
A N o t e  on  D i s t r i b u t e d  C o m p u t i n g  

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall 

1 Introduction 1 

Much of  the current work in distributed, object-oriented systems is based on the 
assumption that objects form a single ontological class. This class consists of all entities 
that can be fully described by the specification of the set of interfaces supported by the 
object and the semantics of the operations in those interfaces. The class includes objects 
that share a single address space, objects that are in separate address spaces on the same 
machine, and objects that are in separate address spaces on different machines (with, 
perhaps, different architectures). On the view that all objects are essentially the same 
kind of entity, these differences in relative location are merely an aspect of the imple- 
mentation of the object. Indeed, the location of an object may change over time, as an 
object migrates from one machine to another or the implementation of  the object 
changes. 

It is the thesis of this note that this unified view of objects is mistaken. There are 
fundamental differences between the interactions of distributed objects and the interac- 
tions of non-distributed objects. Further, work in distributed object-oriented systems 
that is based on a model that ignores or denies these differences is doomed to failure, 
and could easily lead to an industry-wide rejection of the notion of distributed object- 
based systems. 

1.1 Terminology 
In what follows, we will talk about local and distributed computing. By local computing 
(local object invocation, etc.), we mean programs that are confined to a single address 
space. In contrast, we will use the term distributed computing (remote object invoca- 
tion, etc.) to refer to programs that make calls to other address spaces, possibly on 
another machine. In the case of distributed computing, nothing is known about the 
recipient of the call (other than that it supports a particular interface). For example, the 
client of such a distributed object does not know the hardware architecture on which the 
recipient of the call is running, or the language in which the recipient was implemented. 

Given the above characterizations of"local" and "distributed" computing, the eat- 
egories are not exhaustive. There is a middle ground, in which calls are made from one 
address space to another but in which some characteristics of the called object are 
known. An important class of  this sort consists of calls from one address space to 
another on the same machine; we will discuss these later in the paper. 

1. This paper (with the exception of the Afterword) was first published as Sun Micro- 
systems Technical Report SML 94-29, 1994. Copyright Sun Microsystems. This ver- 
sion is dedicated tothe memory of Geoff Wyant. 



50 

2 The Vision of Unified Objects 

There is an overall vision of distributed object-oriented computing in which, from the 
programmer's point of view, there is no essential distinction between objects that share 
an address space and objects that are on two machines with different architectures 
located on different continents. While this view can most recently be seen in such works 
as the Object Management Group's Common Object Request Broker Architecture 
(CORBA) [1], it has a history that includes such research systems as Arjuna [2], Emer- 
ald [3], and Clouds [4]. 

In such systems, an object, whether local or remote, is defined in terms of a set of 
interfaces declared in an interface definition language. The implementation of the 
object is independent of the interface and hidden from other objects. While the under- 
lying mechanisms used to make a method call may differ depending on the location of 
the object, those mechanisms are hidden from the programmer who writes exactly the 
same code for either type of call, and the system takes care of delivery. 

This vision can be seen as an extension of the goal of remote procedure call (RPC) 
systems to the object-oriented paradigm. RPC systems attempt to make cross-address 
space function calls look (to the client programmer) like local function calls. Extending 
this to the object-oriented programming paradigm allows papering over not just the 
marshalling of parameters and the unmarshalling of results (as is done in RPC systems) 
but also the locating and connecting to the target objects. Given the isolation of an 
object's implementation from clients of the object, the use of objects for distributed 
computing seems natural. Whether a given object invocation is local or remote is a 
function of the implementation of the objects being used, and could possibly change 
from one method invocation to another on any given object. 

Implicit in this vision is that the system will be "objects all the way down"; that is, 
that all current invocations or calls for system services will be eventually converted into 
calls that might be to an object residing on some other machine. There is a single para- 
digm of object use and communication used no matter what the location of the object 
might be. 

In actual practice, of course, a local member function call and a cross-continent 
object invocation are not the same thing. The vision is that developers write their appli- 
cations so that the objects within the application are joined using the same program- 
matic glue as objects between applications, but it does not require that the two kinds of 
glue be implemented the same way. What is needed is a variety of implementation tech- 
niques, ranging from same-address-space implementations like Microsoft's Object 
Linking and Embedding [5] to typical network RPC; different needs for speed, security, 
reliability, and object co-location can be met by using the right "glue" implementation. 

Writing a distributed application in this model proceeds in three phases. The first 
phase is to write the application without worrying about where objects are located and 
how their communication is implemented. The developer will simply strive for the nat- 
ural and correct interface between objects. The system will choose reasonable defaults 
for object location, and depending on how performance-critical the application is, it 
may be possible to alpha test it with no further work. Such an approach will enforce a 



51 

desirable separation between the abstract architecture of the application and any needed 
performance tuning. 

The second phase is to tune performance by "concretizing" object locations and 
communication methods. At this stage, it may be necessary to use as yet unavailable 
tools to allow analysis of the communication patterns between objects, but it is certainly 
conceivable that such tools could be produced. Also during the second phase, the right 
set of interfaces to export to various clients such as other applications--can be cho- 
sen. There is obviously tremendous flexibility here for the application developer. This 
seems to be the sort of development scenario that is being advocated in systems like 
Fresco [6], which claim that the decision to make an object local or remote can be put 
offuntil after initial system implementation. 

The final phase is to test with "real bullets" (e.g., networks being partitioned, 
machines going down). Interfaces between carefully selected objects can be beefed up 
as necessary to deal with these sorts of partial failures introduced by distribution by add- 
ing replication, transactions, or whatever else is needed. The exact set of these services 
can be determined only by experience that will be gained during the development of the 
system and the first applications that will work on the system. 

A central part of the vision is that if an application is built using objects all the way 
down, in a proper object-oriented fashion, the right "fault points" at which to insert pro- 
cess or machine boundaries will emerge naturally. But if  you initially make the wrong 
choices, they are very easy to change. 

One conceptual justification for this vision is that whether a call is local or remote 
has no impact on the correctness of a program. If an object supports a particular inter- 
face, and the support of that interface is semantically correct, it makes no difference to 
the correctness of the program whether the operation is carried out within the same 
address space, on some other machine, or off-line by some other piece of equipment. 
Indeed, seeing location as a part of the implementation of an object and therefore as part 
of the state that an object hides from the outside world appears to be a natural extension 
of the object-oriented paradigm. 

Such a system would enjoy many advantages. It would allow the task of software 
maintenance to be changed in a fundamental way. The granularity of change, and there- 
fore of  upgrade, could be changed from the level of the entire system (the current 
model) to the level of the individual object. As long as the interfaces between objects 
remain constant, the implementations of those objects can be altered at will. Remote 
services can be moved into an address space, and objects that share an address space 
can be split and moved to different machines, as local requirements and needs dictate. 
An object can be repaired and the repair installed without worry that the change will 
impact the other objects that make up the system. Indeed, this model appears to be the 
best way to get away from the "Big Wad of Software" model that currently is causing 
so much trouble. 

This vision is centered around the following principles that may, at first, appear 
plausible: 

�9 there is a single natural object-oriented design for a given application, regardless 
of the context in which that application will be deployed; 



52 

�9 failure and performance issues are tied to the implementation of the components 
of an application, and consideration of these issues should be left out of an initial 
design; and 

�9 the interface of an object is independent of the context in which that object is 
used. 

Unfortunately, all of these principles are false. In what follows, we will show why these 
principles are mistaken, and why it is important to recognize the fundamental differ- 
ences between distributed computing and local computing. 

3 D6jh Vu All Over Again 

For those of us either old enough to have experienced it or interested enough in the his- 
tory of computing to have learned about it, the vision of unified objects is quite familiar. 
The desire to merge the programming and computational models of local and remote 
computing is not new. 

Communications protocol development has tended to follow two paths. One path 
has emphasized integration with the current language model. The other path has empha- 
sized solving the problems inherent in distributed computing. Both are necessary, and 
successful advances in distributed computing synthesize elements from both camps. 

Historically~ the language approach has been the less influential of the two camps. 
Every ten years (approximately), members of the language camp notice that the number 
of distributed applications is relatively small. They look at the programming interfaces 
and decide that the problem is that the programming model is not close enough to what- 
ever programming model is currently in vogue (messages in the 1970s [7], [8], proce- 
dure calls in the 1980s [9], [10], [11], and objects in the 1990s [1], [2]). A furious bout 
of language and protocol design takes place and a new distributed computing paradigm 
is announced that is compliant with the latest programming model. After several years, 
the percentage of distributed applications is discovered not to have increased signifi- 
cantly, and the cycle begins anew. 

A possible explanation for this cycle is that each round is an evolutionary stage for 
both the local and the distributed programming paradigm. The repetition of the pattern 
is a result of neither model being sufficient to encompass both activities at any previous 
stage. However, (this explanation continues) each iteration has brought us closer to a 
unification of the local and distributed computing models. The current iteration, based 
on the object-oriented approach to both local and distributed programming, will be the 
one that produces a single computational model that will suffice for both. 

A less optimistic explanation of the failure of each attempt at unification holds that 
any such attempt will fail for the simple reason that programming distributed applica- 
tions is not the same as programming non-distributed applications. Just making the 
communications paradigm the same as the language paradigm is insufficient to make 
programming distributed programs easier, because communicating between the parts of 
a distributed application is not the difficult part of that application. 

The hard problems in distributed computing are not the problems of how to get 
things on and off the wire. The hard problems in distributed computing concern dealing 



53 

with partial failure and the lack of a central resource manager. The hard problems in dis- 
tributed computing concern insuring adequate performance and dealing with problems 
of concurrency. The hard problems have to do with differences in memory access par- 
adigms between local and distributed entities. People attempting to write distributed 
applications quickly discover that they are spending all of their efforts in these areas and 
not on the communications protocol programming interface. 

This is not to argue against pleasant programming interfaces. However, the law of 
diminishing returns comes into play rather quickly. Even with a perfect programming 
model of complete transparency between "f'me-grained," language-level objects and 
"larger-grained" distributed objects, the number of distributed applications would not 
be noticeably larger if these other problems have not been addressed. 

All of this suggests that there is interesting and profitable work to be done in dis- 
tributed computing, but it needs to be done at a much higher-level than that of "free- 
grained" object integration. Providing developers with tools that help manage the com- 
plexity of handling the problems of distributed application development as opposed to 
the generic application development is an area that has been poorly addressed. 

4 Local and Distributed Computing 

The major differences between local and distributed computing concern the areas of 
latency, memory access, partial failure, and concurrency.1 The difference in latency is 
the most obvious, but in many ways is the least fundamental. The often overlooked dif- 
ferences concerning memory access, partial failure, and concurrency are far more dif- 
ficult to explain away, and the differences concerning partial failure and concurrency 
make unifying the local and remote computing models impossible without making 
unacceptable compromises. 

4.1 Latency 
The most obvious difference between a local object invocation and the invocation of an 
operation on a remote (or possibly remote) object has to do with the latency of the two 
calls. The difference between the two is currently between four and five orders of mag- 
nitude, and given the relative rates at which processor speed and network latency speeds 
are changing, the difference in the future promises to be at best no better, and will likely 
be worse. It is this disparity in efficiency that is often seen as the essential difference 
between local and distributed computing. 

Ignoring the difference between the performance of local and remote invocations 
can lead to designs whose implementations are virtually assured of having performance 
problems because the design requires a large amount of communication between com- 
ponents that are in different address spaces and on different machines. Ignoring the dif- 
ference in the time it takes to make a remote object invocation and the time it takes to 
make a local object invocation is to ignore one of the major design areas of an applica- 
tion. A properly designed application will require determining, by understanding the 

1. We are not the first to notice these differences; indeed, they are clearly stated in [12]. 



54 

application being designed, what objects can be made remote and what objects must be 
clustered together. 

The vision outlined earlier, however, has an answer to this objection. The answer is 
two-pronged. The first prong is to rely on the steadily increasing speed of the underly- 
ing hardware to make the difference in latency irrelevant. This, it is often argued, is 
what has happened to efficiency concerns having to do with everything from high level 
languages to virtual memory. Designing at the cutting edge has always required that the 
hardware catch up before the design is efficient enough for the real world. Arguments 
from efficiency seem to have gone out of style in software engineering, since in the past 
such concerns have always been answered by speed increases in the underlying hard- 
ware .  

The second prong of the reply is to admit to the need for tools that will allow one 
to see what the pattern of communication is between the objects that make up an appli- 
cation. Once such tools are available, it will be a matter of tuning to bring objects that 
are in constant contact to the same address space, while moving those that are in rela- 
tively infrequent contact to wherever is most convenient. Since the vision allows all 
objects to communicate using the same underlying mechanism, such tuning will be pos- 
sible by simply altering the implementation details (such as object location) of the rel- 
evant objects. However, it is important to get the application correct first, and after that 
one can worry about efficiency. 

Whether or not it will ever become possible to mask the efficiency difference 
between a local object invocation and a distributed object invocation is not answerable 
apriori. Fully masking the distinction would require not only advances in the technol- 
ogy underlying remote object invocation, but would also require changes to the general 
programming model used by developers. 

If  the only difference between local and distributed object invocations was the dif- 
ference in the amount of time it took to make the call, one could strive for a future in 
which the two kinds of calls would be conceptually indistinguishable. Whether the tech- 
nology of distributed computing has moved far enough along to allow one to plan prod- 
ucts based on such technology would be a matter of judgement, and rational people 
could disagree as to the wisdom of such an approach. 

However, the difference in latency between the two kinds of calls is only the most 
obvious difference. Indeed, this difference is not really the fundamental difference 
between the two kinds of calls, and that even if it were possible to develop the technol- 
ogy of distributed calls to an extent that the difference in latency between the two sorts 
of calls was minimal, it would be unwise to construct a programming paradigm that 
treated the two calls as essentially similar. In fact, the difference in latency between 
local and remote calls, because it is so obvious, has been the only difference most see 
between the two, and has tended to mask the more irreconcilable differences. 

4.2 Memory access 

A more fundamental (but still obvious) difference between local and remote computing 
concerns the access to memory in the two cases specifically in the use of pointers. 
Simply put, pointers in a local address space are not valid in another (remote) address 



55 

space. The system can paper over this difference, but for such an approach to be suc- 
cessful, the transparency must be complete. Two choices exist: either all memory access 
must be controlled by the underlying system, or the programmer must be aware of the 
different types of access--local and remote. There is no in-between. 

If  the desire is to completely unify the programming model--to make remote 
accesses behave as if they were in fact local---the underlying mechanism must totally 
control all memory access. Providing distributed shared memory is one way of com- 
pletely relieving the programmer from worrying about remote memory access (or the 
difference between local and remote). Using the object-oriented paradigm to the fullest, 
and requiring the programmer to build an application with "objects all the way down," 
(that is, only object references or values are passed as method arguments) is another 
way to eliminate the boundary between local and remote computing. The layer under- 
neath can exploit this approach by marshalling and unmarshalling method arguments 
and return values for intra-address space transmission. 

But adding a layer that allows the replacement of all pointers to objects with object 
references only permits the developer to adopt a unified model of object interaction. 
Such a unified model cannot be enforced unless one also removes the ability to get 
address-space-relative pointers from the language used by the developer. Such an 
approach erects a barrier to programmers who want to start writing distributed applica- 
tions, in that it requires that those programmers learn a new style of programming which 
does not use address-space-relative pointers. In requiring that programmers learn such 
a language, moreover, one gives up the complete transparency between local and dis- 
tributed computing. 

Even if one were to provide a language that did not allow obtaining address-space- 
relative pointers to objects (or returned an object reference whenever such a pointer was 
requested), one would need to provide an equivalent way of making cross-address space 
reference to entities other than objects. Most programmers use pointers as references for 
many different kinds of entities. These pointers must either be replaced with something 
that can be used in cross-address space calls or the programmer will need to be aware 
of the difference between such calls (which will either not allow pointers to such enti- 
ties, or do something special with those pointers) and local calls. Again, while this could 
be done, it does violate the doctrine of complete unity between local and remote calls. 
Because of memory access constraints, the two have to differ. 

The danger lies in promoting the myth that "remote access and local access are 
exactly the same" and not enforcing the myth. An underlying mechanism that does not 
unify all memory accesses while still promoting this myth is both misleading and prone 
to error. Programmers buying into the myth may believe that they do not have to change 
the way they think about programming. The programmer is therefore quite likely to 
make the mistake of using a pointer in the wrong context, producing incorrect results. 
"Remote is just like local," such programmers think, "so we have just one unified pro- 
gramming model." Seemingly, programmers need not change their style of program- 
ming. In an incomplete implementation of  the underlying mechanism, or one that 
allows an implementation language that in turn allows direct access to local memory, 
the system does not take care of all memory accesses, and errors are bound to occur. 



56 

These errors occur because the programmer is not aware of the difference between local 
and remote access and what is actually happening "under the covers." 

The alternative is to explain the difference between local and remote access, mak- 
ing the progranuner aware that remote address space access is very different from local 
access. Even if some of the pain is taken away by using an interface defmition language 
like that specified in [1] and having it generate an intelligent language mapping for 
operation invocation on distributed objects, the programmer aware of  the difference 
will not make the mistake of  using pointers for cross-address space access. The pro- 
grammer will know it is incorrect. By not masking the difference, the programmer is 
able to learn when to use one method of access and when to use the other. 

Just as with latency, it is logically possible that the difference between local and 
remote memory access could be completely papered over and a single model of both 
presented to the programmer. When 'we turn to the problems introduced to distributed 
computing by partial failure and concurrency, however, it is not clear that such a unifi- 
cation is even conceptually possible. 

4.3 Partial failure and concurrency 

While unlikely, it is at least logically possible that the differences in latency and mem- 
ory access between local computing and distributed computing could be masked. It is 
not clear that such a masking could be done in such a way that the local computing par- 
adigm could be used to produce distributed applications, but it might still be possible to 
allow some new programming technique to be used for both activities. Such a masking 
does not even seem to be logically possible, however, in the case of partial failure and 
concurrency. These aspects appear to be different in kind in the case of  distributed and 
local computing.1 

Partial failure is a central reality of  distributed computing. Both the local and the 
distributed world contain components that are subject to periodic failure. In the case of 
local computing, such failures are either total, affecting all of  the entities that are work- 
ing together in an application, or detectable by some central resource allocator (such as 
the operating system on the local machine). 

This is not the case in distributed computing, where one component (machine, net- 
work link) can fail while the others continue. Not only is the failure of the distributed 
components independent, but there is no common agent that is able to determine what 
component has failed and inform the other components of that failure, no global state 
that can be examined that allows determination of  exactly what error has occurred. In a 
distributed system, the failure of a network link is indistinguishable from the failure of 
a processor on the other side of that link. 

These sorts of failures are not the same as mere exception raising or the inability to 
complete a task, which can occur in the case of local computing. This type of failure is 
caused when a machine crashes during the execution of an object invocation or a net- 
work link goes down, occurrences that cause the target object to simply disappear rather 

1. In fact, authors such as Schroeder [12] and Hadzilacos and Toueg [13] take partial 
failure and concurrency to be the defining problems of distributed computing. 



57 

than return control to the caller. A central problem in distributed computing is insuring 
that the state of the whole system is consistent after such a failure; this is a problem that 
simply does not occur in local computing. 

The reality of partial failure has a profound effect on how one designs interfaces and 
on the semantics of the operations in an interface. Partial failure requires that programs 
deal with indeterminacy. When a local component fails, it is possible to know the state 
of the system that caused the failure and the state of the system after the failure. No such 
determination can be made in the case of a distributed system. Instead, the interfaces 
that are used for the communication must be designed in such a way that it is possible 
for the objects to react in a consistent way to possible partial failures. 

Being robust in the face of partial failure requires some expression at the interface 
level. Merely improving the implementation of one component is not sufficient. The 
interfaces that connect the components must be able to state whenever possible the 
cause of failure, and there must be interfaces that allow reconstruction of a reasonable 
state when failure occurs and the cause cannot be determined. 

If  an object is coresident in an address space with its caller, partial failure is not pos- 
sible. A function may not complete normally, but it always completes. There is no inde- 
terminism about how much of the computation completed. Partial completion can occur 
only as a result of circumstances that will cause the other components to fail. 

The addition of partial failure as a possibility in the case of distributed computing 
does not mean that a single object model cannot be used for both distributed computing 
and local computing. The question is not "can you make remote method invocation look 
like local method invocation?" but rather "what is the price of making remote method 
invocation identical to local method invocation?" One of two paths must be chosen if 
one is going to have a unified model. 

The fast path is to treat all objects as if they were local and design all interfaces as 
if the objects calling them, and being called by them, were local. The result of choosing 
this path is that the resulting model, when used to produce distributed systems, is essen- 
tially indeterministic in the face of partial failure and consequently fragile and non- 
robust. This path essentially requires ignoring the extra failure modes of distributed 
computing. Since one can't get rid of those failures, the price of adopting the model is 
to require that such failures are unhandled and catastrophic. 

The other path is to design all interfaces as if they were remote. That is, the seman- 
tics and operations are all designed to be deterministic in the face of failure, both total 
and partial. However, this introduces unnecessary guarantees and semantics for objects 
that are never intended to be used remotely. Like the approach to memory access that 
attempts to require that all access is through system-defined references instead of point- 
ers, this approach must also either rely on the discipline of the programmers using the 
system or change the implementation language so that all of the forms of distributed 
indeterminacy are forced to be dealt with on all object invocations. 

This approach would also defeat the overall purpose of unifying the object models. 
The real reason for attempting such a unification is to make distributed computing more 
like local computing and thus make distributed computing easier. This second approach 
to unifying the models makes local computing as complex as distributed computing. 



58 

Rather than encouraging the production of distributed applications, such a model will 
discourage its own adoption by making all object-based computing more difficult. 

Similar arguments hold for concurrency. Distributed objects by their nature must 
handle concurrent method invocations. The same dichotomy applies if one insists on a 
unified programming model. Either all objects must bear the weight of concurrency 
semantics, or all objects must ignore the problem and hope for the best when distrib- 
uted. Again, this is an interface issue and not solely an implementation issue, since deal- 
ing with concurrency can take place only by passing information from one object to 
another through the agency of the interface. So either the overall programming model 
must ignore significant modes of failure, resulting in a fragile system; or the overall pro- 
gramming model must assume a worst-case complexity model for all objects within a 
program, making the production of any program, distributed or not, more difficult. 

One might argue that a multi-threaded application needs to deal with these same 
issues. However, there is a subtle difference. In a multi-threaded application, there is no 
real source of indeterminacy of invocations of operations. The application programmer 
has complete control over invocation order when desired. A distributed system by its 
nature introduces truly asynchronous operation invocations. Further, a non-distributed 
system, even when multi-threaded, is layered on top of a single operating system that 
can aid the communication between objects and can be used to determine and aid in 
synchronization and in the recovery of failure. A distributed system, on the other hand, 
has no single point of resource allocation, synchronization~ or failure recovery, and thus 
is conceptually very different. 

5 The Myth of"Quality of Service" 

One could take the position that the way an object deals with latency, memory access, 
partial failure, and concurrency control is really an aspect of the implementation of that 
object, and is best described as part of the "quality of service" provided by that imple- 
mentation. Different implementations of an interface may provide different levels of 
reliability, scalability, or performance. If  one wants to build a more reliable system, one 
merely needs to choose more reliable implementations of the interfaces making up the 
system. 

On the surface, this seems quite reasonable. If  I want a more robust system, I go to 
my catalog of component vendors. I quiz them about their test methods. I see if they 
have ISO9000 certification, and I buy my components from file one I mast the most. The 
components all comply with the defined interfaces, so I can plug them right in; my sys- 
tem is robust and reliable, and I 'm happy. 

Let us imagine that I build an application that uses the (mythical) queue interface to 
enqueue work for some component. My application dutifully enqueues records that rep- 
resent work to be done. Another application dutifully dequeues them and performs the 
work. After a while, I notice that my application crashes due to time-outs. I fred this 
extremely annoying, but realize that it's my fault. My application just isn't robust 
enough. It gives up too easily on a time-out. So I change my application to retry the 
operation until it succeeds. Now I 'm happy. I almost never see a time-out. Unfortu- 
nately, I now have another problem. Some of the requests seem to get processed two, 



59 

three, four, or more times. How can this be? The component I bought which implements 
the queue has allegedly been rigorously tested. It shouldn't be doing this. I 'm angry. I 
call the vendor and yell at him. After much fmgerpointing and research, the culprit is 
found. The problem turns out to be the way Fm using the queue. Because of my han- 
dling of partial failures (which in my naivete, I had thought to be total), I have been 
enqueuing work requests multiple times. 

Well, I yell at the vendor that it is still their fault. Their queue should be detecting 
the duplicate entry and removing it. I 'm not going to continue using this software unless 
this is fixed. But, since the entities being enqueued are just values, there is no way to do 
duplicate elimination. The only way to ftx this is to change the protocol to add request 
IDs. But since this is a standardized interface, there is no way to do this. 

The moral of this tale is that robustness is not simply a function of the implementa- 
tions of the interfaces that make up the system. While robustness of the individual com- 
ponents has some effect on the robustness of the overall systems, it is not the sole factor 
determining system robustness. Many aspects of robustness can be reflected only at the 
protocol/interface level. 

Similar situations can be found throughout the standard set of interfaces. Suppose I 
want to reliably remove a name from a context. I would be tempted to write code that 
looks like: 

while (true) { 
try { 

context->remove(name); 
break; 

} 
catch (NotFoundlnContext) { 

break; 
} 

catch (NetworkServerFaliure) { 
continue; 

} 
} 

That is, I keep trying the operation until it succeeds (or until I crash). The problem is 
that my connection to the name server may have gone down, but another client's may 
have stayed up. I may have, in fact, successfully removed the name but not discovered 
it because era  network disconnection. The other client then adds the same name, which 
I then remove. Unless the naming interface includes an operation to lock a naming con- 
text, there is no way that I can make this operation completely robust. Again, we see 
that robustness/reliability needs to be expressed at the interface level. In the design of 
any operation, the question has to be asked: what happens if the client chooses to repeat 
this operation with the exact same parameters as previously? What mechanisms are 
needed to ensure that they get the desired semantics? These are things that can be 
expressed only at the interface level. These are issues that can't be answered by supply- 
ing a "more robust implementation" because the lack of robustness is inherent in the 
interface and not something that can be changed by altering the implementation. 



60 

Similar arguments can be made about performance. Suppose an interface describes 
an object which maintains sets of other objects. A defining property of sets is that there 
are no duplicates. Thus, the implementation of this object needs to do duplicate elimi- 
nation. I f  the interfaces in the system do not provide a way of testing equality of refer- 
ence, the objects in the set must be queried to determine equality. Thus, duplicate elim- 
ination can be done only by interacting with the objects in the set. It doesn't matter how 
fast the objects in the set implement the equality operation. The overall performance of 
eliminating duplicates is going to be governed by the latency in communicating over 
the slowest communications link involved. There is no change in the set implementa- 
tions that can overcome this. An interface design issue has put an upper bound on the 
performance of this operation. 

6 Lessons from NFS 

We do not need to look far to see the consequences of ignoring the distinction between 
local and distributed computing at the interface level. NFS| Sun's distributed comput- 
ing file system [14], [15] is an example of a non-distributed application programer inter- 
face (API) (open, read, write, close, etc.) re-implemented in a distributed way. 

Before NFS and other network file systems, an error status returned from one of 
these calls indicated something rare: a full disk, or a catastrophe such as a disk crash. 
Most failures simply crashed the application along with the file system. Further, these 
errors generally reflected a situation that was either catastrophic for the program receiv- 
ing the error or one that the user running the program could do something about. 

NFS opened the door to partial failure within a file system. It has essentially two 
modes for dealing with an inaccessible file server: soft mounting and hard mounting. 
But since the designers of NFS were unwilling (for easily understandable reasons) to 
change the interface to the file system to reflect the new, distributed nature of file 
access, neither option is particularly robust. 

Soft mounts expose network or server failure to the client program. Read and write 
operations return a failure status much more often than in the single-system case, and 
programs written with no allowance for these failures can easily corrupt the files used 
by the program. In the early days of NFS, system administrators tried to tune various 
parameters (time-out length, number of retries) to avoid these problems. These efforts 
failed. Today, soft mounts are seldom used, and when they are used, their use is gener- 
ally restricted to read-only file systems or special applications. 

Hard mounts mean that the application hangs until the server comes back up. This 
generally prevents a client program from seeing partial failure, but it leads to a malady 
familiar to users of workstation networks: one server crashes, and many workstations 
even those apparently having nothing to do with that server--freeze. Figuring out the 
chain of causality is very difficult, and even when the cause of the failure can be deter- 
mined, the individual user can rarely do anything about it but wait. This kind of brittle- 
ness can be reduced only with strong policies and network administration aimed at 
reducing interdependencies. Nonetheless, hard mounts are now almost universal. 

Note that because the NFS protocol is stateless, it assumes clients contain no state 
of interest with respect to the protocol; in other words, the server doesn't care what hap- 



61 

pens to the client. NFS is also a "pure" client-server protocol, which means that failure 
can be limited to three parties: the client, the server, or the network.1 This combination 
of features means that failure modes are simpler than in the more general case of peer- 
to-peer distributed object-oriented applications where no such limitation on shared state 
can be made and where servers are themselves clients of other servers. Such peer-to- 
peer distributed applications can and will fail in far more intricate ways than are cur- 
rently possible with NFS. 

The limitations on the reliability and robustness of NFS have nothing to do with the 
implementation of the parts of that system. There is no "quality of service" that can be 
improved to eliminate the need for hard mounting NFS volumes. The problem can be 
traced to the interface upon which NFS is built, an interface that was designed for non- 
distributed computing where partial failure was not possible. The reliability of NFS 
cannot be changed without a change to that interface, a change that will reflect the dis- 
tributed nature of the application. 

This is not to say that NFS has not been successful. In fact, NFS is arguably the most 
successful distributed application that has been produced. But the limitations on the 
robustness have set a limitation on the scalability of NFS. Because of the intrinsic unre- 
liability of the NFS protocol, use of NFS is limited to fairly small numbers of machines, 
geographically co-located and centrally administered. The way NFS has dealt with par- 
tial failure has been to informally require a centralized resource manager (a system 
administrator) who can detect system failure, initiate resource reclamation and insure 
system consistency. But by introducing this central resource manager, one could argue 
that NFS is no longer a genuinely distributed application. 

7 Taking the Difference Seriously 

Differences in latency, memory access, partial failure, and concurrency make merging 
of the computational models of local and distributed computing both unwise to attempt 
and unable to succeed. Merging the models by making local computing follow the 
model of distributed computing would require major changes in implementation lan- 
guages (or in how those languages are used) and make local computing far more com- 
plex than is otherwise necessary. Merging the models by attempting to make distributed 
computing follow the model of local computing requires ignoring the different failure 
modes and basic indeterminacy inherent in distributed computing, leading to systems 
that are unreliable and incapable of scaling beyond small groups of machines that are 
geographically co-located and centrally administered. 

A better approach is to accept that there are irreconcilable differences between local 
and distributed computing, and to be conscious of those differences at all stages of the 
design and implementation of distributed applications. Rather than trying to merge 
local and remote objects, engineers need to be constantly reminded of the differences 
between the two, and know when it is appropriate to use each kind of object. 

1. It should be noted that even in the fairly simple case of NFS, this is not precisely true. 
There are failure conditions that require state on the client, and can require manual 
intervention to restore consistency. 



62 

Accepting the fundamental difference between local and remote objects does not 
mean that either sort of  object will require its interface to be defined differently. An 
interface definition language such as IDL can still be used to specify the set of interfaces 
that define objects. However, an additional part of the definition of a class of objects 
will be the specification of whether those objects are meant to be used locally or 
remotely. This decision will need to consider what the anticipated message frequency 
is for the object, and whether clients of the object can accept the indeterminacy implied 
by remote access. The decision will be reflected in the interface to the object indirectly, 
in that the interface for objects that are meant to be accessed remotely will contain oper- 
ations that allow reliability in the face of partial failure. 

It is entirely possible that a given object will often need to be accessed by some 
objects in ways that cannot allow indeterminacy, and by other objects relatively rarely 
and in a way that does allow indeterminacy. Such cases should be split into two objects 
(which might share an implementation) with one having an interface that is best for 
local access and the other having an interface that is best for remote access. 

A compiler for the interface definition language used to specify classes of objects 
will need to alter its output based on whether the class definition being compiled is for 
a class to be used locally or a class being used remotely. For interfaces meant for dis- 
tributed objects, the code produced might be very much like that generated by RPC stub 
compilers today. Code for a local interface, however, could be much simpler, probably 
requiring little more than a class definition in the target language. 

While writing code, engineers will have to know whether they are sending mes- 
sages to local or remote objects, and access those objects differently. While this might 
seem to add to the programming difficulty, it will in fact aid the programmer by provid- 
ing a framework under which he or she can learn what to expect from the different kinds 
of calls. To program completely in the local environment, according to this model, will 
not require any changes from the programmer's point of view. The discipline of defin- 
ing classes of objects using an interface definition language will insure the desired sep- 
aration of interface from implementation, but the actual process of implementing an 
interface will be no different than what is done today in an object-oriented language. 

Programming a distributed application will require the use of different techniques 
than those used for non-distributed applications. Programming a distributed application 
will require thinking about the problem in a different way than before it was thought 
about when the solution was a non-distributed application. But that is only to be 
expected. Distributed objects are different from local objects, and keeping that differ- 
ence visible will keep the programmer from forgetting the difference and making mis- 
takes. Knowing that an object is outside of the local address space, and perhaps on a 
different machine, will remind the programmer that he or she needs to program in a way 
that reflects the kinds of failures, indeterminacy, and concurrency constraints inherent 
in the use of such objects. Making the difference visible will aid in making the differ- 
ence part of the design of the system. 

Accepting that local and distributed computing are different in an irreconcilable 
way will also allow an organization to allocate its research and engineering resources 
more wisely. Rather than using those resources in attempts to paper over the differences 



63 

between the two kinds of computing, resources can be directed at improving the perfor- 
mance and reliability of each. 

One consequence of the view espoused here is that it is a mistake to attempt to con- 
struct a system that is "objects all the way down" if one understands the goal as a dis- 
tributed system constructed of the same k ind of objects all the way down. There will be 
a line where the object model changes; on one side of the line will be distributed objects, 
and on the other side of the line there will (perhaps) be local objects. On either side of 
the line, entities on the other side of the line will be opaque; thus one distributed object 
will not know (or care) if the implementation of another distributed object with which 
it communicates is made up of objects or is implemented in some other way. Objects 
on different sides of the line will differ in kind and not just in degree; in particular, the 
objects will differ in the kinds of failure modes with which they must deal. 

8 A M i d d l e  G r o u n d  

As noted in Section 2, the distinction between local and distributed objects as we are 
using the terms is not exhaustive. In particular, there is a third category of objects made 
up of those that are in different address spaces but are guaranteed to be on the same 
machine. These are the sorts of objects, for example, that appear to be the basis of sys- 
tems such as Spring [16] or Clouds [4]. These objects have some of the characteristics 
of distributed objects, such as increased latency in comparison to local objects and the 
need for a different model of memory access. However, these objects also share char- 
acteristics of local objects, including sharing underlying resource management and fail- 
ure modes that are more nearly deterministic. 

It is possible to make the programming model for such "local-remote" objects more 
similar to the programming model for local objects than can be done for the general case 
of distributed objects. Even though the objects are in different address spaces, they are 
managed by a single resource manager. Because of this, partial failure and the indeter- 
minacy that it brings can be avoided. The programming model for such objects will still 
differ from that used for objects in the same address space with respect to latency, but 
the added latency can be reduced to generally acceptable levels. The programming 
models will still necessarily differ on methods of memory access and concurrency, but 
these do not have as great an effect on the construction of interfaces as additional failure 
modes. 

The other reason for treating this class of objects separately from either local 
objects or generally distributed objects is that a compiler for an interface definition lan- 
guage can be significantly optimized for such cases. Parameter and result passing can 
be done via shared memory if it is known that the objects communicating are on the 
same machine. At the very least, marshalling of parameters and the unmarshalling of 
results can be avoided. 

The class of locally distributed objects also forms a group that can lead to significant 
gains in software modularity. Applications made up of collections of such objects would 
have the advantage of forced and guaranteed separation between the interface to an 
object and the implementation of that object, and would allow the replacement of one 



64 

implementation with another without affecting other parts of  the system. Because of  
this, it might be advantageous to investigate the uses of  such a system. However, this 
activity should not be confused with the unification of local objects with the kinds of  
distributed objects we have been discussing. 

References 

[1] The Object Management Group. "Common Object Request Broker: Architecture and 
Speeification." OMG Document Number 91.12.1 (1991). 

[2] [Parrington, Graham D. "Reliable Distributed Programming in C++: The Arjuna 
Approach." USENIX 1990 C+ + Conference Proceedings (1991 ). 

[3] Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter. "Distribution and Abstract Types 
in Emerald." 1EEE Transactions on Software Engineering SE-13, no. 1, (Jan. 1987). 

[4] Dasgupta, P., R. J. Leblanc, and E. Spafford. "The Clouds Project: Designing and Imple- 
menting a Fault Tolerant Distributed Operating System." Georgia Institute of Technology 
Technical Report GIT-ICS-85/29. (1985). 

[5] Microsoft Corporation. Object Linking and Embedding Programmers Reference. 
version 1. Microsoft Press, 1992. 

[6] Linton, Mark. "A Taste of Fresco?' Tutorial given at the 8th Annual X Technical Confer- 
ence (January 1994). 

[7] Jaayeri, M., C. Ghezzi, D. Hoffman, D. Middleton, and M. Smotherman. "CSP/80: A Lan- 
gnage for Communicating Sequential Processes." Proceedings: Distributed Comput- 
ing CompCon (Fall 1980). 

[8] Cook, Robert. "MOD- A Language for Distributed Processing." Proceedings of the 1st 
International Conference on Distributed Computing Systems (October 1979). 

[9] Birrell, A. D. and B. J. Nelson. "Implementing Remote Procedure Calls."ACM Transac- 
tions on Computer Systems 2 (1978). 

[10] Hutchinson, N. C., L. L. Peterson, M. B. Abott, and S. O'Malley. "RPC in the x-Kernel: 
Evaluating New Design Techniques." Proceedings of the Twelfth Symposium on 
Operating Systems Prt'nciples 23, no. 5 (1989). 

[11] Zahn, L., T. Dineen, P. Leach, E. Martin, N. Mishkin, L Pato, and G. Wyant. Network 
Computing Architecture. Prentice Hall, 1990. 

[ 12] Sehroeder, Michael D. "A State-of-the-Art Distributed System: Computing with BOB." In 
Distributed Systems, 2nd ed., S. Mullender, ed., ACM Press, 1993. 

[13] Hadzilacos, Vassos and Sam Toueg. "Fault-Tolerant Broadcasts and Related Problems." 
In Distributed Systems, 2nd ed., S. Mullender, ed., ACM Press, 1993. 

[14] Walsh, D., B. Lyon, G. Sager, J. M. Chang, D. Goldberg, S. Kleiman, T. Lyon, R. Sand- 
berg, and P. Weiss. "Overview of the SUN Network FiLe System." Proceedings of  the 
Winter Usenix Conference (1985). 

[15] Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. "Design and Implemen- 
tation of the SUN Network File System." Proceedings of the Summer Usenix Confer- 
ence (1985). 

[16] Khalidi, YousefA. and Michael N. Nelson. "An Implementation of UNIX on an Object- 
Oriented Operating System." Proceedings of the Winter USENIX Conference (1993). 
Also Sun Microsystems Laboratories, Inc. Technical Report SMLI TR-92-3 (December 
1992). 


