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DISTRIBUTED SYSTEMS ARE tricky. Multiple unreliable 
machines are running in parallel, sending messages to 
each other across network links with arbitrary delays. 
How can we be confident these systems do what we 
want despite this chaos? 

This issue should concern us because nearly all 
of the software we use today is part of a distributed 
system. Apps on your phone participate with 
hosted services in the cloud; together they form a 
distributed system. Hosted services themselves are 
massively distributed systems, often running on 
machines spread across the globe. Big data systems 
and large-scale databases are distributed 

across many machines. Most scien-
tific computing and machine learning 
systems work in parallel across mul-
tiple processors. Even legacy desktop 
operating systems and applications 
like spreadsheets and word processors 
are tightly integrated with distributed 
backend services.

The challenge of building correct 
distributed systems is increasingly ur-
gent, but it is not new. One traditional 
answer has been to reduce this com-
plexity with memory consistency guar-
antees—assurances that accesses to 
memory (heap variables, database keys, 
and so on) occur in a controlled fashion. 
However, the mechanisms used to en-
force these guarantees—coordination pro-
tocols—are often criticized as barriers 
to high performance, scale, and avail-
ability of distributed systems.

The high cost of coordination. 
Coordination protocols enable auton-
omous, loosely coupled machines to 
jointly decide how to control basic be-
haviors, including the order of access to 
shared memory. These protocols are 
among the most clever and widely cited 
ideas in distributed computing. Some 
well-known techniques include the 
Paxos33 and Two-Phase Commit (2PC)25,34 
protocols, and global barriers underly-
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ing computational models like Bulk 
Synchronous Parallel computing.40

Unfortunately, the expense of coor-
dination protocols can make them 
“forbidden fruit” for programmers. 
James Hamilton from Amazon Web 
Services made this point forcefully, us-
ing the phrase “consistency mecha-
nisms” where we use coordination:

“The first principle of successful 
scalability is to batter the consistency 

mechanisms down to a minimum, 
move them off the critical path, hide 
them in a rarely visited corner of the 
system, and then make it as hard as 
possible for application developers to 
get permission to use them.”26

The issue is not that coordination is 
tricky to implement, though that is true. 
The main problem is that coordination 
can dramatically slow down computa-
tion or stop it altogether. Some modern 

global-scale systems utilize coordina-
tion protocols; the Google Spanner 
transactional database18 is a notable 
example that uses both Paxos and 2PC. 
However, these protocols suffer from 
high latencies, on the order of 10ms–
100ms. Global-scale systems that rely 
on these protocols are not meant to be 
used in the fast path of an application. 
Coordination latency problems trans-
late to the micro scale as well. Recent 
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Figure 1. A distributed waits-for graph with replicated nodes and partitioned edges. There is 
a cycle that spans Machines 1 and 2 ({T1,T3}).
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sient errors due to delayed or reordered 
messages in this distributed computa-
tion. Do local detectors have to coordi-
nate with other machines to be sure of a 
deadlock they have observed? In this 
case, no coordination is required. To see 
this, note that once we know a cycle ex-
ists in a graph, learning about a new edge 
can never make the cycle go away. For ex-
ample, once Machine 1 and Machine 2 
jointly identify a deadlock between T1 
and T3, new information from Machine 3 
will not change that fact. Additional facts 
can only result in additional cycles being 
detected: the output at each machine 
grows monotonically with the input. Fi-
nally, if all the edges are eventually 
shared across all machines, the ma-
chines will agree upon the outcome, 
which is based on the full graph.

Distributed garbage collection. Gar-
bage collectors in distributed systems 
must identify unreachable objects in a 
distributed graph of memory referenc-
es. Garbage collection works by identi-
fying graph components that are dis-
connected from the “root” of a system 
runtime. The property of being “gar-
bage” is also stable: once a graph com-
ponent’s connection to the root is re-
moved, the objects in that component 
will not be re-referenced.

In a distributed system, references 
to objects can span machines. A local 
view of the reference graph contains 
only a subset of the edges in the global 
graph. How can multiple local garbage 
collectors work together to identify ob-
jects that are truly unreachable?

Note that a machine may have a lo-
cal object and no knowledge whether 
the object is connected to the root;  Ma-
chine 3 and object O4 in Figure 2 form 
an example. Yet there still may be a 
path to that object from the root that 
consists of edges distributed across 
other machines. Hence, each machine 
exchanges copies of edges with other 
machines to accumulate more infor-
mation about the graph.

As before, we might be concerned 
about errors due to message delays or 
reordering. Can local collectors au-
tonomously declare and deallocate 
garbage? Here, the answer is differ-
ent: coordination is indeed required! 
To see this, note that a decision 
based on incomplete information—
for example, Machine 3 deciding that 
object O4 is unreachable in Figure 

work showed that state-of-the-art mul-
tiprocessor key-value stores can spend 
90% of their time waiting for coordina-
tion; a coordination-free implementa-
tion called Anna achieves over two or-
ders of magnitude speedup by 
eliminating that coordination.43 Can 
we avoid coordination more generally, 
as Hamilton recommends? When?

The bigger picture: Program consis-
tency. The general question of when 
coordination is necessary to achieve 
consistency was not addressed until 
relatively recently. Traditional work 
on consistency focused on properties 
like linearizability30 and conflict seri-
alizability,20 which ensure memory 
consistency by constraining the order 
of conflicting memory accesses. This 
tradition obscured the underlying 
question of whether coordination is re-
quired for the consistency of a particu-
lar program’s outcomes. To attack the 
problem holistically we need to move 
up the stack, setting aside low-level de-
tails in favor of program semantics.

Traffic intersections provide a use-
ful analogy from the real world. To 
avoid accidents at busy intersections, 
we often install stop lights to coordi-
nate traffic across two intersecting 
roads. However, coordination is not a 
necessary evil in this scenario: we can 
also prevent accidents by building an 
overpass or tunnel for one of the roads. 
The “traffic intersection problem” is 
an example with a coordination-free 
solution. Importantly, the solution is 
not found by cleverly controlling the 
order of access to the critical section 
where the roads overlap on a map. The 
solution involves engineering the 
roads to avoid the need for coordina-
tion entirely.

For the traffic intersection problem, 
it turns out there is a solution that 

avoided coordination altogether. Not 
all problems have such a solution. For 
any given computational problem, how 
do we know if it has a coordination free 
solution, or if it requires coordination 
for consistency? To sharpen our intu-
ition, we consider two nearly identical 
problems from the distributed systems 
canon. Both involve graph reachability, 
but one is coordination free and the 
other is not.

Distributed deadlock detection. 
Distributed databases identify cycles 
in a distributed graph in order to detect 
and remediate deadlocks. In a tradi-
tional database system, a transaction Ti 

may be waiting for a lock held by an-
other transaction Tj, which may in turn 
be waiting for a second lock held by Ti. 
The deadlock detector identifies such 
“waits-for” cycles by analyzing a direct-
ed graph in which nodes represent 
transactions, and edges represent one 
transaction waiting for another on a 
lock queue. Deadlock is a stable prop-
erty: the transactions on a waits-for cy-
cle cannot make progress, so all edges 
on the cycle persist indefinitely.

In a distributed database, a “local” 
(single-machine) view of the waits-for 
graph contains only a subset of the 
edges in the global waits-for graph. In 
this scenario, how do local deadlock 
detectors work together to identify 
global deadlocks?

Figure 1 shows a waits-for cycle that 
spans multiple machines. To identify 
such distributed deadlocks, each ma-
chine exchanges copies of its edges 
with other machines to accumulate 
more information about the global 
graph. Any time a machine observes a 
cycle in the information it has received 
so far, it can declare a deadlock among 
the transactions on that cycle.

We might be concerned about tran-
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2—can be invalidated by the subse-
quent arrival of new information that 
demonstrates reachability (for exam-
ple, the edges Root → O1, O1 → O3, O3 
→ O4). The output does not grow 
monotonically with the input: provi-
sional “answers” may need to be re-
tracted. To avoid this, a machine 
must ensure it has heard everything 
there is to hear before it declares an 
object unreachable. The only way to 
know it has heard everything is to 
coordinate with all the other ma-
chines—even machines that have no 
reference edges to report—to estab-
lish that fact. As we will discuss, a hall-
mark of coordination is this require-
ment to communicate even in the 
absence of data dependencies.

The crux of consistency: Monotonic-
ity. These examples bring us back to our 
fundamental question, which applies to 
any concurrent computing framework.

QUESTION: We say that a computation-
al problem is coordination-free if there 
exists a distributed implementation  
(that is, a program solving the problem) 
that computes a consistent output with-
out using coordination. What is the fam-
ily of coordination-free problems, and 
what problems lie outside that family?

There is a difference between an in-
cidental use of coordination and an 
intrinsic need for coordination: the 
former is the result of an implementa-
tion choice; the latter is a property of a 
computational problem. Hence our 
Question is one of computability, like 
P vs. NP or Decidability. It asks what is 
(im)possible for a clever programmer 
to achieve.

Note that the question assumes 
some definition of “consistency.” 
Where traditional work focused nar-
rowly on memory consistency (that is, 
reads and writes produce agreed-upon 
values), we want to focus on program 
consistency: does the implementation 
produce the outcome we expect (for ex-
ample, deadlocks detected, garbage 
collected), despite any race conditions 
across messages and computation that 
might arise?

Our examples provide clues for an-
swering our question. Both examples 
accumulate a set of directed edges E, 
and depend on reachability predi-
cates—that is, tests for pairs of nodes in 

the transitive closure E∗. But they differ 
in one key aspect. A node participates 
in a deadlock if there exists a path to it-
self in E∗: {n | ∃(n,n) ∈ E∗}. A node n is 
garbage if there does not exist a path 
from root to n: {n |¬ ∃(root,n) ∈ E∗}.

Logical predicates clarify the distinc-
tion between the examples. For dead-
lock detection’s existential predicate, 
the set of satisfying paths that exist is 
monotonic in the information received:

DEFINITION 1. A problem P is mono-
tonic if for any input sets S, T where S ⊆ 
T, P(S) ⊆ P(T).

By contrast, the set of satisfying 
paths that do not exist in the garbage 
collection example is non-monotonic: 
conclusions made on partial informa-
tion about E may not hold in eventual-
ity as counterexamples appear to re-
voke prior beliefs about what “did not 
exist” previously.

Monotonicity is the key property un-
derlying the need for coordination to 
establish consistency, as captured in 
the CALM Theorem:

THEOREM 1. Consistency As Logical 
Monotonicity (CALM). A problem has 
a consistent, coordination-free distrib-
uted implementation if and only if it is 
monotonic.

Intuitively, monotonic problems are 
“safe” in the face of missing information 
and can proceed without coordination. 
Non-monotonic problems, by contrast, 
must be concerned that truth of a prop-
erty could change in the face of new infor-
mation. Therefore, they cannot proceed 
until they know all information has ar-
rived, requiring them to coordinate.

Additionally, because they “change 
their mind,” non-monotonic problems 
are order-sensitive: the order in which 
they receive information determines 
how they toggle state back and forth, 
which can in turn determine their final 
state (as we will see in the example of 
shopping carts). By contrast, monoton-
ic problems simply accumulate beliefs; 
their output depends only on the con-
tent of their input, not the order in 
which it arrives.

Our discussion so far has remained 
at the level of intuition. The next sec-
tion provides a sketch of a proof of 
the CALM Theorem, including fur-
ther discussion of definitions for 
consistency and coordination. The 
proof uses logic formalisms from da-
tabase theory and demonstrates the 
benefits of bringing the theory of da-
tabases (ACM PODS) and distributed 
systems (ACM PODC) closer together. 
Problems can be defined as families 
of declarative queries over relations 
(sets of records) running across mul-
tiple machines. As in our examples, 
the monotonicity of these queries 
can often be checked statically via 
their syntax: for example, ∃(n,n) ∈ E∗ 
is monotonic, but ¬∃(root,n) ∈ E∗ is 
non-monotonic, as evidenced by the 
use of the negated existential quanti-
fier ¬∃ (“not exists”). Readers seeking 
a complete proof are directed to the 
papers by Ameloot, et al.8,9

CALM: A Proof Sketch
Our first challenge in formalizing 
the CALM Theorem is to define pro-
gram consistency in a manner that 
allows us to reason about program out-
comes, rather than mutations to stor-
age. Having done that, we can move on 

Figure 2. A distributed object reference graph with remote references (dotted arrows).  
The fact that object O3 is reachable from Root can be established without any information 
from Machine 3. Objects O5 and O6 are garbage, which can only be established by knowing 
the entire graph.
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ries of messages <add(I); delete(I)> 
will cause the state to toggle to exists 
and then to not-exists; on another 
machine the messages might arrive in 
the order <delete(I);add(I)>, caus-
ing I’s state to transition from not-
exists to not-exists to exists. 
Even after the two machines have each 
received all the messages, they dis-
agree on the final outcome. As a tradi-
tional approach to avoid such “race 
conditions,” we might bracket every 
non-monotonic delete operation 
with a global coordination to agree on 
which add requests come before it. 
Can we do better?

As a creative application-level use of 
monotonicity, a common technique is 
for deletes to be handled separately 
from adds via two separate monotoni-
cally growing sets: Added items and 
Deleted items.19,39 The Added and 
Deleted sets are both insert-only, 
and insertions across the two com-
mute. The final cart contents can be 
determined by unioning up the Add-
ed sets across nodes, as well as union-
ing up the Deleted sets across nodes, 
and computing the set-difference of 
the results. This would seem to solve 
our problem: it removes the need to 
coordinate while shopping—that is, 
while issuing add and delete re-
quests to the cart.

Unfortunately, neither the add nor 
delete operation commutes with 
checkout—if a checkout message 
arrives before some insertions into ei-
ther the Added or Deleted sets, 
those insertions will be lost. In a rep-
licated setting like Dynamo’s, the or-
der of checkout with respect to oth-
er messages needs to be globally 
controlled, or it could lead to differ-
ent decisions about what was actually 
in the cart when the checkout re-
quest was processed.

Even if we stop here, our lens provid-
ed a win: monotonicity allows shopping 
to be coordination free, even though 
checkout still requires coordination.

This design evolution illustrates the 
technical focus we seek to clarify. Rath-
er than micro-optimize protocols like 
Paxos or 2PC to protect race conditions 
in procedural code, modern distribut-
ed systems creativity often involves 
minimizing the use of such protocols.

A sketch of the proof. The CALM 
conjecture was presented in a keynote 

to a discussion of consistent comput-
ability with and without coordination.

Program consistency: Confluence. 
Distributed systems introduce signifi-
cant non-determinism to our pro-
grams. Sources of non-determinism 
include unsynchronized parallelism, 
unreliable components, and networks 
with unpredictable delays. As a result, 
a distributed program can exhibit a 
large space of possible behaviors on a 
given input.

While we may not control all the be-
havior of a distributed program, our 
true concern is with its observable be-
havior: the program outcomes. To this 
end, we want to assess how distributed 
nondeterminism affects program out-
comes. A practical consistency ques-
tion is this: “Does my program produce 
deterministic outcomes despite non-
determinism in the runtime system?”

This is a question of program conflu-
ence. In the context of nondeterminis-
tic message delivery, an operation on a 
single machine is confluent if it pro-
duces the same set of output responses 
for any non-deterministic ordering and 
batching of a set of input requests. In 
this vein, a confluent single-machine 
operation can be viewed as a determin-
istic function from sets to sets, abstract-
ing away the nondeterministic order in 
which its inputs happen to appear in a 
particular run of a distributed system. 
Confluent operations compose: if the 
output set of one confluent operation is 
consumed by another, the resulting 
composite operation is confluent. 
Hence, confluence can be applied to in-
dividual operations, components in a 
dataflow, or even entire distributed pro-
grams.2 If we restrict ourselves to build-
ing programs by composing confluent 
operations, our programs are confluent 
by construction, despite orderings of 
messages or execution races within and 
across components.

Unlike traditional memory consis-
tency properties such as linearizabili-
ty,30 confluence makes no require-
ments or promises regarding notions 
of recency (for example, a read is not 
guaranteed to return the result of the 
latest write request issued) or ordering 
of operations (for example, writes are 
not guaranteed to be applied in the 
same order at all replicas). Neverthe-
less, if an application is confluent, we 
know that any such anomalies at the 

memory or storage level do not affect 
the application outcomes.

Confluence is a powerful yet permis-
sive correctness criterion for distribut-
ed applications. It rules out applica-
tion-level inconsistency due to races 
and non-deterministic delivery, while 
permitting nondeterministic ordering 
and timings of lower-level operations 
that may be costly (or sometimes im-
possible) to prevent in practice.

Confluent shopping carts. To illus-
trate the utility of reasoning about con-
fluence, we consider an example of a 
higher-level application. In their paper 
on the Dynamo key-value store,19 re-
searchers from Amazon describe a 
shopping cart application that achieves 
confluence without coordination. In 
their scenario, a client Web browser re-
quests items to add and delete from 
an online shopping cart. For availabili-
ty and performance, the state of the 
cart is tracked by a distributed set of 
server replicas, which may receive re-
quests in different orders. In the Ama-
zon implementation, no coordination 
is needed while shopping, yet all server 
replicas eventually agree on the same 
final state of the shopping cart. This is 
a prime example of the class of pro-
gram that interests us: eventually con-
sistent, even when implemented atop a 
non-deterministic distributed sub-
strate that does no coordination.

Program consistency is possible in 
this case because the fundamental op-
erations performed on the cart (for ex-
ample, add) commute, so long as the 
contents of the cart are represented as 
a set and the internal ordering of its el-
ements is ignored. If two replicas learn 
along the way they disagree about the 
contents of the cart, their differing 
views can be merged simply by issuing 
a logical “query” that returns the union 
of their respective sets.

Unfortunately, if we allow a delete 
operation in addition to add, the set 
neither monotonically grows nor 
shrinks, which causes consistency 
trouble. If instructions to add item I 
and delete item I arrive in different 
orders at different machines, the ma-
chines may disagree on whether I 
should be in the cart. As mentioned 
earlier, this is reflected in the way the 
existence of I toggles on the nodes. On 
one machine the presence of I might 
start in the state not-exists, but a se-
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Now that we have a formal execu-
tion model (relational transducers), a 
definition of consistency (confluence), 
and a definition of monotonic pro-
grams, we are prepared to prove a ver-
sion of the CALM Theorem. The for-
ward “if” direction of the CALM 
Theorem is quite straightforward and 
similar to our previous discussion: in a 
monotonic relational transducer net-
work, it is easy to show that any ma-
chine will eventually Ingest and Send a 
deterministic set of messages and gen-
erate a deterministic output. As a side 
benefit, at any time during execution, 
the messages output by any  machine 
form a valid subset of the final output.

The reverse “only if” direction is 
quite a bit trickier, as it requires ruling 
out any possible scheme for avoiding 
coordination. The first challenge is to 
formally separate the communication 
needed to construct outputs (essential-
ly, dataflow messages) from other com-
munication (coordination messages). 
Intuitively, dataflow messages are those 
that arise to assemble data whose com-
ponents are not co-located. To isolate 
the coordination messages, Ameloot et 
al. consider all possible ways to partition 
data across machines in the network at 
program start. From each of these start-
ing points, a messaging pattern is pro-
duced during execution of the program. 
We say that a program contains coordi-
nation if it requires messages to be sent 

Figure 3. A simple four-machine relational transducer network with one machine’s state and 
event loop shown in detail.

System State

Event Handler
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?

?

talk at PODS 2010 and written up short-
ly thereafter alongside a number of cor-
ollaries.28 In a subsequent series of pa-
pers,8,9,44 Ameloot and colleagues 
presented a formalization and proof of 
the CALM Theorem, which remains 
the reference formalism at this time. 
Here, we briefly review the structure of 
the argument from Ameloot et al.

Proofs of distributed computability 
require some formal model of distrib-
uted computation: a notion of disparate 
machines each supporting some local 
model of computation, data partitioned 
across the machines, and an ability for 
the machines to communicate over 
time. To capture the notion of a distrib-
uted system composed out of monoton-
ic (or non-monotonic) logic, Ameloot 
uses the formalism of a relational trans-
ducer1 running on each machine in a 
network. This formalism matches our 
use of logical expressions in our graph 
examples; it also matches the design 
pattern of sets of items with additions, 
deletions and queries in Dynamo.

Simply put, a relational transducer 
is an event-driven server with a rela-
tional database as its memory and pro-
grams written declaratively as queries. 
Each transducer runs a sequential 
event loop as follows:

1. Ingest and apply an unordered 
batch of requests to insert and delete 
records in local relations. Requests 
may come from other machines or a 
distinguished input relation.

2. Query the (now-updated) local re-
lations to compute batches of records 
that should be sent somewhere (possi-
bly locally) for handling in future.

3. Send the results of the query 
phase to relevant machines in the 
network as requests to be handled. 
Results sent locally are ingested in 
the very next iteration of the event 
loop. Results can also be “sent” to a 
distinguished output.

In this computational model, the 
state at each machine is represented 
via sets of records (that is, relations), 
and messages are represented via re-
cords that are inserted into or deleted 
from the relations at the receiving ma-
chine. Computation at each machine 
is specified via declarative (logic) que-
ries over the current local relations at 
each iteration of the event loop.

The next challenge is to define 
monotonicity carefully. The query 

languages used by Ameloot are vari-
ants of Datalog, but we remind the 
reader that classical database query 
languages—relational calculus and 
algebra, SQL, Datalog—are all based 
on first-order logic. In all of these lan-
guages, including first-order logic, 
most common expressions are mono-
tonic; the syntax reveals the potential-
ly nonmonotonic expressions. Hence 
“programs expressed in monotonic 
logic” are easy to define and identify: 
they are the transducer networks in 
which every machine’s queries use 
only monotonic syntax. For instance, 
in the relational algebra, we can allow 
each machine to employ selection, 
projection, intersection, join and 
transitive closure (the monotonic op-
erators of relational algebra), but not 
set difference (the sole non-monoton-
ic operator). If we use relational logic, 
we disallow the use of universal quanti-
fiers (∀) and their negation-centric equiv-
alent (¬ ∃)—precisely the construct that 
tripped us up in the garbage collection 
example noted earlier. If we model our 
programs with mutable relations, in-
sertions are allowable, but in general 
updates and deletions are not.5,35 
These informal descriptions elide a 
number of clever exceptions to these 
rules that still achieve semantic mono-
tonicity despite syntactic non-monoto-
nicity,8,17 but they give a sense of how 
the formalism is defined.



78    COMMUNICATIONS OF THE ACM   |   SEPTEMBER 2020  |   VOL.  63  |   NO.  9

review articles

The latter point is what motivated 
our outcome-oriented definition of 
program consistency. Note that Gilbert 
and Lynch23 choose to prove the CAP 
Theorem using a rubric of linearizabil-
ity (that is, agreement on a total order 
of conflicting actions), while Ameloot’s 
CALM Theorem proofs choose conflu-
ence (agreement on program outcomes.) 
We note that confluence is both more 
permissive and closer to user-observable 
properties. CALM provides the formal 
framework for the widespread intuition 
that we can indeed “work around CAP”—
for monotone problems—even if we vio-
late traditional systems-level notions of 
storage consistency.

Distributed design patterns. Our 
shift of focus from mutable storage to 
program semantics has implications 
beyond proofs. It also informs the de-
sign of better programming paradigms 
for distributed computing.

Traditional programming languages 
model the world as a collection of 
named variables whose values change 
over time. Bare assignment10 is a non-
monotonic programming construct: 
outputs based on a prefix of assign-
ments may have to be retracted when 
new assignments come in. Similarly, 
assignments make final program states 
dependent upon the arrival order of in-
puts. This makes it extremely hard to 
take advantage of the CALM Theorem 
to analyze systems written in tradition-
al imperative languages!

Functional programming has long 
promoted the use of immutable vari-
ables, which are constrained to take on 
only a single value during a computation. 
Viewed through the lens of CALM, an im-
mutable variable is a simple monotonic 
pattern: it transitions from being unde-
fined to holding its final value, and nev-
er goes back. Immutable variables gen-
eralize to immutable data structures; 
techniques such as deforestation41 make 
programming with immutable trees, 
lists and graphs more practical.

Monotonic programming patterns 
are common in the design of distribut-
ed storage systems. We already dis-
cussed the Amazon shopping cart for 
Dynamo, which models cart state as 
two growing sets. A related pattern in 
storage systems is the use of tomb-
stones: special data values that mark a 
data item as deleted. Instead of explic-
itly allowing deletion (a non-monoton-

under all possible partitionings—includ-
ing partitionings that co-locate all data 
at a single machine. A message that is 
sent in every partitioning is not related 
to dataflow; it is a coordination mes-
sage. As an example, consider how a dis-
tributed garbage collector decides if a 
locally disconnected object Og is gar-
bage. Even if all the data is placed at a 
single machine, that machine needs to 
exchange messages with the other ma-
chines to check that they have no more 
additional edges—it needs to “coordi-
nate,” not just communicate data de-
pendencies. The proof then proceeds to 
show that non-monotonic operations 
require this kind of coordination.

This brief description elides many 
interesting aspects of the original arti-
cle. In addition to the connections es-
tablished between monotonicity and 
coordination-freeness, connections are 
also made to other key distributed sys-
tems properties. One classic challenge 
is to achieve distributed agreement on 
network membership (represented by 
Ameloot et al. as the All relation). It 
turns out that not only are the mono-
tonic problems precisely the coordina-
tion-free problems, they are also pre-
cisely those that do not require 
knowledge of network membership—
they need not query All. A similar con-
nection is shown with the property of a 
machine being aware of its own identi-
ty/address (querying the Id relation).

CALM Perspective  
on the State of the Art
The CALM Theorem describes what is 
and is not possible. But can we use it 
practically? In this section, we address 
the implications of CALM with respect 
to the state of the art in distributed sys-
tems practice. It turns out that many 
patterns for maintaining consistency 
follow directly from the theorem.

CAP and CALM: Going positive. 
Brewer’s CAP Theorem14 informally 
states that a system can exhibit only two 
out of the three following properties: 
Consistency, Availability, and Partition-
tolerance. CAP is a negative result: it 
captures properties that cannot be 
achieved in general. But CAP only holds 
if we assume the system in question is 
required to execute arbitrary programs. 
It does not ask whether there are spe-
cific subclasses of programs that can 
enjoy all three properties! In a retro-

spective, Brewer reframes his discus-
sion of CAP along these very lines:

[The original] “expression of CAP 
served its purpose, which was to open 
the minds of designers to a wider 
range of systems and trade-offs ... The 
modern CAP goal should be to maxi-
mize combinations of consistency 
and availability that make sense for 
the specific application.”14

CALM is a positive result in this arena: 
it circumscribes the class of problems 
for which all three of the CAP properties 
can indeed be achieved simultaneously. 
To see this, note the following:

OBSERVATION 1. Coordination-free-
ness is equivalent to availability under 
partition.

In the forward direction, a coordina-
tion-free program is by definition avail-
able under partition: all machines can 
proceed independently. When and if 
the partition heals, state merger is 
monotonic and consistent. In the re-
verse direction, a program that em-
ploys coordination will stall (become 
unavailable) during coordination pro-
tocols if the machines involved in the 
coordination span the partition.

In that frame, CALM asks and an-
swers the underlying question of CAP: 
“Which problems can be consistently 
computed while remaining available 
under partition?” CALM does not con-
tradict CAP. Instead, CALM approaches 
distributed consistency from a wider 
frame of reference:

1. First, CAP is a negative result over 
the space of all problems: CALM con-
firms this coarse result, but delineates 
at a finer grain the negative and posi-
tive cases. Using confluence as the defi-
nition of consistency, CALM shows 
that monotone problems can in fact 
satisfy all three of the CAP properties at 
once; non-monotone problems are the 
ones that cannot.

2. The key insight in CALM is to fo-
cus on consistency from the viewpoint 
of program outcomes rather than the 
traditional ordered histories of conflict-
ing actions—typically storage muta-
tion. The emphasis on the problem be-
ing computed shifts focus from 
imperative implementation to declara-
tive specification of outputs; that al-
lows us to ask questions about what 
computations are possible.
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lenge in distributed computing, we de-
signed Bloom to be data-centric: both 
system state and events are represent-
ed as named data, and computation is 
expressed as queries over that data. 
The programming model of Bloom 
closely resembles that of the relational 
transducers described previously. This 
is no coincidence: both Bloom and 
Ameloot’s transducer work are based 
on a logic language for distributed sys-
tems we designed called Dedalus.5 
From the programmer’s perspective, 
Bloom resembles event-driven or actor-
oriented programming—Bloom pro-
grams use reorderable query-like han-
dler statements to describe how an 
agent responds to messages (represent-
ed as data) by reading and modifying 
local state and by sending messages.

Because Bloom programs are writ-
ten in a relational-style query language, 
monotonicity is easy to spot just as it 
was in relational transducers. The rela-
tively uncommon non-monotonic rela-
tional operations—for example, set 
difference—stand out in the lan-
guage’s syntax. In addition, Bloom’s 
type system includes CRDT-like lattic-
es that provide object-level commuta-
tivity, associativity and idempotence, 
which can be composed into larger 
monotonic structures.17

The advantages of the Bloom de-
sign are twofold. First, Bloom makes 
set-oriented, monotonic (and hence 
confluent) programming the easiest 
constructs for programmers to work 
with in the language. Contrast this 
with imperative languages, in which 
assignment and explicit sequencing 
of instructions—two non-monotone 
constructs—are the most natural and 
familiar building blocks for pro-
grams. Second, Bloom can leverage 
simple forms of static analysis—syn-
tactic checks for non-monotonicity 
and dataflow analysis for the taint of 
nonmonotonicity—to certify when 
programs provide the eventual con-
sistency properties desired for 
CRDTs, as well as confirming when 
those properties are preserved across 
compositions of modules. This is the 
power of a language-based approach 
to monotonic programming: local, 
state-centric guarantees can be veri-
fied and automatically composed into 
global, outcome-oriented, program-
level guarantees.

ic construct), tombstones mask immu-
table values with corresponding 
immutable tombstone values. Taken 
together, a data item with tombstone 
monotonically transitions from unde-
fined, to a defined value, and ultimate-
ly to tombstoned.

Conflict-free replicated data types 
(CRDTs)39 provide an object-oriented 
framework for monotonic program-
ming patterns like tombstones, typi-
cally for use in the context of replicated 
state. A CRDT is an abstract data type 
whose possible internal states form a 
lattice and evolve monotonically ac-
cording to the lattice’s associated par-
tial order, such as the partial order of 
set containment under ⊆ or of integers 
under ≤. Two instances of a CRDT can 
be merged using the commutative, as-
sociative, idempotent join function 
from the associated internal lattice. 
Eventually, the states of two CRDT rep-
licas that may have seen different in-
puts and orders can always be deter-
ministically merged into a new final 
state that incorporates all the inputs 
seen by both.

CRDTs are an object-oriented lens 
on a long tradition of prior work that 
exploits commutativity to achieve de-
terminism under concurrency. This 
goes back at least to long-running 
transactions,15,22 continuing through 
recent work on the Linux kernel.16 A 
problem with CRDTs is that their guar-
antees apply only to individual objects. 
The benefits of commutativity have 
been extended to composable libraries 
and languages, enabling programmers 
to reason about correctness of whole 
programs in languages like Bloom,3 
the LVish library for Haskell,32 Lasp,37 
and Gallifrey.38 We turn to an example 
of that idea next.

The Bloom programming language. 
One way to encourage good distributed 
design patterns is to use a language 
specifically centered around those pat-
terns. Bloom is a programming lan-
guage we designed in that vein; indeed, 
the CALM conjecture and Bloom lan-
guage were developed together.3

The main goal of Bloom is to make 
distributed systems easier to reason 
about and program. We felt that a good 
language for a domain is one that ob-
scures irrelevant details and brings into 
sharp focus those that matter. Given 
that data consistency is a core chal-

The issue is not 
that coordination is 
tricky to implement, 
though that is true. 
The main problem 
is that coordination 
can dramatically 
slow down 
computation  
or stop it altogether.
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monotonic programming as the only 
way to build efficient distributed sys-
tems. Monotonicity also has utility as 
an analysis framework for identifying 
nondeterminism so that programmers 
can address it creatively.

Additional Results
Many questions remain open in under-
standing the implications of the CALM 
Theorem on both theory and practice; 
we overview these in a longer version 
of this article.29 The deeper questions 
include whether all PTIME is practi-
cally computable without coordina-
tion, and whether monotonicity in the 
CALM sense maps to stochastic guar-
antees for machine learning and scien-
tific computation.

The PODS keynote talk that intro-
duced the CALM conjecture included a 
number of related conjectures regard-
ing coordination, consistency and de-
clarative semantics.28 Following the 
CALM Theorem result,9 the database 
theory community continued to ex-
plore these relationships, as summa-
rized by Ameloot.7 For example, in the 
batch processing domain, Koutris and 
Suciu,31 and Beame et al.12 examine 
massively parallel computations with 
rounds of global coordination, consid-
ering not only the number of coordina-
tion rounds needed for different algo-
rithms, but also communication costs 
and skew.

In a different direction, a number of 
papers discuss tolerating memory in-
consistency while maintaining pro-
gram invariants. Bailis et al. define a 
notion of Invariant Confluence11,42 for 
replicated transactional databases, giv-
en a set of database invariants. Many of 
the invariants they propose are mono-
tonic in flavor and echo intuition from 
CALM. Gotsman et al.24 present pro-
gram analyses that identify which pairs 
of potentially concurrent operations 
must be synchronized to avoid invari-
ant violations. Li et al. define RedBlue 
Consistency,36 requiring that users 
“color” operations based on their or-
dering requirements; given a coloring 
they choose a synchronization regime 
that satisfies the requirements.

Blazes2 similarly elicits program-
mer-provided labels to more efficiently 
avoid coordination, but with the goal of 
guaranteeing full program consistency 
as in CALM.

With Bloom as a base, we have devel-
oped tools including declarative testing 
frameworks,4 verification tools,6 and 
program transformation libraries that 
add coordination to programs that can-
not be statically proven to be confluent.2

Coordination in its place. Pragmati-
cally, it can sometimes be difficult to 
find a monotonic implementation of a 
full-featured application. Instead, a 
good strategy is to keep coordination 
off the critical path. In the shopping 
cart example, coordination was limited 
to checkout, when user performance 
expectations are lower. In the garbage 
collection example (assuming ade-
quate resources) the non-monotonic 
task can run in the background with-
out affecting users.

It can take creativity to move coordina-
tion off the critical path and into a back-
ground task. The most telling example is 
the use of tombstoning for low-latency 
deletion. In practice, memory for tomb-
stoned items must be reclaimed, so even-
tually all machines need to agree to delete 
certain tombstoned items. Like garbage 
collection, this distributed deletion can 
be coordinated lazily in the background 
on a rolling basis. In this case, monotonic 
design does not stamp out coordination 
entirely, it moves it off the critical path.

Another non-obvious use of CALM 
analysis is to identify when to compen-
sate (“apologize”27) for inconsistency, 
rather than prevent it via coordination. 
For example, when a retail site allows 
you to purchase an item, it should dec-
rement the count of items in invento-
ry. This non-monotonic action sug-
gests that coordination is required, for 
example, to ensure that the supply is 
not depleted before an item is allocat-
ed to you. In practice, this requires too 
much integration between systems for 
inventory, supply chain, and shop-
ping. In the absence of such coordina-
tion, your purchase may fail non-deter-
ministically after checkout. To account 
for this possibility, additional com-
pensation code must be written to de-
tect the out-of-stock exception and 
handle it by—for example—sending 
you an apologetic email with a loyalty 
coupon. Note that a coupon is not a 
clear mathematical inverse of any ac-
tion in the original program; domain-
aware compensation often goes be-
yond typical type system logic.

In short, we do not advocate pure 

Our question  
is one of 
computability ...  
it asks what is  
(im)possible for  
a clever 
programmer  
to achieve.
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Conclusion
Distributed systems theory is dominat-
ed by fearsome negative results, such 
as the Fischer/Lynch/Patterson impos-
sibility proof,21 the CAP Theorem,23 
and the two generals problem.25 These 
results identify things that are not pos-
sible to achieve in general in a distribut-
ed system. System builders, of course, 
are more interested in the complement 
of this space—those things that can be 
achieved, and, importantly, how they 
can be achieved while minimizing com-
plexity and cost.

The CALM Theorem presents a 
positive result that delineates the 
frontier of the possible. CALM proves 
that if a problem is monotonic, it has a 
coordination-free program that guar-
antees consistency—a property of all 
possible executions of that program. 
The inverse is also true: any program 
for a non-monotonic problem will re-
quire runtime enforcement (coordi-
nation) to ensure consistent out-
comes. CALM enables reasoning via 
static analysis, and limits or elimi-
nates the use of runtime consistency 
checks. This is in contrast to storage 
consistency like linearizability or seri-
alizability, which requires expensive 
runtime enforcement.

CALM falls short of being a con-
structive result—it does not actually 
tell us how to write consistent, coordi-
nation-free distributed systems. Even 
armed with the CALM Theorem, a sys-
tem builder must answer two key ques-
tions. First, and most difficult, is 
whether the problem they are trying to 
solve has a monotonic specification. 
Most programmers begin with pseudo-
code of some implementation in mind, 
and the theory behind CALM would ap-
pear to provide no guidance on how to 
extract a monotone specification from 
a candidate implementation. The sec-
ond question is equally important: giv-
en a monotonic specification for a 
problem, how can I implement it in 
practice? Languages such as Bloom 
point the way to new paradigms for 
programming distributed systems that 
favor and (conservatively) test for 
monotonic specification. There is re-
maining work to do making these lan-
guages attractive to developers and ef-
ficient at runtime.
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