constructed a simple pro-

gram that recreates the effects of a set of possibly in-

terrelated calls when evaluated in the database. The

344

Client Code Batched Program

Figure 2: Batching interrelated calls using futures.

program has just a few simple actions:

l calling an operation;

l assigning the result of an operation to a future

usable as an argument to later calls;

l returning the result to the client

The database’s job is to interpret this program effi-

ciently.

This example may not be realistic, since the nth func-

tion might be included as an operation in the database,

but it illustrates an important point: the function navi-

gates a chain of pointers before reaching a point where

actual values are of interest. Clients often navigate

other, less predictable chains of pointers. It is not re-

alistic to expect a built-in database operation for every

chain of pointers that a client might follow, both be-

cause it is difficult to anticipate every useful chain and

because to do so would create a very cluttered interface.

Batched futures help resolve the dilemma: type inter-

faces can consist of a logical set of operations, possibly

fine-grained, that are combined based on the particular

needs of the application.

Note that the mechanism depends upon knowing the

signatures of the database methods, so that the veneer

can tell whether to send a call immediately or defer

it. This information is available in the type interfaces

stored in Thor and embedded in the stub functions.

Stubs that return handles defer their calls for later exe-

cution; other stubs cause the execution of their call and

the preceding batch of deferred calls.

Batching calls allows the server to “see the future” by

looking ahead in the current batch of calls. This might

enable it to improve performance. For example, a file

system could reorder read requests to optimize disk

head motion or a three-dimensionsal rendering system

could avoid performing an expensive rendering if it

determined that a later call would obscure it. Thus

batching can have other benefits in addition to reducing

the number of domain crossings.

5 Implementation of Batched Futures

There are three key issues in the implementation of

batched futures:

1. How to represent futures in the veneer. Futures

must be represented in such that a way that they

are interchangeable with handles in stub objects.

2. How to maintain the mapping between futures and

actual objects in the database so that the database

can associate a future used as an argument in a call

with the corresponding result.

3. How to limit the size of the mapping, since each

call returns a new future and the mapping could

potentially grow without bound.

We consider each of these issues in turn.

5.1 Representing Futures

A future is just an integer chosen by the veneer to stand

for the eventual result of a call. To distinguish futures

from handles, we tag them using the sign bit: futures

are negative, handles positive.

Like handles, futures are encapsulated in stub objects,

to which the client program is given pointers. Because

of this level of indirection, there is only one instance of

each future; on assignment, clients copy pointers, not

the stub objects themselves, just as with handles.

5.2 Mapping Futures to Objects

Two parallel tables maintain the mapping between fu-

tures and objects, analogous to the H and VH tables that

map handles to objects and stub objects. The veneer

future table VF maps futures to stub objects, and the

database future table F maps futures to actual objects.

Slots in VF are initialized when a stub function re-

turns a future to the client. Such a stub function:

345

1.

2.

3.

4.

5.

Increments a global counter to determine the index

i of the future.

Batches a message describing the call and the

choice of future i to hold its result. (The database

will receive the message as part of the next batch

of calls.)

Allocates a stub object o that contains future i.

Stores a reference to o in VF[i].

Returns o to the client program.

The database initializes slots in F when it processes

a batch of calls. Each deferred call specifies the future

index i that should be mapped to the result; after the

database processes the call, it stores the resulting object

in F[i]. When future i is used as an argument to a call,

the database looks in F[i] to find the corresponding

object. Because the database processes the calls in the

same order they were made, the arguments of calls are

determined by the time the database processes them.

The following is a more detailed description of the

steps performed by the database in processing a call.

The database:

1.

2.

3.

4.

Reads the method name and arguments.

Looks up each (non-basic) argument in H or F,

depending on whether the index is positive or neg-

ative.

Type checks and performs the call.

If the call is the last of a batch, sends the result

back to the client. Otherwise stores a reference to

the call result in F[i], where i is the index specified

by the client.

Note that the only overhead that has been added to the

database is a couple of inexpensive conditionals. This

overhead is dwarfed by the amount of time saved in

avoiding a domain crossing.

5.3 Limiting the Size of the Future Mapping

Because each deferred call returns a new future and a

future could be used as an argument to any later call,

tables F and VF can grow arbitrarily large. Our imple-

mentation solves this problem by periodically replacing

futures with the corresponding handles. After the num-

ber of futures passes a limit, the veneer flushes the

pending invocations and piggybacks a request to the

database to send the object handle equivalents for all

futures currently in use. The veneer uses the point-

ers in VF to update the stub objects; because the client

copies pointer to the stub objects, and not the stub object

themselves, we do not have to worry about updating and

tracking multiple copies of each stub object. The veneer

and the database can then safely reclaim all slots in F

and VF. Thus futures require only a constant amount of

additional space relative to normal calls. The database

could actually send back the corresponding handles af-

ter every batch of calls. However, there are performance

advantages to sending handles in larger batches. It is

cheaper to do one big read than a lot of small ones. Also,

the longer the database waits, the greater the likelihood

that the client has freed futures in the batch (in a lan-

guage with explicit deallocation), allowing the database

to avoid sending back the corresponding handles, as dis-

cussed below.

5.4 Stub Object Storage Management

Managing storage associated with stub objects contain-

ing futures is not a problem if the client language is

garbage collected. The stub object will not be dis-

carded while still referenced from VF, even if the client

program no longer refers to it, but will be subject to

garbage collection as soon as it is updated with the

correct handle and the slot in VF is cleared.

For languages with explicit deallocation, the

free-object operation provided by the veneer clears the

entry in VF as well as reclaiming the object storage.

When the veneer replaces futures with handles, it skips

the entries in VF that have been cleared. It can also

tell the database which futures have non-empty entries

in VF, saving the expense of sending back handles for

futures that have been freed.

There is one other concern regarding stub objects

containing futures. When stub objects contain handles,

the veneer ensures that there is only one stub object for

each database object. The same property does not hold

346

for stub objects containing futures. This is a necessary

consequence of the fact that the veneer does not know

what the actual handle will be at the time the stub object

is created. Therefore multiple stub objects can refer to

the same database object. Such redundant stub objects

are a problem only if the client has a very large number

of active references that correspond to a small number

of actual objects. (Inactive references are not a prob-

lem because in that case the stub objects will be freed.)

Presumably, this will be not be a common occurrence.

In general, we expect that most futures are only tem-

poraries (that is, intermediate navigation pointers) and

users won’t want to hold onto them.

If redundant stub objects are a problem, the veneer

can support an operation that takes a reference to a stub

object, frees the stub object if it is redundant, and re-

turns a pointer to the corresponding ‘canonical’ stub

object for that object’s handle. (The operation requires,

of course, that the client has no other references to

the redundant stub object.) Alternatively, a customized

garbage collector can do the same thing safely and au-

tomatically by redirecting pointers to redundant objects

to the canonical one so that redundant objects can be

freed.

5.5 Shared Memory Optimizations

Batched futures can be implemented using Unix pipes.

In this case the veneer just writes each message to the

stream but does not flush the stream until it needs a

result. However, it is faster to use shared memory if it

is available. Each deferred call is recorded in a shared

memory buffer, and data written by one side is always

immediately visible to the other side without any need

for flushes. (To obtain optimal performance, it is impor-

tant that when one process blocks waiting for a result,

the other is awakened quickly. Our implementation uses

shared-memory semaphores to obtain this effect.) With

this implementation, the database can begin working on

deferred calls whenever it has time, even if the veneer

is not yet waiting for the result of the last call in a batch.

For example, on a multiprocessor this approach allows

the database to process calls in parallel with the veneer.

Another shared memory optimization permits us to

get rid of the F and VF tables and future remapping

entirely. The tables exist only to allow futures used in

later calls to be mapped to the results of earlier calls.

The same effect can be achieved by allocating stub

objects in shared memory. Rather than passing a handle

or future, the veneer passes a pointer to the stub object,

which the database dereferences. When the result of

a batched call becomes available, the database stores

the handle in the stub object allocated for the result,

effectively performing the future remapping step for

that object immediately.

The use of shared memory might raise the concern

that the security of the system has somehow been com-

promised. Note, however, that the worst a client can

do is overwrite a stub object in shared memory, which

it could do just as easily when the stub object was in

its own private address space. The database is not ex-

posing any more information than it was before, and

its runtime type checking will continue to prevent the

client from making illegal calls.

6 Experimental Results

In this section we characterize the gains that can be

expected from using futures, and present experiments

showing the benefit obtained on various workloads. We

give a simple model of the system’s performance, pro-

vide results that show the predicted performance across

a range of batching factors and domain crossing costs,

and finally give results based on a standard benchmark.

The experiments were compiled using DEC C++

and run on a lightly loaded Alpha AXP3000 running

OSF/1.3. The Thor experiments used a warm object

cache because we wanted to measure just the amortized

cross-domain call time, and not additional delays to

fetch objects.

6.1 Performance model

The average cost of acall can be modeled by the formula

t = t, + tdp

where t, is the cost of running acall, td is the cost of the a

pair of domain crossings, and B is the “batching factor,”

the total number of calls divided by the number of pairs

of domain crossings. When there are no futures, B =

347

1 (since each call requires a pair of domain crossings);

as we defer calls, B increases and the average cost of

a call goes down. Note that the model assumes that

td is independent of B. In other words, the amount of

time it takes to switch between domains is independent

of the amount of data (that is, the number of batched

calls) being transferred between the two domains. This

assumption is approximately true in actual systems; for

example, in the case of a remote call system, an entire

batch can be sent in one message up to some size limit

beyond which more than one message will be needed.

The model predicts that, as B increases, the average

cost of a call will asymptotically approach t,, dropping

rapidly at first and then with increasing slowness as

td/B goes to zero and t, begins to dominate the total

cost of the call. The key points to note are that t,

provides a lower bound on the average cost per call,

and that the larger the ratio of td to t,, the more a

system has to gain from batched futures, but also the

higher the batching factors it must achieve before the

domain crossing overhead td/B becomes negligible. For

example, if the ratio of td to t, is r, then a batching factor

of r will yield performance that is within a factor of two

of the optimal value.

6.2 Potential Performance Gains

The best case for batched futures is a client program

in which all of the cross-domain calls can be batched.

To experiment with the potential performance improve-

ments that might be achieved using futures, we consid-

ered the nth function described earlier. Each operation

in the nth function returns a handle, so that all of the calls

can be batched, leading to an arbitrarily large batching

factor B .

To show how the speedup provided by batched fu-

tures varies across a range of values for t, and td, and

also to demonstrate a range of systems to which batched

futures are applicable, we considered three systems:

1. Local IPC: A simple client-server system with a

very low t, value and a comparatively high value

for td. The client and server run in different pro-

cess on the same machine and communicate us-

ing a shared memory buffer. The server, written

in C++, implemented just the essential elements

2.

3.

necessary to run the experiment: a linked list, a

very simple dispatcher, a handle table, and a fu-

ture table. It did not implement type checking,

garbage collection, concurrency control, persis-

tence, or any other features of Thor as a database.

The stub functions and the client program were

essentially the same as those in the case of Thor,

however.

Local Thor: Thor running in its typical con-

figuration, in which the application process and

interacts with a separate Thor process at the client

machine. The Thor process caches copies of per-

sistent objects and performs client calls. The t,

for this system is significantly higher than that of

the first system primarily because type checking

and dispatching of calls in the current prototype is

slow and needs to be optimized.

Remote Thor: Here there is no Thor process at

the client machine, so that every application call

requires a network communication. We may run

Thor in this fashion if the client machine has a

memory too small to be an effective cache, or does

not have sufficiently safe protection domains.

The possible benefits of batched futures depend on

the values of t, and td in the different systems. These

values are summarized in the Figure 3, which gives ap-

proximate values for t, and td in microseconds for each

system. The values for td were estimated by observ-

ing the difference between average call time for B=l

and B=2, which (using our formula) works out to be

td/2. (“Average call time” was determined by taking

the actual elapsed time for the list descent divided by

the number of calls, averaged over 100 trials. The vari-

ation from trial to trial was small as long as the load on

the CPU was low.) The value for t, was then estimated

by subtracting td from the average call time for B=l .

The observed performance of the systems is shown

in Figures 4, 5, and 6. As predicted by the model,

the average time per call drops rapidly at first and then

approaches t, for that system with increasing slowness;

the shape for each graph resembles the graph of l/B

scaled by td and shifted up by t,.

In the local IPC system (Figure 4), batched futures

lead to a greater than tenfold increase in performance

348

Figure 3: Approximate values of t, and td for three

systems.

for sufficiently large B. The maximum speedup for lo-

cal Thor (Figure 5), is around 3. The speedup is small

because operation marshaling, type checking, and dis-

patching in Thor are currently expensive, leading to

a high value for t, even though the operations them-

selves are simple. When the operation dispatcher is

optimized, we can expect to see speedups from batched

futures closer to those seen in the simple IPC system.

Even Thor’s relatively large value oft, is dwarfed in

comparison with the cost of a network communication

(Figure 6). In that case, batched futures can again

provide to a tenfold speedup. If batched futures were

used in a system that had the t, of our IPC system

and the td of a system communicating over a network,

we would expect to see up to a 90-fold performance

improvement. Obtaining this speedup, however, would

require hundreds of operations being combined in each

batch.

6.3 A Less Favorable Case

Clearly, not all applications are as favorable for batched

futures as list descent. For example, in a graph traver-

sal the number of nodes connected to the current node

may need to be know immediately, meaning that many

calls cannot be deferred and the batching factor is nec-

essarily low. In this section, we give an example of a

less favorable application to show the limitations of the

batched futures mechanism as currently defined and to

suggest ways it can be improved.

As a representative application, we implemented var-

ious traversals from the 007 suite of benchmarks for

object-oriented databases [5]. The 007 database con-

sists of a set of interconnected parts, arranged in a hi-

erarchy of complex assemblies, base assemblies, com-

posite parts, and finally atomic parts. The operations

on the parts and assemblies are quite simple: they ei-

ther return a connected part, or a scalar attribute, such

0 2 4 6 0 10 12 14 16 18 20 22 24 24 28 30

Batching Factor

Figure 4: Local IPC.

225 ,

200 t

175 I\

501

0 2 4 6 8 IO 12 14 16 18 20 22 24 26 28 311

Batching Factor

Figure 5: Local Thor

Figure 6: Remote Thor

349

Speedup: 1.7

Figure 7: 007 traversal performance.

an integer id or a character documentation string. We

implemented the parts and their primitive operations as

types in the Thor database, and the traversals in the Thor

C++ veneer using the methods defined by the 007 type

interfaces.

In practice, one can safely increase performance

by implementing parts of the traversal inside of the

database using Theta. We wished, however, to assess

the worst-case scenario (for our mechanism), in which

the client performs a large number of very fine-grained

interactions with the database, many of which need to

be performed immediately.

We ran 007 traversal 2b, the traversal that demands

the greatest number of fine-grained database calls. The

traversal visits every part in the database, swapping the

x and y coordinates of each atomic part. It makes a

total of 207,399 calls on the database and has an actual

running time of 46.19 seconds, for an average of 222

microseconds per call.

The results of the experiment are shown in Figure 7.

For this traversal the batching factor was 2.33. In other

words, almost one out of every two operations was one

that returned a basic value and forced the batch of calls

to be flushed.

With this batching factor, we obtained a speedup of

1.7, giving us a running time of 1.8 times the optimal

time for our current implementation. The optimal time

was obtained by running the traversal when the client

program was linked into the database, so that the domain

crossing overhead was zero but all of the other costs

were the same. (Note that the optimal time is about

a third of the non-batched time, which matches our

measurements in the list descent case that show t, is

about a third oft, + td, the total overhead of running an

operation without futures.)

However, getting so close to the optimal performance

is largely an artifact of our unoptimized implementa-

tions of marshaling, type checking, and dispatching in

the database. We estimate that the optimal time will

improve by at least a factor of 3 when these implemen-

tations are optimized. In this case a batching factor of

2.33 only gets us a running time of 3.4 times the optimal

performance.

Even with such low batching factors, batched futures

yield useful performance improvements. The improve-

ments are limited, however, by the batch size. One

limiting factor in the current design is the need to stop

batching as soon as a call returns a basic value. A sim-

ple way of addressing this limitation is discussed in the

next section; a more sophisticated approach that can be

used even when control structures depend on the results

of Thor operations is discussed in Section 8.

7 Extensions

This section discusses two extensions to the future

mechanism. First we discuss how to deal with ex-

ceptions; then we describe how to defer calls that return

basic values.

7.1 Exceptions

In the normal case, Thor operations terminate by retum-

ing a value but they can also terminate by signaling an

exception [121, indicating that a condition has occurred

that prevents the normal return. An exception consist

of a name and zero or more values that give additional

information about the cause of the exception. For ex-

ample, the array type might signal a bounds exception

if the caller attempts to access a slot beyond the end of

an array.

Exceptions represent a challenge for two reasons.

First, many client languages fail to include any built-

in mechanisms for handling them. Second, immediate

detection of exceptions is incompatible with batching:

if the veneer has to communicate with the database to

350

check for exceptions after every call, no batching is

possible.

If the client language has an exception mechanism, it

can be used to propagate information about Thor excep-

tions for non-deferred calls. Deferred calls, however,

cannot signal exceptions, since they are not executed

until later. Therefore, the stubs for deferred calls do not

have exceptions listed in their signatures; instead such

a stub always returns a stub object and we incorporate

the information about the eventual outcome of the call

(when it is known) in the stub object.

In addition, the database propagates exceptions. If

a call that is supposed to produce a future signals an

exception, the database stores information about the

exception in the future’s slot in F. If a later call uses that

future as an argument, or uses an error-handle as an

argument (see below), the database will not run the call

but instead produces a unhandled-exe exception with a

value that identifies the bad argument. (Thus unhan-

dled-exe is a possible exception of any call.) When

the database finishing processing a batch of calls, it

returns all the information about exceptions associated

with earlier calls in the batch in addition to the infor-

mation about the outcome of the last call in the batch.

The veneer then stores the exception information in the

stub objects of the affected futures. If one of these stub

objects is used in a subsequent call, the stub passes the

error-handle in that argument position.

If the client language has no exception mechanism,

we can use the above mechanism, except that some-

thing extra is needed for calls that return basic values

(or return nothing). One possibility is to have such calls

have an extra argument, an error value that the client

code is supposed to check before using the call’s result.

This approach is error prone, however, since it is easy

for programmers to forget to check for the error value.

Therefore we use a different approach: we maintain

an exception history, and store (effectively) informa-

tion about the outcome of each call in it. This history

is cleared automatically when a transaction starts; fur-

thermore, it must have been cleared by the client code

when a transaction commits, or the veneer will abort

the transaction. Various operations are provided to give

the client code convenient access to the history. More

details about this mechanism can be found in [4].

The above approach allows the client to defer check-

ing for exception values until convenient. In addition,

it allows us to support exception handling while still

achieving high batching factors.

7.2 Futures for Basic Values

An obvious extension to batched futures is the ability to

use futures for operations that would ordinarily return

basic values. Sometimes the client does not need to

know basic value results immediately, if at all. For

example, the client can swap the values of two slots in

an array of integers without knowing what those values

are, or sum a set of values without knowing the values

of all of the intermediate results, as long as the database

keeps track of the intermediate values and allows the

client to refer to them using futures.

Futures in Multilisp [9] could be used transparently in

place of basic values. However, this transparency came

at a cost: the system had to add tags to every value to

indicate whether it was a future or an actual value and

every time an operation depended on the actual value of

an object, it had to check the tag to see if the object was a

future and if so block until the value was available. This

approach is incompatible with our needs. Many client

languages allow direct access to all of the bits of a value

and will not tolerate tagging; furthermore inserting the

necessary tag checks would require modifications to the

client language compiler.

We therefore expose the distinction between futures

for basic values and actual basic values to client pro-

grammers, allowing them to convert between the two

forms on demand. Our scheme is like the promises

mechanism used in Mercury [151 with the crucial differ-

ence that futures for values can be passed as arguments

to Thor operations without blocking. Futures for values

are distinguished from normal values by making them

a distinct type. For each basic value type T, the ve-

neer defines a corresponding stub type Thor-T, we shall

refer to such types collectively as ThorValues. (For ex-

ample, the stub version of a client integer is a thint.

Similarly, the veneer defines th-char, th&at, and so

forth.) Conceptually, a ThorValue can be thought of as

a pointer to a value that lives inside Thor. Each Thor-

Value type supports a “dereferencing” operation that

351

returns the corresponding client value and an operation

that creates a ThorValue from a client value.

To allow futures for values to be passed as arguments

to Thor method calls without dereferencing them, the

veneer type interfaces include “futurized” versions of

stub functions that take and return ThorValues rather

than basic values. We also retain the standard versions

of the stub functions. If the client wishes to batch a

call containing a mix of client and Thor values, it must

use a futurized stub, and must convert client values to

obtain the ThorValues needed as arguments. As with

handles, the veneer can batch a number of interrelated

calls without communicating with the database. Unlike

with handles, the client has a way to obtain the actual

representation of the return result.

A ThorValue is represented in the veneer as a union

containing either an actual basic value, or a future for a

call that will return a basic value, with a tag to indicate

which is the case. If the client attempts to dereference

a ThorValue containing a future, the veneer sends the

current batch of calls to the database.

To process a set of batched calls that use ThorValues,

the database keeps a mapping between each future for

a value and the corresponding basic value result, and

sends back the actual results to the veneer in a batch.

The veneer then overwrites the futures in the ThorValue

stub objects with their actual values. Thereafter, the

value for each of the ThorValues used in that batch of

calls is available immediately without consulting the

database.

A ThorValue needs to be decoded before it can be

turned into a basic value [lo] if the representation sent

over by Thor differs from that used for the type in

that language; also in this case a value will need to

be encoded into a ThorValue. As an optimization, the

veneer can store the value of the future in some ‘raw’

form when it first gets it and defer the decoding until

the client actually asks for the value. This allows the

veneer to save the expense of decoding and later en-

coding results that are only used as intermediate values

by the client. For example, suppose the database and

the client language use different formats for represent-

ing floating point numbers, and that it is expensive to

convert between the two formats. If the client does not

always need the values of the floating point numbers,

the veneer could increase performance by performing

the conversions lazily. (It might be advantageous to

keep a copy of the original representation even after the

number was converted, to avoid re-encoding the num-

ber if it is passed as an argument to another database

operation.)

When futures are used for basic values, they are no

longer completely transparent. The client must insert

calls to obtain the client values corresponding to Thor-

Values when desired, and possibly also to wrap client

values as database values. However, client program-

mers are always free to write their programs as usual

with the normal version of calls, then convert them to

use futures later as an optimization.

One concern is the proliferation of stub functions:

adding futures for basic values has approximately dou-

bled the number of stub functions. (The number is not

exactly double because stub functions whose arguments

and return values consist entirely of handles do not need

a futurized version.) This can lead to a cluttered inter-

face containing multiple versions of each stub function,

which client programmers may find confusing. We can

minimize this problem by choosing sensible conven-

tions for naming and ordering stub functions so that the

futurized versions are shown last. Figure 8 shows an

interface using the conventions we have adopted: we

capitalize the first letter of the method name to name

futurized versions of stub functions. The figure also

shows a client program that uses this interface to swap

two elements of an array with no additional domain

crossings.

We have not yet implemented futures for basic values.

However, we calculated how they would increase the

batch size for 007 traversals and how that might affect

performance. For example traversal 2b would benefit

from the use of futures for basic values, because all

calls to swap the x and y attributes can be deferred

since the client has no need to know the actual x and y

values. This increases the average batch size increase

from 2.33 to 3.47 and the predicted performance using

the mathematical model increases from 1.7 times the

standard performance (for unoptimized Thor) to over 2

times faster.

352

class th-int-array {

int fetch(int slot) ;

void storetint slot, int val);
.

th-int* Fetch(th-int* slot);

void Store(th-int* slot, th-int* val);

void swap(th-int-array* a, th-int* i, th-int* j)

/* Swap a[il and a[jl using futures l /
th-int* a-i = a->Fetch(i);

a->Store(i, a->Fetch(j) 1;

a->Store(j, a-i);

Figure 8: Using futurized stubs.

8 Conclusion and Future Work

This paper has described batched futures, a mechanism

that reduces the delay to clients making calls to servers

that run in a separate protection domain. Futures allow

calls to be deferred until a client really needs a result.

Then all calls can be made at once, in a batch; later

calls in the batch can refer to the results of earlier calls.

The paper analyzed the performance gains that can be

expected from the mechanism. Our results show that

significant benefit can be obtained by using futures even

when batches are small.

The work was done in the context of Thor, but can

be used in other systems. Our implementation depends

on knowing whether a call returns an opaque pointer or

a value and can be used in any system where this infor-

mation is available, for example, an operating system.

Even without this information, an approach in which

the client chooses whether or not to defer a call is al-

ways possible. The mechanism can be used when the

client and server run in different processes on the same

machine, and also when the client runs at a different

machine than the client.

Speedups are limited by the number of operations

that can be deferred. For example, the 007 bench-

marks do not allow deferring very many calls, even

with futures for values, because after a few calls the

application needs to do something itself, e.g., look at a

value to determine what to do next. One possibility we

are investigating is to enrich the “batching language”

used to communicate with the database. Currently,

the batched program can include interrelated calls, but

nothing else. Much larger batching factors could be

achieved if the client were allowed to combine calls

with simple batched control structures; for example,

the entire traversal 2b could be done in a single batch.

To the client, batched control structures appear much

like normal control structures. Instead of affecting the

control flow of the client program, however, the batched

control structures are interpreted in the database, which

carries out calls only on the indicated paths. Because

a batched loop needs to be analyzed and type checked

only once by the database, batched control structures

amortize not only the expense of domain crossing but

also that of processing each call. The effect is somewhat

like what is achieved with query languages. However,

in this case the user does not need to learn any special

query language - the “query” is constructed on the fly

based on the batched calls and control structures used

by the client.

Another possibility is suggested by Stamos’ work

on remote evaluation [161. The idea is to define a

“safe” subset of the client language such that procedures

written in that subset are guaranteed not to violate the

security of the database. The compiled code for such

a procedure can then be installed in the database, and

calls to it can run inside the database. Probably not

all languages have useful safe subsets, but looking for

them, and defining preprocessors that recognize them, is

an interesting research direction. If an entire application

could be written in the safe language subset, it could

run inside the database without any domain crossings,

thereby achieving the best possible performance.

Acknowledgements. The authors gratefully ac-

knowledge the helpful comments of Atul Adya, Mark

Day, Umesh Maheshwari, Andrew Myers, James

O’Toole, Quinton Zondervan, and the referees.

353

References

VI

PI

[31

141

PI

[61

r71

[81

PI

[lOI

[111

WI

Barrera, J., Invocation Chaining: Manipulating
Lightweight Objects across Heavyweight Boundaries.

In Fourth IEEE Workshop on Workstation Operating
systems, Oct. 1993,191-193.

Bershad, B., Anderson, T., Lazowska, E., and H. Levy,
Lightweight Remote Procedure Call. In ACM Transac-

tions on Computer Systems, Vol. 8, No. 1, Feb., 1990,
175198.

Birrell, A.D. and B. J. Nelson, Implementing Remote
Procedure Calls. In ACM Transactions on Computer

Systems, Vol. 2, No. 1, Feb. 1984,39-59.

Bogle, l?, An ESJicient Object-Database Interface us-

ing Batched Futures. Lab. for Computer Science Tech.

Report TR-624, MIT LCS, Cambridge Ma., July 1994.

Carey, M. J., DeWitt, D. J., and J. F. Naughton, The
007 Benchmark, In Proc. ofthe 1993 ACM Sigmod ln-
ternational Conference on Management of Data, ACM
Sigmod Record, Vol. 22, No. 2, June 1993, 12-21.

Day, M., Client Cache Management in a Distributed

Object Database. PhD. Thesis, MIT, Cambridge, Ma.,
forthcoming.

Day, M., Gruber, R., Liskov, B., and A. Myers, Ab-
straction Mechanisms in Theta. Prog. Method. Group

Memo 81, Lab. for Computer Science, Cambridge Ma.

forthcoming.

Gifford, D.K. and N. Glasser, Remote Pipes and proce-
dures for efficient distributed communication. In ACM

Transactions on Computer Systems, Vol. 6, No. 3, Aug.

1988,258-283.

Halstead, R., Multilisp: A Language for Concurrent

Symbolic Computation. In ACM Transactions on Pro-
gramming Languages and Systems, Vol. 7, No. 4, Oct.
1985,501-538.

Herlihy, M.P. and B.L. Liskov, A value transmission
method for abstract data types. In ACM Transactions
on Programming Languages and Systems, Vol. 4, No.
4, Oct. 1982, 527-551.

Liedtke, J., Improving IPC By Kernel Design. In Proc.

of the Fourteenth ACM Symposium on Operating Sys-

tems Principles, ACM Sigops Review, Vol. 27, No. 5,

Dec. 1993, 175-187.

Liskov, B.L. and A. Snyder, Exception Handling in
CLU. In IEEE Transactions on Software Engineering,

Vol. SE-5, No. 6, Nov. 1979,546-558.

[I31

[I41

1151

U61

v71

B. Liskov, Day, M., and L. Shrira, Distributed Object
Management in Thor. In Distributed Object Manage-

ment, M. T. Ozsu, U. Dayal, and I? Valduriez, Eds.,
Morgan Kaufmann, 1992,79-g 1.

Liskov, B.L., Communication in the Mercury System.
In Proc. of the 21st Annual Hawaii Conference on Sys-

tem Sciences, IEEE, Jan. 1988, 178-187.

Liskov, B. L. and L. Shrira, Promises: Linguistic Sup-
port for Efficient Asynchronous Procedure Calls in Dis-

tributed Systems. In Proc. ACM Sigplan ‘88 Conference

on Programming Languages Design and Implementa-

tion, ACM Sigplan Notices, Vol. 23, No. 7, June 1988,

260-267.

Stamos, J., Remote Evaluation, PhD. Thesis, Lab. for
Computer Science Tech. Report TR-354, MIT LCS,

Cambridge, Ma., Jan. 1986.

Wahbe, R., Lucco, S., Anderson, T., Graham, S., Effi-
cient Software-Based Fault Isolation. In Proc. of the
Fourteenth ACM Symposium on Operating Systems

Principles, ACM Sigops Review, Vol. 27, No. 5, Dec.

1993,203-216.

354

