
72 COMMUNICATIONS OF THE ACM | SEPTEMBER 2020 | VOL. 63 | NO. 9

review articles

DISTRIBUTED SYSTEMS ARE tricky. Multiple unreliable
machines are running in parallel, sending messages to
each other across network links with arbitrary delays.
How can we be confident these systems do what we
want despite this chaos?

This issue should concern us because nearly all
of the software we use today is part of a distributed
system. Apps on your phone participate with
hosted services in the cloud; together they form a
distributed system. Hosted services themselves are
massively distributed systems, often running on
machines spread across the globe. Big data systems
and large-scale databases are distributed

across many machines. Most scien-
tific computing and machine learning
systems work in parallel across mul-
tiple processors. Even legacy desktop
operating systems and applications
like spreadsheets and word processors
are tightly integrated with distributed
backend services.

The challenge of building correct
distributed systems is increasingly ur-
gent, but it is not new. One traditional
answer has been to reduce this com-
plexity with memory consistency guar-
antees—assurances that accesses to
memory (heap variables, database keys,
and so on) occur in a controlled fashion.
However, the mechanisms used to en-
force these guarantees—coordination pro-
tocols—are often criticized as barriers
to high performance, scale, and avail-
ability of distributed systems.

The high cost of coordination.
Coordination protocols enable auton-
omous, loosely coupled machines to
jointly decide how to control basic be-
haviors, including the order of access to
shared memory. These protocols are
among the most clever and widely cited
ideas in distributed computing. Some
well-known techniques include the
Paxos33 and Two-Phase Commit (2PC)25,34
protocols, and global barriers underly-

Keeping
CALM:
When
Distributed
Consistency
Is Easy

DOI:10.1145/3369736

In distributed systems theory,
CALM presents a result that delineates
the frontier of the possible.

BY JOSEPH M. HELLERSTEIN AND PETER ALVARO

 key insights
	˽ Coordination is often a limiting factor in

system performance. While sometimes
necessary for consistent outcomes,
coordination often needlessly stands
in the way of interactivity, scalability,
and availability.

	˽ Distributed systems deserve a computability
theory: When is coordination required for
consistency, and when can it be avoided?

	˽ The CALM Theorem shows that monotonicity
is the answer to this question. Monotonic
problems have consistent, coordination-free
implementations; non-monotonic problems
require coordination for consistency.

	˽ The CALM Theorem emerges by shifting
the definition of consistency to one
of deterministic program outcomes
rather than ordered histories of events.
CALM thinking is also constructive:
it informs the design of new distributed
programming languages, program
analysis tools, and application
design patterns.

http://dx.doi.org/10.1145/3369736

SEPTEMBER 2020 | VOL. 63 | NO. 9 | COMMUNICATIONS OF THE ACM 73

I
M

A
G

E
 B

Y
 D

A
B

O
O

S
T

ing computational models like Bulk
Synchronous Parallel computing.40

Unfortunately, the expense of coor-
dination protocols can make them
“forbidden fruit” for programmers.
James Hamilton from Amazon Web
Services made this point forcefully, us-
ing the phrase “consistency mecha-
nisms” where we use coordination:

“The first principle of successful
scalability is to batter the consistency

mechanisms down to a minimum,
move them off the critical path, hide
them in a rarely visited corner of the
system, and then make it as hard as
possible for application developers to
get permission to use them.”26

The issue is not that coordination is
tricky to implement, though that is true.
The main problem is that coordination
can dramatically slow down computa-
tion or stop it altogether. Some modern

global-scale systems utilize coordina-
tion protocols; the Google Spanner
transactional database18 is a notable
example that uses both Paxos and 2PC.
However, these protocols suffer from
high latencies, on the order of 10ms–
100ms. Global-scale systems that rely
on these protocols are not meant to be
used in the fast path of an application.
Coordination latency problems trans-
late to the micro scale as well. Recent

74 COMMUNICATIONS OF THE ACM | SEPTEMBER 2020 | VOL. 63 | NO. 9

review articles

Figure 1. A distributed waits-for graph with replicated nodes and partitioned edges. There is
a cycle that spans Machines 1 and 2 ({T1,T3}).

Machine 1 Machine 2 Machine 3

T1

T1T2 T3 T3

T4 T2

T5 T6

sient errors due to delayed or reordered
messages in this distributed computa-
tion. Do local detectors have to coordi-
nate with other machines to be sure of a
deadlock they have observed? In this
case, no coordination is required. To see
this, note that once we know a cycle ex-
ists in a graph, learning about a new edge
can never make the cycle go away. For ex-
ample, once Machine 1 and Machine 2
jointly identify a deadlock between T1
and T3, new information from Machine 3
will not change that fact. Additional facts
can only result in additional cycles being
detected: the output at each machine
grows monotonically with the input. Fi-
nally, if all the edges are eventually
shared across all machines, the ma-
chines will agree upon the outcome,
which is based on the full graph.

Distributed garbage collection. Gar-
bage collectors in distributed systems
must identify unreachable objects in a
distributed graph of memory referenc-
es. Garbage collection works by identi-
fying graph components that are dis-
connected from the “root” of a system
runtime. The property of being “gar-
bage” is also stable: once a graph com-
ponent’s connection to the root is re-
moved, the objects in that component
will not be re-referenced.

In a distributed system, references
to objects can span machines. A local
view of the reference graph contains
only a subset of the edges in the global
graph. How can multiple local garbage
collectors work together to identify ob-
jects that are truly unreachable?

Note that a machine may have a lo-
cal object and no knowledge whether
the object is connected to the root; Ma-
chine 3 and object O4 in Figure 2 form
an example. Yet there still may be a
path to that object from the root that
consists of edges distributed across
other machines. Hence, each machine
exchanges copies of edges with other
machines to accumulate more infor-
mation about the graph.

As before, we might be concerned
about errors due to message delays or
reordering. Can local collectors au-
tonomously declare and deallocate
garbage? Here, the answer is differ-
ent: coordination is indeed required!
To see this, note that a decision
based on incomplete information—
for example, Machine 3 deciding that
object O4 is unreachable in Figure

work showed that state-of-the-art mul-
tiprocessor key-value stores can spend
90% of their time waiting for coordina-
tion; a coordination-free implementa-
tion called Anna achieves over two or-
ders of magnitude speedup by
eliminating that coordination.43 Can
we avoid coordination more generally,
as Hamilton recommends? When?

The bigger picture: Program consis-
tency. The general question of when
coordination is necessary to achieve
consistency was not addressed until
relatively recently. Traditional work
on consistency focused on properties
like linearizability30 and conflict seri-
alizability,20 which ensure memory
consistency by constraining the order
of conflicting memory accesses. This
tradition obscured the underlying
question of whether coordination is re-
quired for the consistency of a particu-
lar program’s outcomes. To attack the
problem holistically we need to move
up the stack, setting aside low-level de-
tails in favor of program semantics.

Traffic intersections provide a use-
ful analogy from the real world. To
avoid accidents at busy intersections,
we often install stop lights to coordi-
nate traffic across two intersecting
roads. However, coordination is not a
necessary evil in this scenario: we can
also prevent accidents by building an
overpass or tunnel for one of the roads.
The “traffic intersection problem” is
an example with a coordination-free
solution. Importantly, the solution is
not found by cleverly controlling the
order of access to the critical section
where the roads overlap on a map. The
solution involves engineering the
roads to avoid the need for coordina-
tion entirely.

For the traffic intersection problem,
it turns out there is a solution that

avoided coordination altogether. Not
all problems have such a solution. For
any given computational problem, how
do we know if it has a coordination free
solution, or if it requires coordination
for consistency? To sharpen our intu-
ition, we consider two nearly identical
problems from the distributed systems
canon. Both involve graph reachability,
but one is coordination free and the
other is not.

Distributed deadlock detection.
Distributed databases identify cycles
in a distributed graph in order to detect
and remediate deadlocks. In a tradi-
tional database system, a transaction Ti

may be waiting for a lock held by an-
other transaction Tj, which may in turn
be waiting for a second lock held by Ti.
The deadlock detector identifies such
“waits-for” cycles by analyzing a direct-
ed graph in which nodes represent
transactions, and edges represent one
transaction waiting for another on a
lock queue. Deadlock is a stable prop-
erty: the transactions on a waits-for cy-
cle cannot make progress, so all edges
on the cycle persist indefinitely.

In a distributed database, a “local”
(single-machine) view of the waits-for
graph contains only a subset of the
edges in the global waits-for graph. In
this scenario, how do local deadlock
detectors work together to identify
global deadlocks?

Figure 1 shows a waits-for cycle that
spans multiple machines. To identify
such distributed deadlocks, each ma-
chine exchanges copies of its edges
with other machines to accumulate
more information about the global
graph. Any time a machine observes a
cycle in the information it has received
so far, it can declare a deadlock among
the transactions on that cycle.

We might be concerned about tran-

SEPTEMBER 2020 | VOL. 63 | NO. 9 | COMMUNICATIONS OF THE ACM 75

review articles

2—can be invalidated by the subse-
quent arrival of new information that
demonstrates reachability (for exam-
ple, the edges Root → O1, O1 → O3, O3
→ O4). The output does not grow
monotonically with the input: provi-
sional “answers” may need to be re-
tracted. To avoid this, a machine
must ensure it has heard everything
there is to hear before it declares an
object unreachable. The only way to
know it has heard everything is to
coordinate with all the other ma-
chines—even machines that have no
reference edges to report—to estab-
lish that fact. As we will discuss, a hall-
mark of coordination is this require-
ment to communicate even in the
absence of data dependencies.

The crux of consistency: Monotonic-
ity. These examples bring us back to our
fundamental question, which applies to
any concurrent computing framework.

QUESTION: We say that a computation-
al problem is coordination-free if there
exists a distributed implementation
(that is, a program solving the problem)
that computes a consistent output with-
out using coordination. What is the fam-
ily of coordination-free problems, and
what problems lie outside that family?

There is a difference between an in-
cidental use of coordination and an
intrinsic need for coordination: the
former is the result of an implementa-
tion choice; the latter is a property of a
computational problem. Hence our
Question is one of computability, like
P vs. NP or Decidability. It asks what is
(im)possible for a clever programmer
to achieve.

Note that the question assumes
some definition of “consistency.”
Where traditional work focused nar-
rowly on memory consistency (that is,
reads and writes produce agreed-upon
values), we want to focus on program
consistency: does the implementation
produce the outcome we expect (for ex-
ample, deadlocks detected, garbage
collected), despite any race conditions
across messages and computation that
might arise?

Our examples provide clues for an-
swering our question. Both examples
accumulate a set of directed edges E,
and depend on reachability predi-
cates—that is, tests for pairs of nodes in

the transitive closure E∗. But they differ
in one key aspect. A node participates
in a deadlock if there exists a path to it-
self in E∗: {n | ∃(n,n) ∈ E∗}. A node n is
garbage if there does not exist a path
from root to n: {n |¬ ∃(root,n) ∈ E∗}.

Logical predicates clarify the distinc-
tion between the examples. For dead-
lock detection’s existential predicate,
the set of satisfying paths that exist is
monotonic in the information received:

DEFINITION 1. A problem P is mono-
tonic if for any input sets S, T where S ⊆
T, P(S) ⊆ P(T).

By contrast, the set of satisfying
paths that do not exist in the garbage
collection example is non-monotonic:
conclusions made on partial informa-
tion about E may not hold in eventual-
ity as counterexamples appear to re-
voke prior beliefs about what “did not
exist” previously.

Monotonicity is the key property un-
derlying the need for coordination to
establish consistency, as captured in
the CALM Theorem:

THEOREM 1. Consistency As Logical
Monotonicity (CALM). A problem has
a consistent, coordination-free distrib-
uted implementation if and only if it is
monotonic.

Intuitively, monotonic problems are
“safe” in the face of missing information
and can proceed without coordination.
Non-monotonic problems, by contrast,
must be concerned that truth of a prop-
erty could change in the face of new infor-
mation. Therefore, they cannot proceed
until they know all information has ar-
rived, requiring them to coordinate.

Additionally, because they “change
their mind,” non-monotonic problems
are order-sensitive: the order in which
they receive information determines
how they toggle state back and forth,
which can in turn determine their final
state (as we will see in the example of
shopping carts). By contrast, monoton-
ic problems simply accumulate beliefs;
their output depends only on the con-
tent of their input, not the order in
which it arrives.

Our discussion so far has remained
at the level of intuition. The next sec-
tion provides a sketch of a proof of
the CALM Theorem, including fur-
ther discussion of definitions for
consistency and coordination. The
proof uses logic formalisms from da-
tabase theory and demonstrates the
benefits of bringing the theory of da-
tabases (ACM PODS) and distributed
systems (ACM PODC) closer together.
Problems can be defined as families
of declarative queries over relations
(sets of records) running across mul-
tiple machines. As in our examples,
the monotonicity of these queries
can often be checked statically via
their syntax: for example, ∃(n,n) ∈ E∗
is monotonic, but ¬∃(root,n) ∈ E∗ is
non-monotonic, as evidenced by the
use of the negated existential quanti-
fier ¬∃ (“not exists”). Readers seeking
a complete proof are directed to the
papers by Ameloot, et al.8,9

CALM: A Proof Sketch
Our first challenge in formalizing
the CALM Theorem is to define pro-
gram consistency in a manner that
allows us to reason about program out-
comes, rather than mutations to stor-
age. Having done that, we can move on

Figure 2. A distributed object reference graph with remote references (dotted arrows).
The fact that object O3 is reachable from Root can be established without any information
from Machine 3. Objects O5 and O6 are garbage, which can only be established by knowing
the entire graph.

Machine 1 Machine 2 Machine 3

Root

O1 O2

O5 O6

O3

O4 O7

76 COMMUNICATIONS OF THE ACM | SEPTEMBER 2020 | VOL. 63 | NO. 9

review articles

ries of messages <add(I); delete(I)>
will cause the state to toggle to exists
and then to not-exists; on another
machine the messages might arrive in
the order <delete(I);add(I)>, caus-
ing I’s state to transition from not-
exists to not-exists to exists.
Even after the two machines have each
received all the messages, they dis-
agree on the final outcome. As a tradi-
tional approach to avoid such “race
conditions,” we might bracket every
non-monotonic delete operation
with a global coordination to agree on
which add requests come before it.
Can we do better?

As a creative application-level use of
monotonicity, a common technique is
for deletes to be handled separately
from adds via two separate monotoni-
cally growing sets: Added items and
Deleted items.19,39 The Added and
Deleted sets are both insert-only,
and insertions across the two com-
mute. The final cart contents can be
determined by unioning up the Add-
ed sets across nodes, as well as union-
ing up the Deleted sets across nodes,
and computing the set-difference of
the results. This would seem to solve
our problem: it removes the need to
coordinate while shopping—that is,
while issuing add and delete re-
quests to the cart.

Unfortunately, neither the add nor
delete operation commutes with
checkout—if a checkout message
arrives before some insertions into ei-
ther the Added or Deleted sets,
those insertions will be lost. In a rep-
licated setting like Dynamo’s, the or-
der of checkout with respect to oth-
er messages needs to be globally
controlled, or it could lead to differ-
ent decisions about what was actually
in the cart when the checkout re-
quest was processed.

Even if we stop here, our lens provid-
ed a win: monotonicity allows shopping
to be coordination free, even though
checkout still requires coordination.

This design evolution illustrates the
technical focus we seek to clarify. Rath-
er than micro-optimize protocols like
Paxos or 2PC to protect race conditions
in procedural code, modern distribut-
ed systems creativity often involves
minimizing the use of such protocols.

A sketch of the proof. The CALM
conjecture was presented in a keynote

to a discussion of consistent comput-
ability with and without coordination.

Program consistency: Confluence.
Distributed systems introduce signifi-
cant non-determinism to our pro-
grams. Sources of non-determinism
include unsynchronized parallelism,
unreliable components, and networks
with unpredictable delays. As a result,
a distributed program can exhibit a
large space of possible behaviors on a
given input.

While we may not control all the be-
havior of a distributed program, our
true concern is with its observable be-
havior: the program outcomes. To this
end, we want to assess how distributed
nondeterminism affects program out-
comes. A practical consistency ques-
tion is this: “Does my program produce
deterministic outcomes despite non-
determinism in the runtime system?”

This is a question of program conflu-
ence. In the context of nondeterminis-
tic message delivery, an operation on a
single machine is confluent if it pro-
duces the same set of output responses
for any non-deterministic ordering and
batching of a set of input requests. In
this vein, a confluent single-machine
operation can be viewed as a determin-
istic function from sets to sets, abstract-
ing away the nondeterministic order in
which its inputs happen to appear in a
particular run of a distributed system.
Confluent operations compose: if the
output set of one confluent operation is
consumed by another, the resulting
composite operation is confluent.
Hence, confluence can be applied to in-
dividual operations, components in a
dataflow, or even entire distributed pro-
grams.2 If we restrict ourselves to build-
ing programs by composing confluent
operations, our programs are confluent
by construction, despite orderings of
messages or execution races within and
across components.

Unlike traditional memory consis-
tency properties such as linearizabili-
ty,30 confluence makes no require-
ments or promises regarding notions
of recency (for example, a read is not
guaranteed to return the result of the
latest write request issued) or ordering
of operations (for example, writes are
not guaranteed to be applied in the
same order at all replicas). Neverthe-
less, if an application is confluent, we
know that any such anomalies at the

memory or storage level do not affect
the application outcomes.

Confluence is a powerful yet permis-
sive correctness criterion for distribut-
ed applications. It rules out applica-
tion-level inconsistency due to races
and non-deterministic delivery, while
permitting nondeterministic ordering
and timings of lower-level operations
that may be costly (or sometimes im-
possible) to prevent in practice.

Confluent shopping carts. To illus-
trate the utility of reasoning about con-
fluence, we consider an example of a
higher-level application. In their paper
on the Dynamo key-value store,19 re-
searchers from Amazon describe a
shopping cart application that achieves
confluence without coordination. In
their scenario, a client Web browser re-
quests items to add and delete from
an online shopping cart. For availabili-
ty and performance, the state of the
cart is tracked by a distributed set of
server replicas, which may receive re-
quests in different orders. In the Ama-
zon implementation, no coordination
is needed while shopping, yet all server
replicas eventually agree on the same
final state of the shopping cart. This is
a prime example of the class of pro-
gram that interests us: eventually con-
sistent, even when implemented atop a
non-deterministic distributed sub-
strate that does no coordination.

Program consistency is possible in
this case because the fundamental op-
erations performed on the cart (for ex-
ample, add) commute, so long as the
contents of the cart are represented as
a set and the internal ordering of its el-
ements is ignored. If two replicas learn
along the way they disagree about the
contents of the cart, their differing
views can be merged simply by issuing
a logical “query” that returns the union
of their respective sets.

Unfortunately, if we allow a delete
operation in addition to add, the set
neither monotonically grows nor
shrinks, which causes consistency
trouble. If instructions to add item I
and delete item I arrive in different
orders at different machines, the ma-
chines may disagree on whether I
should be in the cart. As mentioned
earlier, this is reflected in the way the
existence of I toggles on the nodes. On
one machine the presence of I might
start in the state not-exists, but a se-

SEPTEMBER 2020 | VOL. 63 | NO. 9 | COMMUNICATIONS OF THE ACM 77

review articles

Now that we have a formal execu-
tion model (relational transducers), a
definition of consistency (confluence),
and a definition of monotonic pro-
grams, we are prepared to prove a ver-
sion of the CALM Theorem. The for-
ward “if” direction of the CALM
Theorem is quite straightforward and
similar to our previous discussion: in a
monotonic relational transducer net-
work, it is easy to show that any ma-
chine will eventually Ingest and Send a
deterministic set of messages and gen-
erate a deterministic output. As a side
benefit, at any time during execution,
the messages output by any machine
form a valid subset of the final output.

The reverse “only if” direction is
quite a bit trickier, as it requires ruling
out any possible scheme for avoiding
coordination. The first challenge is to
formally separate the communication
needed to construct outputs (essential-
ly, dataflow messages) from other com-
munication (coordination messages).
Intuitively, dataflow messages are those
that arise to assemble data whose com-
ponents are not co-located. To isolate
the coordination messages, Ameloot et
al. consider all possible ways to partition
data across machines in the network at
program start. From each of these start-
ing points, a messaging pattern is pro-
duced during execution of the program.
We say that a program contains coordi-
nation if it requires messages to be sent

Figure 3. A simple four-machine relational transducer network with one machine’s state and
event loop shown in detail.

System State

Event Handler

1. Ingest/Apply 2. Query 3. Send

?

?

talk at PODS 2010 and written up short-
ly thereafter alongside a number of cor-
ollaries.28 In a subsequent series of pa-
pers,8,9,44 Ameloot and colleagues
presented a formalization and proof of
the CALM Theorem, which remains
the reference formalism at this time.
Here, we briefly review the structure of
the argument from Ameloot et al.

Proofs of distributed computability
require some formal model of distrib-
uted computation: a notion of disparate
machines each supporting some local
model of computation, data partitioned
across the machines, and an ability for
the machines to communicate over
time. To capture the notion of a distrib-
uted system composed out of monoton-
ic (or non-monotonic) logic, Ameloot
uses the formalism of a relational trans-
ducer1 running on each machine in a
network. This formalism matches our
use of logical expressions in our graph
examples; it also matches the design
pattern of sets of items with additions,
deletions and queries in Dynamo.

Simply put, a relational transducer
is an event-driven server with a rela-
tional database as its memory and pro-
grams written declaratively as queries.
Each transducer runs a sequential
event loop as follows:

1.	 Ingest and apply an unordered
batch of requests to insert and delete
records in local relations. Requests
may come from other machines or a
distinguished input relation.

2.	 Query the (now-updated) local re-
lations to compute batches of records
that should be sent somewhere (possi-
bly locally) for handling in future.

3.	 Send the results of the query
phase to relevant machines in the
network as requests to be handled.
Results sent locally are ingested in
the very next iteration of the event
loop. Results can also be “sent” to a
distinguished output.

In this computational model, the
state at each machine is represented
via sets of records (that is, relations),
and messages are represented via re-
cords that are inserted into or deleted
from the relations at the receiving ma-
chine. Computation at each machine
is specified via declarative (logic) que-
ries over the current local relations at
each iteration of the event loop.

The next challenge is to define
monotonicity carefully. The query

languages used by Ameloot are vari-
ants of Datalog, but we remind the
reader that classical database query
languages—relational calculus and
algebra, SQL, Datalog—are all based
on first-order logic. In all of these lan-
guages, including first-order logic,
most common expressions are mono-
tonic; the syntax reveals the potential-
ly nonmonotonic expressions. Hence
“programs expressed in monotonic
logic” are easy to define and identify:
they are the transducer networks in
which every machine’s queries use
only monotonic syntax. For instance,
in the relational algebra, we can allow
each machine to employ selection,
projection, intersection, join and
transitive closure (the monotonic op-
erators of relational algebra), but not
set difference (the sole non-monoton-
ic operator). If we use relational logic,
we disallow the use of universal quanti-
fiers (∀) and their negation-centric equiv-
alent (¬ ∃)—precisely the construct that
tripped us up in the garbage collection
example noted earlier. If we model our
programs with mutable relations, in-
sertions are allowable, but in general
updates and deletions are not.5,35
These informal descriptions elide a
number of clever exceptions to these
rules that still achieve semantic mono-
tonicity despite syntactic non-monoto-
nicity,8,17 but they give a sense of how
the formalism is defined.

78 COMMUNICATIONS OF THE ACM | SEPTEMBER 2020 | VOL. 63 | NO. 9

review articles

The latter point is what motivated
our outcome-oriented definition of
program consistency. Note that Gilbert
and Lynch23 choose to prove the CAP
Theorem using a rubric of linearizabil-
ity (that is, agreement on a total order
of conflicting actions), while Ameloot’s
CALM Theorem proofs choose conflu-
ence (agreement on program outcomes.)
We note that confluence is both more
permissive and closer to user-observable
properties. CALM provides the formal
framework for the widespread intuition
that we can indeed “work around CAP”—
for monotone problems—even if we vio-
late traditional systems-level notions of
storage consistency.

Distributed design patterns. Our
shift of focus from mutable storage to
program semantics has implications
beyond proofs. It also informs the de-
sign of better programming paradigms
for distributed computing.

Traditional programming languages
model the world as a collection of
named variables whose values change
over time. Bare assignment10 is a non-
monotonic programming construct:
outputs based on a prefix of assign-
ments may have to be retracted when
new assignments come in. Similarly,
assignments make final program states
dependent upon the arrival order of in-
puts. This makes it extremely hard to
take advantage of the CALM Theorem
to analyze systems written in tradition-
al imperative languages!

Functional programming has long
promoted the use of immutable vari-
ables, which are constrained to take on
only a single value during a computation.
Viewed through the lens of CALM, an im-
mutable variable is a simple monotonic
pattern: it transitions from being unde-
fined to holding its final value, and nev-
er goes back. Immutable variables gen-
eralize to immutable data structures;
techniques such as deforestation41 make
programming with immutable trees,
lists and graphs more practical.

Monotonic programming patterns
are common in the design of distribut-
ed storage systems. We already dis-
cussed the Amazon shopping cart for
Dynamo, which models cart state as
two growing sets. A related pattern in
storage systems is the use of tomb-
stones: special data values that mark a
data item as deleted. Instead of explic-
itly allowing deletion (a non-monoton-

under all possible partitionings—includ-
ing partitionings that co-locate all data
at a single machine. A message that is
sent in every partitioning is not related
to dataflow; it is a coordination mes-
sage. As an example, consider how a dis-
tributed garbage collector decides if a
locally disconnected object Og is gar-
bage. Even if all the data is placed at a
single machine, that machine needs to
exchange messages with the other ma-
chines to check that they have no more
additional edges—it needs to “coordi-
nate,” not just communicate data de-
pendencies. The proof then proceeds to
show that non-monotonic operations
require this kind of coordination.

This brief description elides many
interesting aspects of the original arti-
cle. In addition to the connections es-
tablished between monotonicity and
coordination-freeness, connections are
also made to other key distributed sys-
tems properties. One classic challenge
is to achieve distributed agreement on
network membership (represented by
Ameloot et al. as the All relation). It
turns out that not only are the mono-
tonic problems precisely the coordina-
tion-free problems, they are also pre-
cisely those that do not require
knowledge of network membership—
they need not query All. A similar con-
nection is shown with the property of a
machine being aware of its own identi-
ty/address (querying the Id relation).

CALM Perspective
on the State of the Art
The CALM Theorem describes what is
and is not possible. But can we use it
practically? In this section, we address
the implications of CALM with respect
to the state of the art in distributed sys-
tems practice. It turns out that many
patterns for maintaining consistency
follow directly from the theorem.

CAP and CALM: Going positive.
Brewer’s CAP Theorem14 informally
states that a system can exhibit only two
out of the three following properties:
Consistency, Availability, and Partition-
tolerance. CAP is a negative result: it
captures properties that cannot be
achieved in general. But CAP only holds
if we assume the system in question is
required to execute arbitrary programs.
It does not ask whether there are spe-
cific subclasses of programs that can
enjoy all three properties! In a retro-

spective, Brewer reframes his discus-
sion of CAP along these very lines:

[The original] “expression of CAP
served its purpose, which was to open
the minds of designers to a wider
range of systems and trade-offs ... The
modern CAP goal should be to maxi-
mize combinations of consistency
and availability that make sense for
the specific application.”14

CALM is a positive result in this arena:
it circumscribes the class of problems
for which all three of the CAP properties
can indeed be achieved simultaneously.
To see this, note the following:

OBSERVATION 1. Coordination-free-
ness is equivalent to availability under
partition.

In the forward direction, a coordina-
tion-free program is by definition avail-
able under partition: all machines can
proceed independently. When and if
the partition heals, state merger is
monotonic and consistent. In the re-
verse direction, a program that em-
ploys coordination will stall (become
unavailable) during coordination pro-
tocols if the machines involved in the
coordination span the partition.

In that frame, CALM asks and an-
swers the underlying question of CAP:
“Which problems can be consistently
computed while remaining available
under partition?” CALM does not con-
tradict CAP. Instead, CALM approaches
distributed consistency from a wider
frame of reference:

1.	 First, CAP is a negative result over
the space of all problems: CALM con-
firms this coarse result, but delineates
at a finer grain the negative and posi-
tive cases. Using confluence as the defi-
nition of consistency, CALM shows
that monotone problems can in fact
satisfy all three of the CAP properties at
once; non-monotone problems are the
ones that cannot.

2.	 The key insight in CALM is to fo-
cus on consistency from the viewpoint
of program outcomes rather than the
traditional ordered histories of conflict-
ing actions—typically storage muta-
tion. The emphasis on the problem be-
ing computed shifts focus from
imperative implementation to declara-
tive specification of outputs; that al-
lows us to ask questions about what
computations are possible.

SEPTEMBER 2020 | VOL. 63 | NO. 9 | COMMUNICATIONS OF THE ACM 79

review articles

lenge in distributed computing, we de-
signed Bloom to be data-centric: both
system state and events are represent-
ed as named data, and computation is
expressed as queries over that data.
The programming model of Bloom
closely resembles that of the relational
transducers described previously. This
is no coincidence: both Bloom and
Ameloot’s transducer work are based
on a logic language for distributed sys-
tems we designed called Dedalus.5
From the programmer’s perspective,
Bloom resembles event-driven or actor-
oriented programming—Bloom pro-
grams use reorderable query-like han-
dler statements to describe how an
agent responds to messages (represent-
ed as data) by reading and modifying
local state and by sending messages.

Because Bloom programs are writ-
ten in a relational-style query language,
monotonicity is easy to spot just as it
was in relational transducers. The rela-
tively uncommon non-monotonic rela-
tional operations—for example, set
difference—stand out in the lan-
guage’s syntax. In addition, Bloom’s
type system includes CRDT-like lattic-
es that provide object-level commuta-
tivity, associativity and idempotence,
which can be composed into larger
monotonic structures.17

The advantages of the Bloom de-
sign are twofold. First, Bloom makes
set-oriented, monotonic (and hence
confluent) programming the easiest
constructs for programmers to work
with in the language. Contrast this
with imperative languages, in which
assignment and explicit sequencing
of instructions—two non-monotone
constructs—are the most natural and
familiar building blocks for pro-
grams. Second, Bloom can leverage
simple forms of static analysis—syn-
tactic checks for non-monotonicity
and dataflow analysis for the taint of
nonmonotonicity—to certify when
programs provide the eventual con-
sistency properties desired for
CRDTs, as well as confirming when
those properties are preserved across
compositions of modules. This is the
power of a language-based approach
to monotonic programming: local,
state-centric guarantees can be veri-
fied and automatically composed into
global, outcome-oriented, program-
level guarantees.

ic construct), tombstones mask immu-
table values with corresponding
immutable tombstone values. Taken
together, a data item with tombstone
monotonically transitions from unde-
fined, to a defined value, and ultimate-
ly to tombstoned.

Conflict-free replicated data types
(CRDTs)39 provide an object-oriented
framework for monotonic program-
ming patterns like tombstones, typi-
cally for use in the context of replicated
state. A CRDT is an abstract data type
whose possible internal states form a
lattice and evolve monotonically ac-
cording to the lattice’s associated par-
tial order, such as the partial order of
set containment under ⊆ or of integers
under ≤. Two instances of a CRDT can
be merged using the commutative, as-
sociative, idempotent join function
from the associated internal lattice.
Eventually, the states of two CRDT rep-
licas that may have seen different in-
puts and orders can always be deter-
ministically merged into a new final
state that incorporates all the inputs
seen by both.

CRDTs are an object-oriented lens
on a long tradition of prior work that
exploits commutativity to achieve de-
terminism under concurrency. This
goes back at least to long-running
transactions,15,22 continuing through
recent work on the Linux kernel.16 A
problem with CRDTs is that their guar-
antees apply only to individual objects.
The benefits of commutativity have
been extended to composable libraries
and languages, enabling programmers
to reason about correctness of whole
programs in languages like Bloom,3
the LVish library for Haskell,32 Lasp,37
and Gallifrey.38 We turn to an example
of that idea next.

The Bloom programming language.
One way to encourage good distributed
design patterns is to use a language
specifically centered around those pat-
terns. Bloom is a programming lan-
guage we designed in that vein; indeed,
the CALM conjecture and Bloom lan-
guage were developed together.3

The main goal of Bloom is to make
distributed systems easier to reason
about and program. We felt that a good
language for a domain is one that ob-
scures irrelevant details and brings into
sharp focus those that matter. Given
that data consistency is a core chal-

The issue is not
that coordination is
tricky to implement,
though that is true.
The main problem
is that coordination
can dramatically
slow down
computation
or stop it altogether.

80 COMMUNICATIONS OF THE ACM | SEPTEMBER 2020 | VOL. 63 | NO. 9

review articles

monotonic programming as the only
way to build efficient distributed sys-
tems. Monotonicity also has utility as
an analysis framework for identifying
nondeterminism so that programmers
can address it creatively.

Additional Results
Many questions remain open in under-
standing the implications of the CALM
Theorem on both theory and practice;
we overview these in a longer version
of this article.29 The deeper questions
include whether all PTIME is practi-
cally computable without coordina-
tion, and whether monotonicity in the
CALM sense maps to stochastic guar-
antees for machine learning and scien-
tific computation.

The PODS keynote talk that intro-
duced the CALM conjecture included a
number of related conjectures regard-
ing coordination, consistency and de-
clarative semantics.28 Following the
CALM Theorem result,9 the database
theory community continued to ex-
plore these relationships, as summa-
rized by Ameloot.7 For example, in the
batch processing domain, Koutris and
Suciu,31 and Beame et al.12 examine
massively parallel computations with
rounds of global coordination, consid-
ering not only the number of coordina-
tion rounds needed for different algo-
rithms, but also communication costs
and skew.

In a different direction, a number of
papers discuss tolerating memory in-
consistency while maintaining pro-
gram invariants. Bailis et al. define a
notion of Invariant Confluence11,42 for
replicated transactional databases, giv-
en a set of database invariants. Many of
the invariants they propose are mono-
tonic in flavor and echo intuition from
CALM. Gotsman et al.24 present pro-
gram analyses that identify which pairs
of potentially concurrent operations
must be synchronized to avoid invari-
ant violations. Li et al. define RedBlue
Consistency,36 requiring that users
“color” operations based on their or-
dering requirements; given a coloring
they choose a synchronization regime
that satisfies the requirements.

Blazes2 similarly elicits program-
mer-provided labels to more efficiently
avoid coordination, but with the goal of
guaranteeing full program consistency
as in CALM.

With Bloom as a base, we have devel-
oped tools including declarative testing
frameworks,4 verification tools,6 and
program transformation libraries that
add coordination to programs that can-
not be statically proven to be confluent.2

Coordination in its place. Pragmati-
cally, it can sometimes be difficult to
find a monotonic implementation of a
full-featured application. Instead, a
good strategy is to keep coordination
off the critical path. In the shopping
cart example, coordination was limited
to checkout, when user performance
expectations are lower. In the garbage
collection example (assuming ade-
quate resources) the non-monotonic
task can run in the background with-
out affecting users.

It can take creativity to move coordina-
tion off the critical path and into a back-
ground task. The most telling example is
the use of tombstoning for low-latency
deletion. In practice, memory for tomb-
stoned items must be reclaimed, so even-
tually all machines need to agree to delete
certain tombstoned items. Like garbage
collection, this distributed deletion can
be coordinated lazily in the background
on a rolling basis. In this case, monotonic
design does not stamp out coordination
entirely, it moves it off the critical path.

Another non-obvious use of CALM
analysis is to identify when to compen-
sate (“apologize”27) for inconsistency,
rather than prevent it via coordination.
For example, when a retail site allows
you to purchase an item, it should dec-
rement the count of items in invento-
ry. This non-monotonic action sug-
gests that coordination is required, for
example, to ensure that the supply is
not depleted before an item is allocat-
ed to you. In practice, this requires too
much integration between systems for
inventory, supply chain, and shop-
ping. In the absence of such coordina-
tion, your purchase may fail non-deter-
ministically after checkout. To account
for this possibility, additional com-
pensation code must be written to de-
tect the out-of-stock exception and
handle it by—for example—sending
you an apologetic email with a loyalty
coupon. Note that a coupon is not a
clear mathematical inverse of any ac-
tion in the original program; domain-
aware compensation often goes be-
yond typical type system logic.

In short, we do not advocate pure

Our question
is one of
computability ...
it asks what is
(im)possible for
a clever
programmer
to achieve.

SEPTEMBER 2020 | VOL. 63 | NO. 9 | COMMUNICATIONS OF THE ACM 81

review articles

Operating Systems. Springer, 1978, 393–481.
26.	 Hamilton, J. Keynote talk. The 3rd ACM SIGOPS

Workshop on Large-Scale Distributed Systems and
Middleware. ACM, 2009.

27.	 Helland, P. and Campbell, D. Building on quicksand.
In Proceedings of the Conference on Innovative Data
Systems Research. ACM, 2009.

28.	 Hellerstein, J. The Declarative Imperative:
Experiences and conjectures in distributed logic.
SIGMOD Record 39, 1 (2010), 5–19.

29.	 Hellerstein, J. and Alvaro, P. Keeping CALM: When
distributed consistency is easy. 2019; arXiv:1901.01930.

30.	 Herlihy, M. and Wing, J. Linearizability: A correctness
condition for concurrent objects. ACM Trans.
Programming Languages and Systems 12, 3 (1990),
463–492.

31.	 Koutris, P. and Suciu, D. Parallel evaluation of
conjunctive queries. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symp. Principles of
Database Systems. ACM, 2011, 223–234.

32.	 Kuper, L. and Newton, R. LVARS: Lattice-based data
structures for deterministic parallelism. In Proceedings
of the 2nd ACM SIGPLAN Workshop on Functional High-
Performance Computing. ACM, 2013, 71–84.

33.	 Lamport, L. The part-time parliament. ACM Trans.
Computer Systems 16, 2 (1998), 133–169.

34.	 Lampson, B. and Sturgis, H. Crash recovery in a
distributed system. Technical report, Xerox PARC
Research Report, 1976.

35.	 Lausen, G., Ludäscher, B. and May, W. On active
deductive databases: The state log approach. In
Workshop on (Trans) Actions and Change in Logic
Programming and Deductive Databases. Springer,
1997, 69–106.

36.	 Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N.
and Rodrigues, R. Making geo-replicated systems
fast as possible, consistent when necessary. OSDI 12
(2012), 265–278.

37.	 Meiklejohn, C. and Van Roy, P. Lasp: A language
for distributed, coordination-free programming. In
Proceedings of the 17th Intern. Symp. Principles and
Practice of Declarative Programming. ACM, 2015,
184–195.

38.	 Milano, M., Recto, R., Magrino, T. and Myers, A. A
tour of Gallifrey, a language for geo-distributed
programming. In Proceedings of the 3rd Summit
on Advances in Programming Languages. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

39.	 Shapiro, M., Preguiça, N., Baquero, C. and Zawirski, M.
Conflict-free replicated data types. In Proceedings of
the Symp. Self-Stabilizing Systems. Springer, 2011,
386–400.

40.	Valiant, L. A bridging model for parallel computation.
Commun. ACM 33, 8 (Aug. 1990), 103–111.

41.	 Wadler, P. Deforestation: Transforming programs to
eliminate trees. In Proceedings of the 2nd European
Symp. Programming, 1988.

42.	 Whittaker, M. and Hellerstein, J. Interactive checks for
coordination avoidance. In Proceedings of the VLDB
Endowment 12, 1 (2018), 14–27.

43.	 Wu, C., Faleiro, J., Lin, Y. and Hellerstein, J. Anna: A
KVS for any scale. In Proceedings of the 34th IEEE
Intern. Conf. on Data Engineering, 2018.

44.	Zinn, D., Green, T. and Ludäscher, B. Win-move is
coordination-free (sometimes). In Proceedings of
the 15th Intern. Conf. Database Theory. ACM, 2012,
99–113.

Joseph M. Hellerstein (hellerstein@berkeley.edu) is the
Jim Gray Professor of Computer Science at the University
of California at Berkeley, CA, USA.

Peter Alvaro (palvaro@cs.ucsc.edu) is an assistant
professor at the University of California at Santa Cruz,
CA, USA.

© 2020 ACM 0001-0782/20/9 $15.00

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
keeping-calm

Conclusion
Distributed systems theory is dominat-
ed by fearsome negative results, such
as the Fischer/Lynch/Patterson impos-
sibility proof,21 the CAP Theorem,23
and the two generals problem.25 These
results identify things that are not pos-
sible to achieve in general in a distribut-
ed system. System builders, of course,
are more interested in the complement
of this space—those things that can be
achieved, and, importantly, how they
can be achieved while minimizing com-
plexity and cost.

The CALM Theorem presents a
positive result that delineates the
frontier of the possible. CALM proves
that if a problem is monotonic, it has a
coordination-free program that guar-
antees consistency—a property of all
possible executions of that program.
The inverse is also true: any program
for a non-monotonic problem will re-
quire runtime enforcement (coordi-
nation) to ensure consistent out-
comes. CALM enables reasoning via
static analysis, and limits or elimi-
nates the use of runtime consistency
checks. This is in contrast to storage
consistency like linearizability or seri-
alizability, which requires expensive
runtime enforcement.

CALM falls short of being a con-
structive result—it does not actually
tell us how to write consistent, coordi-
nation-free distributed systems. Even
armed with the CALM Theorem, a sys-
tem builder must answer two key ques-
tions. First, and most difficult, is
whether the problem they are trying to
solve has a monotonic specification.
Most programmers begin with pseudo-
code of some implementation in mind,
and the theory behind CALM would ap-
pear to provide no guidance on how to
extract a monotone specification from
a candidate implementation. The sec-
ond question is equally important: giv-
en a monotonic specification for a
problem, how can I implement it in
practice? Languages such as Bloom
point the way to new paradigms for
programming distributed systems that
favor and (conservatively) test for
monotonic specification. There is re-
maining work to do making these lan-
guages attractive to developers and ef-
ficient at runtime.

Acknowledgments. Thanks to Jef-
frey Chase, our reviewers, as well as

Eric Brewer, Jose Faleiro, Pat Helland,
Frank Neven, Chris Ré, and Jan Van
den Bussche for their feedback and
encouragement.	

References
1.	 Abiteboul, S., Vianu, V., Fordham, B. and Yesha, Y.

Relational transducers for electronic commerce. J.
Computer and System Sciences 61, 2 (2000), 236–269.

2.	 Alvaro, P., Conway, N., Hellerstein, J. and Maier, D.
Blazes: Coordination analysis for distributed programs.
In Proceedings of the IEEE 30th Intern. Conf. on Data
Engineering, 2014, 52–63.

3.	 Alvaro, P., Conway, N., Hellerstein, J. and Marczak W.
Consistency analysis in Bloom: A CALM and collected
approach. In Proceedings of the 5th Biennial Conf.
Innovative Data Systems Research (Asilomar, CA,
USA, Jan. 9–12, 2011) 249–260.

4.	 Alvaro, P., Hutchinson, A., Conway, N., Marczak, W.
and Hellerstein, J. BloomUnit: Declarative testing for
distributed programs. In Proceedings of the 5th Intern.
Workshop on Testing Database Systems. ACM, 2012., 1.

5.	 Alvaro, P., Marczak, W., Conw ay, N., Hellerstein, J.,
Maier, D. and Sears, R. Dedalus: Datalog in time and
space. Datalog Reloaded. Springer, 2011, 262–281.

6.	 Alvaro, P., Rosen, J. and Hellerstein, J. Lineage-driven
fault injection. In Proceedings of the 2015 ACM
SIGMOD Intern. Conf. Management of Data. ACM,
2015, 331–346.

7.	 Ameloot. T. Declarative networking: Recent theoretical
work on coordination, correctness, and declarative
semantics. ACM SIGMOD Record 43, 2 (2014), 5–16.

8.	 Ameloot, T., Ketsman, B., Neven, F. and Zinn, D. Weaker
forms of monotonicity for declarative networking: A
more fine-grained answer to the CALM-conjecture.
ACM Trans. Database Systems 40, 4 (2016), 21.

9.	 Ameloot, T., Neven, F. and den Bussche, J.V. Relational
transducers for declarative networking. J. ACM 60, 2
(2013), 15.

10.	 Backus, J. Can programming be liberated from the
Von Neumann style? A functional style and its algebra
of programs. Commun. ACM 21, 8 (Aug. 1978).

11.	 Bailis, P., Fekete, A., Franklin, M., Ghodsi, A.,
Hellerstein, J. and Stoica, I. Coordination avoidance
in database systems. In Proceedings of the VLDB
Endowment 8, 3 (2014), 185–196.

12.	 Beame, P., Koutris, P. and Suciu, D. Communication
steps for parallel query processing. In Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGAI Symp.
Principles of Database Systems. ACM, 2013, 273–284.

13.	 Birman, K., Chockler, G. and van Renesse, R. Toward
a cloud computing research agenda. SIGACT News
40, 2 (2009).

14.	 Brewer, E. CAP twelve years later: How the” rules”
have changed. Computer 45, 2 (2012), 23–29.

15.	 Chrysanthis, P.K. and Ramamritham, K. Acta: A
framework for specifying and reasoning about
transaction structure and behavior. ACM SIGMOD
Record 19, 2 (1990), 194–203.

16.	 Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris,
R.T., and Kohler, E. The scalable commutativity rule:
Designing scalable software for multicore processors.
ACM Trans. Computer Systems 32, 4 (2015), 10.

17.	 Conway, N., Marczak, W., Alvaro, P., Hellerstein, J. and
Maier, D. Logic and lattices for distributed programming.
In Proceedings of the 3rd ACM Symp. Cloud Computing.
ACM, 2012, 1.

18.	 Corbett, J. et al. Spanner: Google’s globally distributed
database. ACM Trans. Computer Systems 31, 3 (2013), 8.

19.	 DeCandia, G. et al. Dynamo: Amazon’s highly available
key-value store. ACM SIGOPS Operating Systems Rev.
41, 6 (2007), 205–220.

20.	 Eswaran, K., Gray, J., Lorie, R. and Traiger, I. The notions
of consistency and predicate locks in a database system.
Commun. ACM 19, 11 (1976), 624–633.

21.	 Fischer, M., Lynch, N. and Paterson, M. Impossibility of
distributed consensus with one faulty process. J. ACM
32, 2 (1985), 374–382.

22.	 Garcia-Molina, H. and Salem, K. Sagas. In Proceedings
of the 1987 ACM SIGMOD Intern. Conf. Management
of Data. ACM, 249–259.

23.	 Gilbert, S. and Lynch, N. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News 33, 2 (2002), 51–59.

24.	 Gotsman, A.,Yang, H., Ferreira, C., Najafzadeh, M. and
Shapiro, M. ’Cause I’m strong enough: Reasoning
about consistency choices in distributed systems.
ACM SIGPLAN Notices 51, 1 (2016), 371–384.

25.	 Gray, J. Notes on data base operating systems.

